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Abstract: Background: To evaluate the clinical utility of an Artificial Intelligence (AI) radiology
solution, Quantib Prostate, for prostate cancer (PCa) lesions detection on multiparametric Magnetic
Resonance Images (mpMRI). Methods: Prostate mpMRI exams of 108 patients were retrospectively
studied. The diagnostic performance of an expert radiologist (>8 years of experience) and of an
inexperienced radiologist aided by Quantib software were compared. Three groups of patients
were assessed: patients with positive mpMRI, positive target biopsy, and/or at least one positive
random biopsy (group A, 73 patients); patients with positive mpMRI and a negative biopsy (group B,
14 patients), and patients with negative mpMRI who did not undergo biopsy (group-C, 21 patients).
Results: In group A, the AI-assisted radiologist found new lesions with positive biopsy correlation,
increasing the diagnostic PCa performance when compared with the expert radiologist, reaching
an SE of 92.3% and a PPV of 90.1% (vs. 71.7% and 84.4%). In group A, the expert radiologist
found 96 lesions on 73 mpMRI exams (17.7% PIRADS3, 56.3% PIRADS4, and 26% PIRADS5). The
AI-assisted radiologist found 121 lesions (0.8% PIRADS3, 53.7% PIRADS4, and 45.5% PIRADS5). At
biopsy, 33.9% of the lesions were ISUP1, 31.4% were ISUP2, 22% were ISUP3, 10.2% were ISUP4, and
2.5% were ISUP5. In group B, where biopsies were negative, the AI-assisted radiologist excluded
three lesions but confirmed all the others. In group-C, the AI-assisted radiologist found 37 new
lesions, most of them PIRADS 3, with 32.4% localized in the peripherical zone and 67.6% in the
transition zone. Conclusions: Quantib software is a very sensitive tool to use specifically in high-risk
patients (high PIRADS and high Gleason score).

Keywords: prostate cancer (PCa) lesions; multiparametric Magnetic Resonance Imaging (mpMRI);
Quantib Prostate software; Artificial Intelligence (AI)

1. Introduction

Multi-parametric Magnetic Resonance Imaging (mpMRI) is evolving into a main
diagnostic imaging for prostate cancer (PCa) [1]. Indeed, mpMRI has been included in
the most recent guidelines of the European Association of Urology (EAU) as an important
imaging tool to be performed before prostatic biopsy [2], since it improves the detection
of clinically significant PCa and decreases the number of unnecessary biopsies [3]. A
recent study has shown that mpMRI can improve the detection ratio of clinically significant
PCa by 12%, while reducing the risk of insignificant PCa by up to 40% compared to
systematic biopsies [4].

Tomography 2022, 8, 2010–2019. https://doi.org/10.3390/tomography8040168 https://www.mdpi.com/journal/tomography

https://doi.org/10.3390/tomography8040168
https://doi.org/10.3390/tomography8040168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://orcid.org/0000-0002-7301-1670
https://orcid.org/0000-0003-2621-072X
https://orcid.org/0000-0003-4903-8715
https://doi.org/10.3390/tomography8040168
https://www.mdpi.com/journal/tomography
https://www.mdpi.com/article/10.3390/tomography8040168?type=check_update&version=1


Tomography 2022, 8 2011

However, mpMRI accuracy has been proven to significantly vary between studies [5].
Its usefulness is dependent on the quality of the MRI process, both concerning image
quality and reporting. As systematic reporting can improve clinically significant prostate
lesions detection and characterization, which are those lesions that may impact the pa-
tient’s survival and quality of life, it is recommended to use the Prostate Imaging and
Reporting and Data System (PI-RADS v 2.1, American College of Radiology) [6]. Many
studies have already reported the high diagnostic performance of this score [7], while
inter-reader agreement on PI-RADS categories is moderate, and experience has large effects
on specificity of reporting. According to recent research, while an expert and sensitive
radiologist would miss 2.6% of clinically significant PCa, a less-sensitive reader missed
almost 30% of cancers [8], making inter-reader agreement fair and moderate for higher
PI-RADS scores.

The use of computer-assisted software solutions could be a good approach to improve
sensitivity in the PCa diagnosis by mpMRI. There are multiple AI radiology solutions on
the market. Such solutions could limit the required expertise and inter-reader variability,
which is currently present for evaluation of mpMRI data [9,10]. However, there is limited
proof for the clinical utility of such AI applications [11].

The aim of this study is to evaluate the clinical utility of an Artificial Intelligence
(AI) radiology solution, Quantib Prostate (Quantib B.V. Rotterdam, The Netherlands), by
comparing the analysis obtained by an inexperienced first-year radiology resident with
the help of the Quantib software and the ground truth set for this study (reports from an
expert radiologist and biopsy results) on a series of 108 mpMRI exams.

2. Materials and Methods
2.1. Patient Population

Our sample is made of 108 mpMRI exams collected from 2019 to 2020 and seen by
the same expert radiologist with more than 8 years of experience. When mpMRI was
considered as positive, the patient underwent targeted prostatic biopsy.

Of the 108 patients evaluated, 87 underwent prostate biopsy based on the radiologist’s
evaluation: 73 (83.9%) prostate biopsies resulted positive, meaning they showed prostate
cancer, while the remaining 14 patients did not show prostate cancer (i.e., false positive).

Based on the biopsy results and radiology reports, the mpMRI exams that were
followed by a biopsy were divided into groups as shown in Table 1:

Table 1. Patients grouping.

Group A B C

Patients 73 (67.6%) 14 (13%) 21 (19.4%)

Notes

positive mpMRI
positive biopsy (positive

target ± positive
random biopsies)

positive mpMRI
negative biopsy

negative mpMRI
no biopsy

confirmation

2.2. MR Imaging

MRI exams were obtained with a 1.5-T system (Magnetom Aera, Siemens, Gurgaon,
Haryana, version syngo MR E11) using a pelvic phased-array coil. Patients were examined
in the supine position after appropriate preparation.

The prostate gland was studied using axial, coronal, and sagittal T2-weighted turbo
spin-echo images using the following setting: Repetition Time (RT) 3520 ms, Echo Time
(ET) 114 ms, Field of View (FOV) 200 mm, slice 30, slice thickness 3 mm, and distant
factor 10%. T1-weighted fast spin-echo transverse images were then acquired with the
following parameters: TR 426 ms, TE 11 ms, FOV 330 mm, slice 30, slice thickness 3 mm,
and distant factor 10%. The imaging protocol included diffusion images with b-value of
500–1000–1500–2000 s/mm2 and Apparent Diffusion Coefficient (ADC) maps.
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The last series performed was a 3D Volumetric interpolated breath-hold examination
(VIBE) T1-weighted fat sat in axial plane (TR, 4.3 ms, TE 1.62 ms, FOV 260), immediately
following intravenous bolus injection of 0.15 mL/kg body-weight dose of paramagnetic
contrast medium (gadoteric acid 0.5 mmol/mL) at rate of 3 mL/s.

A written informed consent was obtained from each patient who performed the mpMRI.

2.3. Pathological Validation

Pathological comparison was made in all the patients of groups A and B. After the
mpMRI exam, the patients underwent a trans-rectal prostate biopsy, as is the current
standard. The biopsies were conducted both as MRI/Utrasound (US) real-time fusion
biopsy at targeted sites (Urostation Koelis, Grenoble, France) and as systematic-14 cores-
random biopsy on the whole prostate parenchyma. The 14-cores scheme was applied for
all patients and included the sampling of apex, basis, equatorial zone, and right and left of
the prostatic gland tissue.

We used the International Society of Urological Pathology (ISUP) grading of prostate
cancer for the pathological correlation, reporting as five groups, ISUP grades 1–5, respec-
tively, for Gleason scores ≤ 6, 3 + 4 = 7, 4 + 3 = 7, 8, and 9–10 [12].

As already said in the Introduction, each lesion seen by the radiologist was reported
using PI-RADS v. 2.1 scores 1–5, where scores 1 and 2 correspond to benign tissue, score 3
shows inconclusive results, and scores 4 and 5 suggest malignant tissue.

2.4. Quantib Prostate Software

In this study, the inexperienced radiologist was assisted by Quantib Prostate (Quantib
B.V., Rotterdam, The Netherlands), which we denote AI-assisted radiologist. The software
aims to improve the radiology workflow of prostate diagnostic MRI. Quantib Prostate
offers features for the reading of prostate MRI in one workflow. The semi-automated com-
bination of bi-parametric data provided supports Region of Interest (ROI) determination
and enables prostate lesion evaluation. It allows calculation of lesion volume through
its AI-bolstered segmentation. Furthermore, a report including Prostatic Specific Antigen
(PSA) density, quantified volumes, PI-RADS v2.1 scoring and key images of suspicious
regions is automatically generated. The current version 1.3 is CE marked and cleared by
the Food and Drug Administration (FDA).

The Quantib Prostate workflow consists of three steps:

1. PSA density analysis, with the automatic segmentation of the prostate, which can be
reviewed and modified by the radiologist;

2. The multiparametric MRI analysis, where standardized assessment of MRI includes
the ability to add, edit, and inspect ROIs and score them according to PI-RADS general
scoring, finding, reviewing, and approving the results;

3. Results are exported and a standardized report is created.

Imaging output includes prostate contours and segmentation, ROI contours and
segmentation, and secondary capture series of an image-on-image overlay, which can be
the bi-parametric combination image.

An example is shown in Figure 1.

2.5. Study Design and Statistical Analysis

All mpMRI exams were evaluated in the clinical workflow by one experienced radiol-
ogist. This evaluation was done in the clinical routine, thus, before biopsy and, therefore,
blinded to biopsy results. This was done on a dedicated workstation (Syngo.via, Siemens,
Erlangen, Germany).

The inexperienced radiologist re-evaluated all cases blinded to the diagnosis and
biopsy results.
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Figure 1. Example of a positive mpMRI prostate nodule, showing the original software interface with
the segmentation of the lesion (a) and post-contrast enhancement curve (b).

Both the expert radiologist and the inexperienced radiologist helped by Quantib
analyzed all the mpMRI exams reporting for each lesion:

- Prostatic zones: transition zone (TZ) or peripherical zone (PZ);
- Side and localization: right or left; apex, equatorial, or base;
- Largest axial dimension;
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- Lesion volume (calculated by Quantib);
- PI-RADS.

The diagnostic capacity of an expert radiologist (more than 8 years) was compared
with the diagnostic capacity of an inexperienced radiologist, first-year resident (the
AI-assisted radiologist).

The evaluations were conducted as lesion analysis, while a “per patient” analysis was
excluded as there could be up to three lesions per patient. Biopsy reports were compared to
the ROIs identified by the experienced radiologist as part of the current clinical workflow,
as well as to the ROIs indicated by the AI-assisted radiologist. True positives (defined
as correspondence of malignancy between lesion identified by radiologists and target
biopsy), false negatives (defined as positive result at random biopsy without identification
by the radiologist), and false positives (defined as negative result at target biopsy with
positive identification by the radiologist) could, thus, be assessed for all patients who
underwent biopsy.

The statistical analysis for the prediction of sensitivity and positive predictive value
(PPV) was performed by SPSS v. 22 (IBM, Armonk, NY, USA) using traditional compu-
tational analysis. We calculated sensitivity as number of true positives/(number of true
positives + number of false positives) and PPV as number of true negatives/(number of
true negatives + number of false positives).

One-sided Student’s t-test was used to compare age, PSA levels, prostate volume,
lesion volume, and lesion axial dimension between the three groups of patients. The
statistical significance was set at 0.05.

3. Results

The clinical information (age, PSA, and the prostatic volume) and the MRI pro-
static lesions details (largest axial diameter and volume) for each group are reported
in Tables 2 and 3, respectively.

Table 2. Age, PSA, and prostate volume distribution in the three groups of patients. Prostate volume
is significantly (* p < 0.01) different between group A and group B.

Group A (n = 73) Group B (n = 14) p-Value Group C (n = 21)

Age (years) 67.7 (52.4–84) 66.5 (54.9–75.2) 0.8 64.3 (56.2–73)
PSA (ng/mL) 8.2 (2.7–25) 7.6 (3–13.2) 0.74 6.3 (1.8–9.2)

Prostate volume
(mL) 56.6 (21–137.9) 93.3 (44.4–182.7) <0.01 * 81.1 (28.7–157)

Table 3. Mean, median value, and range of volume and largest axial diameter of lesions in groups A,
B, and C, according to the Quantib software.

Group A Group B p Value Group C

Lesion Volume (mL)
Mean, median (range)

0.71; 0.56
(0.06–3.69)

0.65; 0.5
(0.02–2.06) 0.72 0.24; 0.2

(0.04–0.62)
Largest axial diameter (mm)

Mean, median (range)
14.8; 14.4
(4.6–40.9)

13.2; 12.8
(3.9–26.7) 0.81 10.1; 9.9

(5.2–16.6)

In group A, the expert radiologist found 96 lesions in 73 mpMRI exams; of them,
17.7% were PIRADS 3, 56.3% were PIRADS 4, and 26% were PIRADS 5. The AI-assisted
radiologist found 121 lesions; of them, 0.8% were PIRADS 3, 53.7% were PIRADS 4, and
45.5% were PIRADS 5. At biopsy, 33.9% of the lesions were ISUP 1, 31.4% were ISUP 2, 22%
were ISUP 3, 10.2% were ISUP 4, and 2.5% were ISUP 5.

In Table 4, the lesions found by the expert and the AI-assisted radiologists are shown
in relation to their nature (location, ISUP, and PIRADS classification).
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Table 4. Comparison between radiologist and Quantib about sensitivity and PPV, considering
location, Gleason score, and PIRADS of lesions. (PZ: peripheral zone; TZ: transitional zone).

Sensitivity PPV

Radiologist Quantib Radiologist Quantib

LOCATION

PZ 51/65 (78.5%) 67/67 (100%) 51/55 (92.7%) 67/72 (93.1%)
TZ 30/39 (76.9%) 42/42 (100%) 30/41 (73.2%) 42/49 (85.7%)

Gleason score

ISUP 1 23/39 (59%) 36/40 (90%)
ISUP 2 25/37 (67.6%) 32/37 (86.5%)
ISUP 3 21/24 (87.5%) 26/26 (100%)
ISUP 4 9/10 (90%) 12/12 (100%)
ISUP 5 3/3 (100%) 3/3 (100%)

PIRADS

PIRADS 3 10/17 (58.8%) 1/1 (100%)
PIRADS 4 48/54 (88.9%) 56/65 (86.2%)
PIRADS 5 23/25 (92%) 52/55 (94.5%)

Evaluating group A, the expert radiologist reached a sensitivity of 71.7 and a PPV of
84.4%, while the AI-assisted radiologist reached a sensitivity of 92.3% and a PPV of 90.1%.
Figure 2 shows the sensitivity and PPV for groups A and B combined.

Analyzing the cases which resulted in false negatives from expert radiologist evalua-
tion and true positives from AI-assisted radiologist analysis (23 ROIs), 12 were ISUP 1, 7
were ISUP 2, 3 were ISUP 3, and only 1 was ISUP 4.
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inexperienced radiologist, for groups A and B combined. X-axis represents percentages. (a) shows
ISUP on the y-axis, as well as transition zone (TZ) and peripheral zone (PZ) sensitivity. (b) shows
PI-RADS v2.1 score, as well as transition zone (TZ) and peripheral zone (PZ) positive predictive
value (PPV).

In group A, nine cases were false negatives for both the expert radiologist and AI-
assisted radiologist (four ISUP 1 and five ISUP 2).

In group B, the expert radiologist found 17 lesions in 14 mpMRI exams (47.1% PIRADS
3 and 52.9% PIRADS 4). The AI-assisted radiologist found 14 lesions in the same 14 mpMRI
exams (71.4% PIRADS 3 and 28.6% PIRADS 4). Moreover, 21.4% were in the PZ and 78.6%
in the TZ.

In group C, the expert radiologist did not find any lesions. The AI-assisted radiologist
found 37 lesions in 21 patients; of them, 86.5% were PIRADS 3, and the rest were PIRADS
4; moreover, 32.4% were in the PZ and 67.6% in the TZ.

4. Discussion

In this study, we demonstrated that AI software solutions for mpMRI can increase
sensitivity and PPV in PCa diagnosis. Specifically, we observed a sensitivity of 92.3% for
patients with positive mpMRI and positive biopsy (Group A).

It is commonly accepted that the use of AI software solutions can complement the
diagnostic performance of the radiologist for PCa [13]. Greer et al. [14] studied a CAD
assistance and observed an increase in sensitivity (98% vs. 92.7%), particularly in the PZ.
Differently than in our study, they mostly used prostatectomy patients, who can have
clearer mpMRI-detectable lesions than men with just an elevated PSA across risk strati-
fication. Cameron et al. [15] proposed a quantitative feature model, MAPS (morphology,
asymmetry, physiology, and size), based on radiomics, and reported a sensitivity of 86%.
Khalvati et al. [16] proposed a MPCaD (multiscale radiomics-driven frame-work) for PCa,
obtaining a sensitivity of 82%.

Considering only lesions with ISUP 4 or 5, our results showed that an inexperienced
AI-assisted radiologist reached a high sensitivity, which is equal to or possibly slightly
higher than the experienced radiologist. ISUP classification is the current gold standard for
prognostication of PCa [17]. ISUP scores are used for stratification of patients into different
risk groups and might predict Gleason scores in vivo [8].
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Concerning PI-RADS scores, our results indicated that the AI-assisted radiologist had
a similar or better PPV for the PIRADS scoring. This is probably due to the mainly higher
PIRADS lesions, where the inexperienced radiologist gave a PI-RADS 5 to almost double
the number of lesions compared to the experienced radiologist.

Recently, some studies have verified the possibility to use radiomics to attribute
PI-RADS scores. Wang et al. [18] used a support vector machine (SVM) based on a radial-
basis-function (RBF) kernel to analyze radiomic features extracted from MRI sequences,
and they reported that radiomic features can improve the diagnostic performance (from
79% to 94.4% in the PZ and from 73.4% to 91.6% in the TZ). In this study, because of the
lack of an MR/TRUS fusion-guided in-bore biopsy, a histological/radiological correla-
tion was established through a systematic, consensus-seeking correlative review of the
histological and MR findings by a genitourinary pathologist and a radiologist, without a
reproducible method.

Hou et al. [19] developed a model integrating data extracted from the most important
MRI sequences in improving diagnostic accuracy in PI-RADS 3, which differentiated
clinically significant PCa from indolent and normal cases.

As seen before, the high heterogeneity of studies, mostly due to the different patient
samples, software characteristics, and settings that are used, makes a real comparison
between each software difficult.

In our study, we reported the diagnostic performance of an expert radiologist and of
an inexperienced AI-assisted radiologist in a setting of different ISUP and PIRADS, without
considering the radiomics of each lesion. Other studies are needed for that.

In this set, the false negatives identified by the expert radiologist were 23, of which
82.61% were of ISUP class 1 or 2, while the false negatives detected by the AI-assisted
radiologist were 9, and of these 100% were of ISUP class 1 or 2. This means that the
diagnostic accuracy of the AI-assisted radiologist is higher than the expert radiologist,
when considering sensitivity and positive predictive value for the more aggressive lesions,
but these results also indicate that in the unidentified cases the tumor lesions showed very
low aggressiveness (ISUP 1 or 2).

Group B was set in order to assess the capability of the AI-assisted radiologist to
exclude false positives, and group C was set in order to evaluate the AI-assisted radiologist
on cases that were identified as negative by the expert radiologist. In group B, the false
positives detected by the expert radiologist were 17, while those detected by the AI-assisted
radiologist were 14. Furthermore, 53% of the lesions identified by the expert radiologist had
been stratified as PIRADS 4, while only 28% of these lesions identified by the AI-assisted
radiologist had this score.

In most cases, the AI-assisted radiologist showed PIRADS 3 lesions that were actually
negative at all biopsy locations. Thus, while there was a strong agreement on the identi-
fication of lesions between the expert radiologist and the inexperienced radiologist with
Quantib software, the diagnostic accuracy did not significantly increase. In group C, the
AI-assisted radiologist found new lesions which are likely to be false positives. Both in
group B and in group C, the majority of lesions were in the TZ (67.6–78.6%). One possi-
ble explanation for the high rates of false positive in groups B and C is that the Quantib
software did not detect a main lesion, but it did detect many mild suspected areas in the
TZ and less frequently in the PZ. In these cases, benign prostatic hyperplasia nodules
could be mistaken for PCa lesions. Indeed, the prostate volume was significantly larger
in groups B and C (Table 2), which is negatively correlated to PCa and could corroborate
this hypothesis.

In some cases, we observed a suspected area on mpMRI, with a positive biopsy in
more than two cores that correspond to that area; so, to calculate sensitivity and PPV, we
considered only the higher Gleason score (GS) between the cores corresponding to the lesion.
Therefore, our percentages can be slightly different considering the ISUP stratification or
lesion stratification. For the group of patients with no biopsies performed (group C), a
direct comparison between the radiologist’s report and the AI-assisted radiologist was
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performed by comparing the number of ROIs. As our clinical practice does not perform
biopsies on patients with negative mpMRI, the number of true negatives or false negatives
cannot be calculated.

However, since this version of the Quantib software mostly uses DWI to consider an
area at risk of PCa, considering that the most important MRI sequence for the TZ evaluation
is the T2-weighted scan, it is probable that Quantib over-considered some areas in the TZ
as at risk. Based on communication of our results to Quantib, their next software version
(already available) includes technical improvements that could possibly reduce the number
of false positives in the transitional and central zone, by giving greater importance to
T2-weighted imaging features of PI-RADS 3,4, and 5 lesions in the PZ and the TZ.

There are several obvious limitations to this study. This is a single-center, single-
reader, and single-software study. Even more, no nodules with PIRADS score 1 or 2 were
included in the study. This study should, thus, be extended, replicated, and performed
with multiple software packages in order to be generalizable. Furthermore, as negative
cases (group C) did not undergo biopsy, and follow-up of these men was not available
for this study, the specificity and negative predictive value could not be assessed. As a
future study perspective, we would consider also subjecting the PIRADS 1 and 2 nodules
and deepening the learning curve of an inexperienced radiologist, by evaluating their
diagnostic performance before and after using the software. Our next studies will include a
post-hoc analysis to evaluate patients’ follow-up (PSA and other anamnestic information,
for example) and analyze falsely identified and falsely missed cases in order to investigate
their classification.

5. Conclusions

The role of mpMRI in the management of prostate cancer lesions has been well-
established. MRI allows the correct identification of PCa lesions, which is fundamental
both to guide the execution of targeted biopsies and for the lesions contouring in case
of radiotherapy treatment. However, the interpretation of a prostatic MRI is not always
performed by dedicated radiologists. In our study, Quantib Prostate software was proven
to be a very accurate tool for the initial diagnosis of PCa on mpMRI, and we demonstrated
that it could provide a supporting tool even to untrained radiologists.
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