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Genetic Risk Prediction for Normal-Karyotype Acute 
Myeloid Leukemia Using Whole-Exome Sequencing
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Normal-karyotype acute myeloid leukemia (NK-AML) is a highly malignant and cytogenetically heterogeneous hematologic 
cancer. We searched for somatic mutations from 10 pairs of tumor and normal cells by using a highly efficient and reliable 
analysis workflow for whole-exome sequencing data and performed association tests between the NK-AML and somatic 
mutations. We identified 21 nonsynonymous single nucleotide variants (SNVs) located in a coding region of 18 genes. 
Among them, the SNVs of three leukemia-related genes (MUC4, CNTNAP2, and GNAS) reported in previous studies were 
replicated in this study. We conducted stepwise genetic risk score (GRS) models composed of the NK-AML susceptible variants 
and evaluated the prediction accuracy of each GRS model by computing the area under the receiver operating characteristic 
curve (AUC). The GRS model that was composed of five SNVs (rs75156964, rs56213454, rs6604516, rs10888338, and 
rs2443878) showed 100% prediction accuracy, and the combined effect of the three reported genes was validated in the 
current study (AUC, 0.98; 95% confidence interval, 0.92 to 1.00). Further study with large sample sizes is warranted to 
validate the combined effect of these somatic point mutations, and the discovery of novel markers may provide an 
opportunity to develop novel diagnostic and therapeutic targets for NK-AML.
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Introduction

Acute myeloid leukemia (AML), which is characterized by 
the rapid growth of abnormal myeloid cells in the marrow, is 
a highly malignant and cytogenetically heterogeneous type 
of cancer [1]. AML is categorized into three risk groups: 
favorable, intermediate, and unfavorable. AML with a 
normal karyotype (NK-AML) accounts for approximately 
40% to 50% of adult patients and 25% of pediatric patients 
with AML and is composed of a heterogeneous group with an 
intermediate prognosis [2].

In the past few years, next-generation sequencing tech-
nologies have been developed rapidly in the field of cancer 
genomics [3, 4] and enabled a direct genome-wide asso-
ciation test for NK-AML at single-base resolution in an 
unbiased manner [5]. A comprehensive understanding of 
the genetic lesions is an important basis for developing 
personalized therapies for the treatment of NK-AML [6].

Ley et al. [5] carried out the first whole-genome 
association study for AML by using single-end whole- 

genome sequencing data and found 181 single nucleotide 
variations (SNVs), including 28 indels, nonsynonymous, 
and splicing sites (NPM1 and FLT3, respectively). Mardis et 
al. [7] performed paired-end whole-genome sequencing for 
cytogenetically normal AML, found seven nonsynonymous 
SNVs (nsSNVs), one splice site SNV, two indels in coding 
regions, and 52 somatic point mutations in conserved or 
regulatory genomic regions, and observed a 10% recurrence 
rate in the IDH1 mutation in 188 additional AML samples. In 
the following year, Ley et al. [5] carried out a case-control 
study of relapsed AML among patients who were reported in 
2008. They found a one-base-pair deletion in the DNMT3A 
gene, which showed a recurrence risk of 22% in AML [8]. De 
Weer et al. [9] detected deletions within a chromosomal 
region of 7q35-q36, which contains the CNTNAP2 gene, in 
both Kasumi-3 and MUTZ-3 cell lines using high-resolution 
array comparative genomic hybridization (CGH). Parti-
cularly, Bejar et al. [10] identified novel associations between 
somatic mutations in two genes, ETV6 and GNAS, and both 
myelodysplastic syndrome (previously known as preleu-
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Fig. 1. Next-generation sequencing data analysis workflow.

kemia) and AML using high-throughput genotyping tech-
nology. In the same year, Link et al. [11] identified a novel 
TP53 susceptibility mutation in AML patients through the 
use of whole-genome sequencing. Recent exome-sequen-
cing studies found more than 60 susceptible variants, 
including indels and splicing site mutations, in AML patients 
[12]. However, to the best of our knowledge, none of the 
previous studies attempted to predict the risk of NK-AML by 
analyzing whole-exome sequencing data.

This study aimed to evaluate the effect of nsSNVs in 10 
pairs of tumor and normal cells of NK-AML patients with 
whole-exome sequencing data. Finally, we developed genetic 
risk prediction models for NK-AML by creating genetic risk 
scores (GRS).

Methods
Whole-exome sequencing data analysis

A total of 20 DNA samples were obtained from 10 pairs of 
bone marrow (tumor) and germline (normal) cells collected 
from 10 NK-AML patients. We illustrated the workflow for 
whole-exome sequencing data analysis in Fig. 1. The raw 

reads in FASTQ file format were mapped to the human 
reference, which was developed by the 1,000 genome project 
(human_g1k_v 37.fasta), by using the Burrows-Wheeler 
aligner (BWA v 0.6.1), which generates SAM format files 
[13]. The SAM files were converted into binary format files 
(BAM) by samtools v0.2.6, which reduces the file size and 
improves computing efficiency [14]. The read group 
information of the sequencing machine was added to the 
head of the BAM files. The aligned sequences were sorted in 
the order of chromosomes by Picard v1.79 (http:// 
picard.sourceforge.net) and went through a PCR duplicate 
marking process, which enables the Genome Analysis 
Toolkit (GATK) to ignore duplicates in subsequent 
processing [15]. Finally, the BAM files were indexed by 
bamtools v2.2.0 [16]. We performed a local realignment 
prior to recalibration, which gives the most accurate quality 
scores for each sample. Local realignment with known indel 
sites (Mills_and_1000G_gold_standard.indels.b37.vcf, 1000G_ 
phase1.indels.b37.vcf) for each individual does not require 
multiple sample realignments, which demand extreme 
computational power. However, we carried out a local 
realignment with the matched tumor and normal samples 
together to prevent misalignment due to the differences 
between these two tissue types. Recalibration was per-
formed with multiple known sites (dbSNV_137.b37, 
Mills_and_1000G_gold_standard.indels.b37.vcf, and 1000G_ 
phase1.indels.b37.vcf), which may increase recalibration 
accuracy. We reduced the BAM file size to about 1/100 of the 
original file size by using the GATK tool, which saved variant 
calling time without losing any essential information. We 
used the UnifiedGenotyper of GATK for variant calling, 
followed by variant recalibration with known sites (hapmap_ 
3.3.b37.vcf, 1000G_omni2.5.b37.vcf, dbsnp_137.b37.vcf, 
and Mills_and_1000G_gold_standard.indels.b37.vcf), and 
annotated by them using snpEff v2.0.57 [17].

Statistical analysis

We performed logistic regression analyses between the 
somatic mutations and NK-AML using PLINK/SEQ v0.08 
(http://atgu.atgu.mgh.harvard.edu/plinkseq), which pro-
vides powerful utilities in variant call format (vcf) for ana-
lyzing whole- exome and -genome data. Further, we verified 
the odd ratios and p-values estimated from PLINK/SEQ 
using Stata, v11.2 (Stata Corp., College Station, TX, USA).

We selected the somatic nsSNVs with complete call rates 
and evaluated the GRS models composed of the variants 
associated with NK-AML. The GRS was calculated for each 
individual by accumulating the number of risk alleles (0, 1, 
or 2) of the SNVs. We created stepwise GRS models, 
comprised of the selected SNVs, according to their signi-
ficance level; if the significance level was equal between two 
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Fig. 2. Base quality score recalibration. Raw reads (pink) and recalibrated (blue) base quality scores for a patient. Panel (A) compares
the reported base quality scores to the empirical estimates. Panel (B) shows the difference between the average reported and empirical
quality scores for each machine cycle.

Gene Chr. SNV Amino acid
change N/R RAF

case/control OR (95% CI) p-value

PPIAL4G 1q21.1 rs6604516 Q24L A/T 0.95/0.65 21.0 (1.8‒248.1) 0.016
LRRN2 1q32.1 rs201287849 A141P C/G 0.30/0.05 13.5 (1.2‒152.2) 0.035
OR2T33 1q44 rs10888338 A169V A/G 0.40/0.15  9.3 (1.2‒73.0) 0.033
ANKRD36 2q11.2 rs79579412 K378R G/A 0.95/0.70 13.5 (1.2‒152.2) 0.035

rs2443878 K386E G/A 0.85/0.60  9.3 (1.2‒73.0) 0.033
ATP13A3 3q29 rs75156964 V55G C/A 0.90/0.60 16.0 (1.8‒143.2) 0.013
MUC4 3q29 rs75459784a H2306P G/T 0.85/0.60  9.3 (1.2‒73.0) 0.033

rs55824312 P2192S A/G 0.80/0.55 13.5 (1.2‒152.2) 0.035
TRIML1 4q35.2 rs200129069 S254R C/G 0.35/0.10  9.3 (1.2‒73.0) 0.033
CNTNAP2 7q35 rs200239604 T589P C/A 0.95/0.70 13.5 (1.2‒152.2) 0.035
PABPC1 8q22.2 rs79940439 R475Q C/T 0.40/0.15  9.3 (1.2‒73.0) 0.033
MUC5B 11p15.5 rs202160055 R1097H G/A 0.30/0.05 13.5 (1.2‒152.2) 0.035
TAS2R43 12p13.2 rs201245949 Q210H C/G 0.40/0.15   9.3 (1.2‒73.0) 0.033
ATF7IP 12p13.1 rs199961592 Q883K C/A 0.45/0.20 13.5 (1.2‒152.2) 0.035
KIAA1033 12q24.11 rs199570381 Q381K C/A 0.30/0.05 13.5 (1.2‒152.2) 0.035
ATP8A2 13q12 rs201822155 L624P G/T 0.35/0.10  9.3 (1.2‒73.0) 0.033
L2HGDH 14q21.3 rs201692645 V198G A/C 0.35/0.10  9.3 (1.2‒73.0) 0.033
LYPD5 19q13.31 rs79007092 S151A A/C 0.35/0.10  9.3 (1.2‒73.0) 0.033
GNAS 20q13.3 rs56213454 Q397P C/A 0.90/0.60 16.0 (1.8‒143.2) 0.013

rs56371919 M404I T/G 0.90/0.65  9.3 (1.2‒73.0) 0.033
SUSD2 22q11 rs399140 A91T A/G 0.90/0.65  9.3 (1.2‒73.0) 0.033

SNV, single nucleotide variation; NK-AML, normal-karyotype acute myeloid leukemia; Chr., chromosome; N/R, nonrisk/risk allele; 
RAF, risk allele frequency; OR, odds ratio; CI, confidence interval.
aThe rs75459784 is in complete linkage disequilibrium with the rs74420943.

Table 1. Associations between 21 SNVs and NK-AML in 10 pairs of tumor and normal samples

or more SNVs, we selected the SNVs in the order of their 
chromosomal position. In addition, we evaluated a GRS 
model that consisted of gene variants reported in previous 
leukemia studies [9, 10, 18, 19]. We compared the area 
under the receiver operating characteristic curve (AUC) of 
each GRS model using the “roctab” and “roccomp” com-
mands in Stata.

Results

The improvement in concordance between the empirical 
and reported quality scores of SNVs is shown in Fig. 2A. A 
significant improvement in the accuracy of quality scores 
after recalibration is shown in Fig. 2B. The association test 
for NK-AML yielded 42 SNVs that had a p-value of less than 
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Fig. 3. Receiver operating characteristic analysis to measure the discriminatory power of each genetic risk score model in predicting 
normal-karyotype acute myeloid leukemia. (A) Model 1 (rs75156964), model 3 (rs75156964, rs56213454, and rs6604516), and model
5 (rs75156964, rs56213454, rs6604516, rs10888338, and rs2443878). (B) A model comprising five candidate single nucleotide variations
(rs75459784, rs55824312, rs200239604, rs56213454, and rs56371919) in MUC4, CNTNAP2, and GNAS, reported in previous studies
(area under the receiver operating characteristic curve, 0.98; 95% confidence interval, 0.92 to 1.00). GRS, genetic risk score.

Modela No. of 
SNVs SNV AUC (95% CI)b

1 1 rs75156964 0.80 (0.62‒0.98)
2 2 Model1 ＋ rs56213454 0.86 (0.67‒1.00)
3 3 Model2 ＋ rs6604516 0.92 (0.81‒1.00)
4 4 Model3 ＋ rs10888338 0.97 (0.92‒1.00)
5 5 Model4 ＋ rs2443878 1.00 (1.00‒1.00)

Note: SNVs were included in the model according to 1) the 
p-values and, 2) in case of the same significance levels, the 
chromosome in which the SNVs were located.
ROC, receiver operating characteristic; SNV, single nucleotide 
variation; AUC, area under the ROC curve; CI, confidence 
interval.
aGenetic risk score model sums the numbers of risk alleles for 
each SNV (0, 1, and 2); bAUCs and 95% CIs were estimated 
from ROC analyses.

Table 2. The area under the ROC curves for genetic risk score 
models consisting of SNVs

0.05 and passed the quality threshold of PLINK/SEQ (data 
not shown). Among 42 SNVs, we excluded 11 SNVs with no 
rs ID, four SNVs with call rates less than 1, and five 
synonymous SNVs for subsequent analysis.

A total of 21 nsSNVs located in 18 candidate genes were 
selected and included in the GRS models after considering 
pairwise linkage disequilibrium (Table 1). This study repli-
cated three somatic mutations of the MUC4, CNTNAP2, and 
GNAS genes, which were reported in previous studies on 
leukemia [9, 10, 18, 19]. In addition, we identified novel 
point mutations in 15 other genes. The SNVs rs75156964 
(ATP13A3; odds ratio [OR], 9.33; p = 0.013) and rs56213454 

(GNAS; OR, 9.33; p = 0.013) showed the most significant 
evidence for association, and rs6604516 (PPIAL4G; OR, 
21.00; p = 0.016) showed the strongest effect size among the 
21 SNVs. Other SNVs also showed strong effects in the risk 
of NK-AML (OR, 9.33 to 13.5).

We compared the prediction accuracy of 21 stepwise GRS 
models. The predictive power for NK-AML reached 100% in 
model 5, which consisted of five nsSNVs: rs75156964 
(ATP13A3, 3q29), rs56213454 (GNAS, 20q13.3), rs6604516 
(PPIAL4G, 1q21.1), rs10888338 (OR2T33, 1q44), and 
rs2443878 (ANKRD36, 2q11.2) (Table 2, Fig. 3A). The five 
SNVs (rs75459784, rs55824312, rs200239604, rs56213454, 
and rs56371919) in three previously reported genes－
MUC4, CNTNAP2, and GNAS－also showed a high AUC 
value (AUC, 0.98; 95% confidence interval [CI], 0.92 to 
1.00).

Discussion

We evaluated the effects of 21 nsSNVs of 18 candidate 
genes for NK-AML in this study. Among 18 genes, we 
replicated previously reported associations of two genes 
(CNTNAP2 and GNAS) with AML [9, 10]. The mutation in 
the MUC4 gene has been reported to be associated with acute 
lymphoblastic leukemia [18, 19]. The MUC4 gene encodes a 
mucin protein and a high-molecular-weight glycoprotein in 
humans. This integral membrane glycoprotein, which is 
observed on the cell surface, plays various roles in tumor 
progression [20]. Particularly, MUC4, complexed with 
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v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 
(ERBB2), results in the repression of apoptosis and the 
stimulation of proliferation; in addition, the overexpression 
of MUC4 in carcinoma cells promotes loss of cellular polarity 
by ERBB2-mediated disruption [21]. The CNTNAP2 gene is 
one of the largest genes in the entire human genome and 
occupies approximately 1.5% of chromosome 7. This gene 
encodes a neurexin family member that functions in the 
vertebrate nervous system. The GNAS gene has a highly 
complex imprinted expression pattern. This gene provides 
instructions for making one component, the stimulatory 
alpha subunit, of a protein complex called a guanine 
nucleotide-binding protein (G-protein). G-protein alpha 
subunit regulates the cyclic AMP (cAMP) pathway. GNAS 
gene mutations are known to be associated with high cAMP 
signaling [22]. The novel associations between 15 somatic 
mutations (PPIAL4G, LRRN2, OR2T33, ANKRD36, ATP13A3, 
TRIML1, PABPC1, MUC5B, TAS2R43, ATF7IP, KIAA1033, 
ATP8A2 , L2HGDH, LYPD5, and SUSD2) and NK-AML need 
to be replicated, and their functional mechanisms in the 
AML should be investigated in future studies.

The GRS models that were comprised of the somatic 
nsSNVs showed extremely high predictive accuracy for the 
risk of NK-AML (86% to 100%). The combination of five 
nsSNVs of previously reported genes (MUC4, CNTNAP2, 
and GNAS) had a predictive ability of 98% for the risk of 
NK-AML in this study. One of the limitations in this study 
was the small number of study subjects (n = 10), which 
resulted in substantial variations in the 95% CIs of the 
effects (ORs) of each SNV.

In conclusion, we have highlighted 21 susceptibility 
nsSNVs located in 18 genes. The GRS model that comprises 
five candidate SNVs is highly informative in predicting the 
risk for NK-AML. The discovery of novel markers may 
provide an opportunity to develop novel diagnostic and 
therapeutic targets for NK-AML. Further study with a larger 
sample size is necessary to validate the AML-related gene 
mutations and will provide an opportunity to develop a 
powerful genetic risk prediction model for NK-AML.
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