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ABSTRACT: The objective of this study was to esti-
mate economic returns and costs associated with 4 
scenarios of genetic evaluation that combine geno-
types, phenotypes, and pedigree information from 
a vertically integrated purebred (PB) and commer-
cial (CM) beef cattle system. Inference was to a 
genetic evaluation for a production system produc-
ing Charolais terminal sires for 10,000 CM cows. 
The first genetic evaluation scenario, denoted PB_A, 
modeled a genetic evaluation in which pedigree infor-
mation and phenotypes are available for PB seedstock 
animals. Scenario PB_H contained the same infor-
mation as PB_A with the addition of 25K density 
(GeneSeek Genomic Profiler LD) single nucleotide 
polymorphism (SNP) genotypes from PB animals. 
Scenario PBCM_A contained pedigree records 
and phenotypes from PB and CM cattle. Scenario 
PBCM_H contained phenotypes, pedigree, and gen-
otypes from the PB and CM animals. Estimates of 
prediction error variance, (co)variance, and selection 
index parameters were used to estimate accuracy of 
selection candidates (rTI) and genetic gain resulting 

from selection on an economic index in US dollars 
(ΔG). Annual costs and incomes were used to deter-
mine the 30-yr cumulative net present value (CNPV) 
per CM calf resulting from selection in these genetic 
evaluation scenarios. Adding genotypes and CM pro-
duction phenotypes to genetic evaluation increased 
the rTI of selection candidates and ΔG across all 4 
scenarios. Scenario PBCM_H produced the highest 
annual ΔG in the PB herd at US$11.91 per head. 
Including CM phenotypes and parentage testing in 
the genetic evaluation increased the time to breake-
ven from 12 yr in PB_A to 19 years in PBCM_A after 
accounting for the cost of that information. Adding 
CM phenotypes and genotypes increased the break-
even time from 12 yr in PB_H to 18 yr in PBCM_H. 
Scenario PB_H produced the highest 30-yr CNPV 
per slaughtered CM calf at US$371.16. These results 
using field data indicate that economically relevant rTI 
and ΔG can be realized by adding 25K SNP geno-
types and CM phenotypes to genetic evaluation, but 
the additional cost of that data significantly delays 
the economic return to the enterprise.
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INTRODUCTION

Adoption of genomic technology in the beef 
cattle industry has improved selection accuracy 
(rTI), which affects the rate of genetic gain (ΔG) 
and increases income when used in conjunction 
with an economic selection index (Dekkers, 2007; 
Meuwissen et al., 2013; Todd et al., 2014; MacNeil, 
2016). In a vertically integrated production system, 
there is opportunity to capture value generated by 
implementing a genetic evaluation program using a 
combination of phenotypes, pedigree information, 
and genotypes from both nucleus animals and com-
mercial (CM) offspring (Aguilar et  al., 2010). The 
cost of collecting that information for the purpose 
of genetic evaluation also requires careful consider-
ation, especially for expensive or difficult to measure 
traits that contribute variation to economic selection 
indexes. The objectives of this study were to com-
pare rTI, costs of genetic evaluation, and economic 
returns associated with the ΔG resulting from the 
combination of purebred (PB) and CM performance 
records with traditional pedigree relationships 
derived from parentage recording and with realized 
genomic relationships resulting from single nucleo-
tide polymorphism (SNP) genotypes. Inference was 
to a genetic evaluation program for a vertically inte-
grated, 2-tiered beef cattle production system pro-
ducing Charolais terminal sires for 10,000 CM cows.

METHODS

Animal Care and Use Committee approval was 
not obtained for this study since all animals were 
owned and cared for by the commercial collabor-
ator. All animals were under the supervision of a 
veterinarian for the duration of the study.

Population and Phenotypes

Cattle used in this study consisted of a PB 
Charolais herd with a terminal-sire breeding objec-
tive targeting growth and carcass traits to produce 
CM crossbred calves finished at a common feeding 
facility. The CM dam population primarily con-
sisted of Angus x Hereford crossbred females. At the 
commencement of the study, traditional pedigree 
information was available for only the PB Charolais 
herd. Over a 3-yr period, 3,018 PB Charolais and 
13,340 CM crossbred calves were genotyped. Sires 
and CM calves were genotyped using a combin-
ation of the GeneSeek Genomic Profiler (GGP) 
LD versions 1 to 4 (26K to 40K), GGP Bovine 50K 
(50K), and GGP HD version 1 (76K) SNP arrays 
(Neogen Genomics, Lincoln, NE).

All samples were imputed to a common dens-
ity of 24,569 SNP markers (a subset of the 26K 
GGP LD commercial SNP array) using FImpute 
(Sargolzaei et  al., 2014). This density has been 
demonstrated to be adequate for estimation of 
genomic relationship matrices in cattle (Rolf et al., 
2010). The pool of 24,569 markers were chosen to 
optimize an imputation strategy utilizing popula-
tion-wide haplotype information, with this set of 
real genotype calls represented across a reference 
population of 13,466 individuals. Genotype and 
pedigree information for CM dams was assumed 
to be missing. Markers chosen for imputation were 
required to have a call rate of >0.90, a minor allele 
frequency greater than 0.05, and consistent refer-
ence strand designation across marker panel ver-
sions. Markers on sex chromosomes and markers 
with missing or inconsistent map information (Bos 
taurus UMD 3.1) were also removed. Imputation 
accuracy was assessed on a per-chip basis by mask-
ing subsets of imputed markers from 20 randomly 
chosen individuals with real genotype calls across 
the 25K imputation pool. The average concordance 
between imputed and real marker calls was above 
0.90 for every marker panel version in the analysis. 
The minimum observed concordance between real 
and imputed genotype calls on an individual basis 
was 0.82.

Genotypes were also used to pair sires with 
their progeny from a subset of available SNP mark-
ers (McClure et  al., 2015; Strucken et  al., 2016; 
Buchanan et al., 2016a). For the CM calves, sires 
were identified using a 1,000 SNP subset of the 
available marker panel and the SEEKPARENTF90 
software to generate CM pedigree records (Aguilar 
et al., 2014; Buchanan et al., 2016a). For PB ani-
mals, historical 4-generation pedigree information 
was available containing 9,176 records.

Phenotypes collected from PB Charolais bulls 
included weaning weight (WW), average daily 
gain (ADG), dry matter intake (DMI; GrowSafe 
Systems, Ltd, Airdrie, AB Canada), ultrasound 
12th-rib fat depth (URFAT), ultrasound intra-
muscular fat percentage (UIMF), and ultrasound 
longissimus muscle area (UREA). Phenotypes 
collected from CM calves finished in the feedlot 
included WW (collected at feedlot arrival), ADG, 
DMI, 12th-rib fat depth (FAT), marbling score 
(MARB) determined by image analysis (VBG 2000 
E + V, Oranienburg, Germany), carcass ribeye area 
(REA), days to harvest (D2H), hot carcass weight 
(HCW), yield grade (YG), and bovine respiratory 
disease (BRD) treatment status (treated or not 
treated).
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Variance Component Estimation

Estimates of genetic (co)variance components 
were obtained using REML procedures imple-
mented in AIREMLF90 (Misztal et  al., 2016). 
A bivariate animal model was used to estimate (co)
variance components among traits in the breeding 
objective. The bivariate animal model is expressed 
as follows:

Y

Y

X

X

b

b

Z

Z

u

u
1

2

1

2

1

2

1

2

1

2

0

0

0

0








 =



















 +



















 +

ee

e
1

2









 	 (1)

where Yi is the vector of observations for the ith 
trait, bi is the vector of fixed effects for the ith trait, 
ui is a vector of additive genetic effects for animals 
(random) for the ith trait, and Xi and Zi are design 
matrices for the fixed and random animal effects, 
respectively. Subsequently, E(y) = Xb, and the (co)
variance structure is represented by the following 
equation:
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where var(u)  =  G, var(e)  =  R, cov(u, e)  =  0, 
var(y)  =  V  =  ZGZ’ + R, var(a) is the additive 
genetic (co)variance, var(e) is the residual (co)vari-
ance, T is the additive genetic (co)variance matrix, 
A is the relationship matrix among animals (pedi-
gree A, or combined H), and E is the residual (co)
variance matrix. Estimates of genetic (co)variance 
for BRD were obtained using a threshold-linear 
model implemented in THRGIBBSF90b (Tsuruta 
and Misztal, 2006; Buchanan et al., 2016b).

Bivariate analysis of traits in the genetic evalu-
ation proceeded as follows: BW and WW, DMI 
and ADG, FAT and URFAT, MARB and UIMF, 
REA and UREA, BRD and ADG, and D2H and 
ADG. Traits with records collected on both PB and 
CM animals included WW, DMI, and ADG. For 
all 3 traits, the genetic correlation between PB and 
CM records was greater than 0.90 when analyzed 
as a bivariate model. Consequently, WW, ADG, 
and DMI were considered the same trait when col-
lected on PB or CM animals. Concatenated effects 
that were used to create contemporary groups for 
CM calves included ranch of origin, sex, implant 

protocol, and harvest date. Contemporary groups for 
PB animals included the concatenated effects of sex, 
birth year, birth month, and breeder. Measurement 
trial start date was included in the contemporary 
group effect for DMI. Age of dam preadjustments 
for BW and WW were applied according to the 
Beef Improvement Federation Guidelines (Beef 
Improvement Federation, 2016). Because dams 
of the commercial sired calves were not identified, 
models which included maternal effects could not 
be used in analyses of their phenotypes. Maternal 
additive effects for BW and maternal additive and 
permanent environmental effects for WW were 
included using BLUPF90 for the straightbred 
Charolais calves only (Meyer, 1992; Misztal et al., 
2016). Phenotypes collected on individuals creat-
ing a contemporary group of less than 10 records 
or falling outside of 3 standard deviations from 
the contemporary group mean were removed from 
the evaluation. Adjustments for heterosis or breed 
composition of CM calves were not included due 
to missing genotype and pedigree information for 
CM dams. The final assembled genetic covariance 
matrix (G) was adjusted to a positive-definite matrix 
by adjusting the negative resulting eigenvalues fol-
lowing the methods described by Schaeffer (2014).

Relationship matrices were implemented with 
the default parameters in BLUPF90 using pedigree 
information (numerator relationship matrix, A) 
or with the single-step approach to simultaneously 
evaluate genotyped and nongenotyped animals with 
pedigree information (combined relationship matrix, 
H) (Misztal et al., 2016). In scenarios where geno-
types were included on PB or CM animals, pedigree 
information was also included on those animals to 
assist with the compatibility of the G and A  rela-
tionship matrices. Scaling factors for G and A22 were 
0.95 and 0.05, respectively, according to the default 
parameters in BLUPF90 (Misztal et al., 2016).

Alternative Scenarios for Genetic Evaluation

The rTI of  selection candidates was estimated in 
4 separate models using different combinations of 
phenotypes, genotypes, and pedigree information 
to simulate different production scenarios or data 
collection strategies that might be used to conduct 
genetic evaluations. This comparison of genetic 
evaluation strategies relies on the assumption that 
the benefit derived from genetic improvement in the 
purebred sector is expressed in the commercial sec-
tor. Thus, to measure gene flow from the purebred 
sector to the commercial sector, all of the purebred 
and commercial cattle were genotyped. However, 2 
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different subsets of the genotypic data were used 
in the evaluations that are reported here and these 
subsets were assumed to have different costs. In 
PB_A, a subset of 1k SNP genotypes was used only 
to verify parentage as a means of quality control 
for the pedigree. In PB_H, genotypes were used 
to enhance the accuracy of the genetic evaluation 
through the use of a blended relationship matrix 
(Legarra et al., 2014; Lourenco et al., 2015b), and 
thus, the cost of 25K SNP genotypes required for 
the purebred sector was considered in modeling this 
scenario. Only the Charolais seedstock had pheno-
types that were considered in both of the aforemen-
tioned genetic evaluations. These evaluations were 
thus thought to reflect the current state of national 
cattle evaluations that are currently conducted by 
most, if  not all, breed associations.

The third and fourth scenarios were assembled 
to model a vertically integrated beef production 
system where phenotypes and pedigree or geno-
types were available from both PB and CM animals. 
In PBCM_A, 1K SNP genotypes were again used 
to verify parentage of both the purebred and com-
mercial progenies. Phenotypes from these progenies 
were also used in the genetic evaluation. Finally, in 
PBCM_H, 25K SNP genotypes were used to again 
construct a blended relationship matrix (Legarra 
et al., 2014) for use in the genetic evaluation, which 
again incorporated phenotypes from both purebred 
and commercial progenies.

Economic Evaluation

Economic values for traits in the breeding objec-
tive were produced from an economic simulation 
of profit with parameters describing income and 
cost according to selection index theory following 
the method described by Buchanan et al. (2016b). 
The selection index was developed using a combin-
ation of economically relevant and indicator traits 
to maximize carcass-derived profit within a typical 
feedlot finishing system. Phenotypes were simu-
lated using observed means and (co)variances for 
WW, DMI, D2H, HCW, YG, MARB, and BRD. 
Carcass income was generated using a market aver-
age carcass grid with premiums and discounts for 
YG, HCW, and MARB (MacNeil and Herring, 
2005; Thompson et  al., 2016). Economic values 
were expressed as the difference in profit per head 
as determined by independently perturbing each 
trait by 1 unit from the mean.

The standard deviation of the economic index 
(σ I ) and the rTI of  selection on the index for year-
ling selection candidates were estimated to assess 

the economic outcome of a particular genetic evalu-
ation strategy. The standard deviation of the index 
was estimated from scenario PBCM_H as follows:

	 σ I v Gv= ’ , 	 (3)

where v is the vector of economic weights, and G 
is the genetic (co)variance matrix of traits in the 
index. Individual rTI estimates obtained at the time 
of selection on young selection candidates (bull 
calves at 1 yr of age) are needed to estimate ΔG 
from selection on the index. The rTI associated with 
each trait in the index for PB selection candidates 
was estimated from individual prediction error 
variance (σPE
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The rTI of  the index for a selection candidate was 
calculated as the product of rTI and the relative 
emphasis (%) in the index of an individual trait, 
and then summed across all traits in the index. The 
rTI of  the economic index was then used to estimate 
the selection response, ΔG, or expected genetic gain 
in profit per year in the PB herd (US$/hd) for each 
scenario as follows:
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where is and id equal the selection intensities of 
sires and dams, respectively, L equals the genera-
tion interval of sires and dams, and σI equals the 
standard deviation of the selection index. Selection 
intensities were chosen to create a replacement 
rate that would maintain the population structure 
as defined in Table  1. A  discount rate of 5% and 
a 30-yr planning horizon were used to determine 
the cumulative net present value (CNPV) per CM 
calf  resulting from selection on the economic index. 
Generation intervals were assumed constant across 
the 4 scenarios since the structure of the genetic 
evaluation would not affect the age at which bulls 
are selected or culled for natural service matings.

Enterprise scale, age classes, and selection 
intensities for a hypothetical combined PB nucleus 
herd and CM production system are shown in 
Table 1. Assumptions for age structure, population 
composition, and breeding scheme were adapted 
from Van Eenennaam et al. (2011). The genetic lag 
between selection decisions and the expression of 
profit in the CM calf  crop was tracked according 
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to the population structure using simulation to 
model age classes, culling rates, and selection inten-
sity for both PB and CM bull populations with 
simulation. The simulation utilized the population 
parameters in Table 1 to model the combined PB 
and CM breeding system that relies on the selection 
of PB sires (both terminal and herd sires) to drive 
the expression of profit in CM calves at slaughter. 
Herd sires were considered self-replacing, and ter-
minal sires transferred to the CM sector passed on 
half  of their average genetic merit to CM calves. 
Since CM dams were considered unknown with 
no recorded pedigree or genomic information, 
their contribution to genetic gain was considered 
zero. The CNPV expressed per CM calf  produced 
annually (N = 8,000) in the system was calculated 
over a 30-yr planning horizon for each scenario. 
Estimates of the annual costs associated with par-
entage testing for pedigree recording, genotyping, 
and phenotyping the initial reference population 
were included in the economic model where appro-
priate in each scenario. Startup costs to phenotype, 
genotype, or assign parentage in the initial popula-
tion were considered separately and jointly with the 
annual costs of genetic evaluation in the simulation 
of 30-yr CNPV.

Phenotypes included in the estimates of startup 
cost consisted of 3,018 PB animals (US$135 per 
head phenotype cost) and 13,340 CM animals 
(US$100 per head phenotype cost). Phenotype 
collection costs were provided by the commercial 
collaborator as an accurate estimate of materials 
plus labor and serve as an example for the real costs 

associated with the development and maintenance 
of a genetic evaluation strategy in the U.S. beef cat-
tle industry. For all scenarios, 100% of the PB bull 
calves were phenotyped annually (N  =  270). For 
scenarios where CM calf  data were collected, 10% 
of the contemporary groups for CM calves were 
randomly phenotyped each year of the simulation 
(N  =  800). Pedigree relationships based on SNP 
data were included at a purchase cost of US$15 
per head, and genotypes were purchased for US$35 
per head. The cost of genotyping/parentage for the 
CM animals was not included in the first 2 scenar-
ios since this information is included only to model 
the genetic relationship between the 2 sectors of the 
production system. Total startup and annual costs 
for each genetic evaluation scenario are displayed 
in Table 2.

RESULTS AND DISCUSSION

Multiple strategies of genetic evaluation were 
compared under a breeding objective for profit to 
investigate the economic outcome associated with 
various strategies for combining phenotypes, gen-
otypes, and relationships among animals. Figure 1 
displays a model for combining indicator traits, 
carcass phenotypes, recorded pedigree informa-
tion, and genotypes for genetic evaluation of termi-
nal sires in a vertically integrated beef production 
system. Individual trait rTI and the weighted rTI 
of  the selection index in each genetic evaluation 
strategy are displayed in Table  3. Scenario PB_H 
represents a genetic evaluation utilizing PB pheno-
types where both pedigree and 25K genotypes are 
available for all PB animals in the genetic evalu-
ation. The inclusion of genomic information for 
PB animals increased rTI by approximately 26.5% 
over scenario PB_A (0.453 vs. 0.358). Improvement 
in rTI from adding genomic information generally 
depends on population size, pedigree depth, geno-
type density, and trait heritability, but a previous 
study observed up to a 20% increase in rTI from 
adding genomic information alone when moving 
to a single-step genetic evaluation (Lourenco et al., 
2015b). Scenario PBCM_A and PBCM_H added 
growth and carcass phenotypes from 13,340 CM 
progeny to the genetic evaluation. The relationship 
matrix for PBCM_A was created from pedigree 
records for PB animals and CM pedigree records 
(sire-calf  relationships only) generated through par-
entage assignment from genomic information rep-
resentative of a commercial parentage test. Adding 
CM phenotypes to genetic evaluation PBCM_A 
increased rTI by 35.5% over scenario PB_A. This 

Table  1. Enterprise scale and economic assump-
tions for a 2-tiered beef production model

Parameter Value

No. of PB bull calves born each year1 270

PB bull:cow ratio 1:25

No. of PB cows 600

No. of PB bulls selected each year 12 (4.4%, i = 2.11)2

No. of bulls selected for CM use3 181 (70.2%, i = 0.50)

No. of PB and CM dams selected on index 0 (i = 0)

CM bull:cow ratio 1:20

No. of CM cows 10000

Planning horizon 30 yr

Discount rate for returns, d 5%

Maximum age of PB bull, yr 4

Maximum age of CM bull, yr 6

Generation interval PB bulls 3.24

Generation interval PB cows 4.89

1PB = purebred.
2i = selection intensity.
3CM = commercial.
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result suggests the improvement in accuracy from 
adding CM phenotypes and pedigree information 
to the genetic evaluation is larger than adding gen-
otypes on PB animals, but this finding does not sug-
gest that parentage assignment or CM phenotyping 

should be prioritized for genetic evaluation without 
considering the additional costs involved in obtain-
ing this information.

The highest estimates of rTI were achieved 
when all information was included in the genetic 

Figure 1. Model beef cattle production system to advance selection response (ΔG) in profitability.

Table 2. Startup and annual costs for four scenarios of genetic evaluation

Cost1

Genetic evaluation scenario2

PB_A PB_H PBCM_A PBCM_H

Startup cost

  PB genotyping US$0 US$105,630 US$0 US$105,630

  PB parentage US$45,270 US$0 US$45,270 US$0

  PB phenotyping US$407,430 US$407,430 US$407,430 US$407,430

  CM genotyping US$0 US$0 US$0 US$466,900

  CM parentage US$0 US$0 US$200,100 US$0

  CM phenotyping US$0 US$0 US$1,334,000 US$1,334,000

  Total startup cost US$452,700 US$513,060 US$1,986,800 US$2,313,960

  Number of PB 3,018 3,018 3,018 3,018

  Number of CM 0 0 13,340 13,340

  Total startup US$/head US$150.00 US$170.00 US$121.46 US$141.46

Annual cost

  PB genotyping US$0 US$9,450 US$0 US$9,450

  PB parentage US$4,050 US$0 US$4,050 US$0

  PB phenotyping US$36,450 US$36,450 US$36,450 US$36,450

  CM genotyping US$0 US$0 US$0 US$28,000

  CM parentage US$0 US$0 US$12,000 US$0

  CM phenotyping US$0 US$0 US$80,000 US$80,000

  Total annual cost US$40,500 US$45,900 US$132,500 US$153,900

  Number of PB 270 270 270 270

  Number of CM 0 0 800 800

  Total annual US$/head US$150.00 US$170.00 US$123.83 US$143.83

1PB = purebred, CM = commercial
2PB_A = PB phenotypes with PB pedigree; PB_H = PB phenotypes; PB pedigree and PB genotypes; PBCM_A = PB and CM phenotypes and 

pedigree; PBCM_H = PB and CM phenotypes, genotypes, and pedigree.
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evaluation including PB and CM phenotypes, pedi-
gree, and genotypes in scenario PBCM_H. Average 
rTI of  the index was 0.636 for selection candidates, 
which is a 31.1% improvement over PBCM_A and 
a 40.4% improvement over PB_H. These results 
indicate that an economically relevant improve-
ment in selection accuracy can be achieved, at a 
cost, through the incorporation of genomic infor-
mation and phenotypes from CM animals for this 
specific production system.

Increases in rTI directly contribute to genetic 
gain in profitability in the context of an economic 
selection index, but the cost to achieve that gain 
must be accounted for in determining whether such 
improvements are cost-effective. Response to selec-
tion on the economic index, ΔG, years to breake-
ven, and 30-yr CNPV expressed in dollars per CM 
calf are displayed in Table 3. Figure 2 displays the 
annual CNPV per CM calf as a function of time. 
The standard deviation of the selection index as 
estimated from variance components was US$72.18, 
which was assumed a constant across the 4 scenar-
ios. Selection intensity, i, was also a constant, so dif-
ferences observed in ΔG are due to variation in rTI as 
applied in the breeders equation (5).

Annual ΔG was greatest in scenario PBCM_H 
at US$11.91 per head, which resulted in a breake-
ven time of 18 yr. The highest rate of genetic gain 
in this 30-yr comparison did not result in the fastest 
time to breakeven or the greatest CNPV per CM 
calf  due to the annual cost of phenotyping and gen-
otyping 270 PB and 800 CM calves as displayed in 
Table 2 (US$153,900). However, the trend observed 

in Figure 2 indicates that scenario PBCM_H would 
result in the greatest value per CM calf  given a 
longer planning horizon. This strategy of genetic 
evaluation represents the most accurate approach to 
evaluate candidates for selection and realize genetic 
improvement in CM production, but the time and 
cost of achieving that gain must be accounted for to 
calculate the return on investment.

Scenario PBCM_A had the least 30-yr CNPV 
relative to the genetic gain achieved, which was due 
to the marginal increase in rTI compared with the 
cost of collecting CM phenotypes and parentage. 
This scenario produced a ΔG of  US$9.09 per year 
in the PB herd but resulted in the least 30-yr CNPV 
per CM calf  at US$236.71. When compared with 
PBCM_H, in the absence of genomic information, 
this scenario also had the longest time to breakeven 
at 19 yr. The economic outcome of this scenario 
highlights the significant cost of collecting pheno-
types on CM animals and the added value resulting 
from a more accurate relationship matrix to join 
that CM information to the data collected in the 
PB herd.

Comparing economic returns, scenario PB_H 
offered the greatest 30-yr CNPV per CM calf  
and the fastest time to breakeven. The annual ΔG 
in this scenario was only 71% of that achieved in 
PBCM_H (US$8.48 vs. US$11.91), but the signifi-
cantly lower annual costs allowed for a more rapid 
breakeven time (12 vs. 18 yr) and the greatest 30-yr 
CNPV per CM calf  at US$371.16. Scenario PB_A 
also resulted in a breakeven time of 12 yr as a result 
of the low annual cost associated with that scheme. 

Table 3. Average accuracy (rTI) for traits in the economic selection index

Genetic evaluation scenario

PB_A PB_H PBCM_A PBCM_H

rTI Accuracy1

  BRD 0.307 0.339 0.373 0.567

  D2H 0.210 0.444 0.512 0.570

  DMI 0.439 0.530 0.542 0.647

  HCW 0.356 0.486 0.515 0.667

  MARB 0.345 0.448 0.536 0.643

  WW 0.515 0.561 0.607 0.681

  YG 0.305 0.429 0.473 0.653

  Index 0.358 0.453 0.485 0.636

Selection outcome2

  ΔG/Yr US$6.71 US$8.49 US$9.09 US$11.91

  Yr to breakeven 12 12 19 18

  30-Yr CNPV/CM calf US$285.18 US$371.16 US$236.71 US$348.67

1BRD = bovine respiratory disease morbidity; D2H = days to harvest; DMI = dry matter intake; HCW = hot carcass weight; MARB = cam-
era-based marbling score; WW = weaning weight; YG = yield grade. Increases in accuracy were obtained from genetic evaluation of the data 
available.

2ΔG = response to selection (US$/hd) on the index in the PB herd; PB = purebred; CM = commercial; 30-Yr CNPV = cumulative net present 
value per CM calf  (US$) generated from 30 yr of selection on the economic index.
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The comparatively lower cost of PB_A also resulted 
in a higher 30-yr CNPV per CM calf  compared with 
PBCM_A (US$285.18 vs. US$348.67). However, 
it is important to note that the genetic evaluation 
in PB_A produced the lowest rTI for selection can-
didates and slowest annual ΔG in the PB herd at 
US$6.71.

The cost of phenotyping requires careful con-
sideration when implementing genetic evaluation. 
The marginal benefit derived from an addition 
phenotype is a decreasing function, and thus, there 
is some threshold number of phenotypes for each 
trait that is optimal. The total cost of phenotyp-
ing can be reduced by sampling fewer CM progeny 
(up front in the development of a reference popu-
lation, or annually thereafter) as in the present sys-
tem, but this would negatively affect the rTI and ΔG. 
Depending on their relative emphasis in the selec-
tion index, expensive to measure traits such as DMI 
might provide the greatest return when only col-
lected on PB selection candidates once a substantial 
database of phenotypes has been established. There 
is a need for additional research to determine the 
optimal ongoing annual rate of collecting pheno-
typic information. It is noted that the highest rate 
of ΔG was observed with both PB and CM phe-
notypes in the genetic evaluation, but the cost of 
collecting such information in relation to the timing 
of the economic return needs consideration. This 
study assumed different phenotyping costs for PB 
and CM animals (US$135 per head vs. US$100 
per head, respectively), which was mostly driven 
by recording ultrasound on all PB animals and 
DMI measurement for all PB and only a portion of 
CM animals. Once a sufficient population is estab-
lished for genetic evaluation, an alternative annual 

strategy might be to phenotype and genotype all 
new selection candidates and only CM progeny 
from PB animals with rTI in the genetic evaluation 
that is less than a critical threshold (Horton et al., 
2014).

It should be noted that in these calculations 
all of the value derived from genetic improve-
ment was assumed to be returned to the enter-
prise. Additionally, the startup cost to phenotype 
and genotype or collect parentage for the reference 
population in this comparison was not considered 
in the annual economic returns. When adding the 
startup costs to phenotype, genotype, or assign 
parentage in the initial reference population to 
the 30-yr CNPV simulation as shown in Figure 3, 
the time to break even is lengthened considerably, 
exceeding 30 yr in the case of PBCM_A. This high-
lights the “activation energy” and high startup costs 
required to enable an enterprise-specific private 
genomic selection program. The costs to develop a 
large genotyped and phenotyped reference popula-
tion are typically absorbed by an entity such as a 
breed association or government-supported genetic 
evaluation unit with the intent to leverage the cost 
of obtaining such information over a large number 
of CM cattle to maximize the return on investment.

Terminal-sire selection in this scheme is 
designed to increase genetic gain and profitability in 
CM offspring where economic returns are realized. 
Capturing economically relevant and indicator phe-
notypes, pedigree records, and genomic informa-
tion from PB and CM animals for inclusion in the 
prediction of economic merit is the primary objec-
tive of beef cattle genetic improvement (Garrick 
and Golden, 2009). Recent efforts in genetic evalu-
ation have concluded that combining information 

Figure 2. Cumulative net present value (CNPV) of per commercial (CM) calf  (n = 8,000) over a 30-yr planning horizon for four scenarios of 
genetic evaluation.



4084 Buchanan et al.

from various production segments using single-step 
GBLUP produces greater accuracy than multi-
step methods due to the combined pedigree and 
genomic relationship matrix, especially for young 
unproven selection candidates (Christensen et  al., 
2014; Li et al., 2014; Lourenco et al., 2015a).

Income generated through increased genetic 
gain from the collection of  genomic and phe-
notypic information from multiple production 
segments results from the increased rTI of  the 
predicted genetic merit of  selection candidates. 
Additionally, if  selected animals can consequently 
produce progeny at younger ages, the implemen-
tation of  this strategy results in a reduction of 
generation interval (Buch et al., 2012; Meuwissen 
et  al., 2013). The development of  the single-step 
approach for genetic evaluation has enabled the 
combination of  traditional pedigree relationships 
with genomic relationships into a combined rela-
tionship matrix, termed H (Legarra et  al., 2009, 
2014; MacNeil, 2016). This combined relation-
ship matrix can be incorporated into the mixed 
model equations to estimate breeding values for 
genotyped and nongenotyped animals in a sin-
gle model when pedigree information is partially 
missing (Meuwissen, 2009). In genetic evaluations 
using CM beef  production data, this provides 
the opportunity to combine phenotypes typically 
collected only on PB animals, such as ultrasound 
indicator traits, with growth and carcass data 
from CM offspring to increase the accuracy of 
genetic evaluation (MacNeil and Northcutt, 2008; 
MacNeil et  al., 2010; Christensen et  al., 2014; 
Todd et al., 2014).

Increasing the rTI of genetic evaluation can be 
accomplished in practice by increasing the number 
of phenotype and pedigree observations from recent 

generations, or by genotyping some proportion 
of individuals (Meuwissen et  al., 2013; Lourenco 
et  al., 2014; Wiggans et  al., 2015; Boichard et  al., 
2016). Simulations have modeled the effect of add-
ing different types of information to genetic evalu-
ation systems (Santos et al., 2017). However, there 
is a need for additional field data associated with 
genetic evaluations produced using genomic predic-
tions and actual carcass data from crossbred beef 
cattle production systems to enable modeling of the 
economic returns associated with an investment in 
genomics.

For some sectors of the beef cattle industry 
such as the cow–calf  sector, it is still likely that the 
cost of genotyping commercial animals is greater 
than the economic return to that sector as com-
mercial animals have few progeny upon which to 
obtain a return on investment (Van Eenennaam 
et  al., 2012). In addition, an analysis of the cost 
of phenotyping vs. the return in genetic gain on 
an individual trait basis would aid in the design of 
optimal phenotyping strategies. For instance, the 
cost of measuring DMI far exceeds the cost of any 
other trait in the evaluation, but this trait does not 
carry the greatest importance in most terminal-sire 
selection indexes. The economic selection index 
used in this study included feedlot and carcass 
traits only, which would only be relevant to produc-
ers who retain ownership of their cattle through the 
supply chain. As such, care should be taken when 
interpreting the economic returns of genetic test-
ing obtained in this study to the wider beef cattle 
industry, and especially to cow-calf  producers who 
are selling their animals prior to entry into the feed-
lot as the traits in the feedlot index modeled in this 
study may have only indirect economic relevance to 
such operations.

Figure 3. Cumulative net present value (CNPV) of per commercial (CM) calf  (n = 8,000) over a 30-yr planning horizon for four scenarios of 
genetic evaluation including the startup costs to phenotype, genotype, or assign parentage in the initial reference population.
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CONCLUSIONS

This study provides an industry-based example 
of the economic considerations for the use of 
genomics and collection of CM carcass data for use 
in genetic evaluation in an integrated 2-tiered beef 
cattle production system focusing on terminal-sire 
selection. Differences in genetic gain may be real-
ized through recording progeny performance and 
the incorporation of 25K SNP genomic informa-
tion into genetic evaluation over pedigree (parent-
age or recorded pedigree) relationships alone. When 
implemented with an economic selection index, 
the increased response to selection in the breeding 
objective may result in a long-term positive eco-
nomic return to the enterprise given an appropriate 
strategy for data collection and cost management. 
These results using field data indicate that the add-
itional accuracy derived from adding CM pheno-
types and 25K SNP genomic information data to 
the relationship matrix will maximize selection 
accuracy, but appropriate accounting measures are 
required to estimate the time and cost of achieving 
improved accuracy to calculate the return on that 
investment.
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