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The emergence of antibiotic tolerance (prolonged survival against exposure) in natural
bacterial populations is a major concern. Since it has been studied primarily in
isogenic populations, we do not yet understand how ecological interactions in a
diverse community impact the evolution of tolerance. To address this, we studied the
evolutionary dynamics of a synthetic bacterial community composed of two interacting
strains. In this community, an antibiotic-resistant strain protected the other, susceptible
strain by degrading the antibiotic ampicillin in the medium. Surprisingly, we found
that in the presence of antibiotics, the susceptible strain evolved tolerance. Tolerance
was typified by an increase in survival as well as an accompanying decrease in the growth
rate, highlighting a trade-off between the two. A simple mathematical model explained
that the observed decrease in the death rate, even when coupled with a decreased
growth rate, is beneficial in a community with weak protective interactions. In the
presence of strong interactions, the model predicted that the trade-off would instead
be detrimental, and tolerance would not emerge, which we experimentally verified.
By whole genome sequencing the evolved tolerant isolates, we identified two genetic
hot spots which accumulated mutations in parallel lines, suggesting their association
with tolerance. Our work highlights that ecological interactions can promote antibiotic
tolerance in bacterial communities, which has remained understudied.
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The extensive use of antibiotics over the decades has brought with it a growing concern
about the ability of bacteria to evolve and evade them. Bacteria can evolve a variety
of strategies to survive antibiotics, by far the most familiar being resistance, the ability
to grow in higher antibiotic concentrations. Another common, but less well-studied,
bacterial strategy against antibiotics is tolerance—the ability to survive antibiotic exposure
for longer duration (1). A plethora of studies have revealed many mechanisms by which
bacteria can evolve both resistance and tolerance in clinical as well as laboratory conditions
(2–5). However, laboratory studies, which provide tractability and control, have largely
been limited to studying single strains of bacteria, isolated from the community context
in which they naturally occur. In contrast, clinical studies provide natural context but
limit experimental control and tractability. To understand how community context
shapes bacterial response to antibiotics, we need experimentally tractable engineered
communities which can evolve, whose composition can be manipulated, and whose
evolved members can be characterized.

Interactions between bacteria can profoundly shape the dynamics and structure
of ecological communities, including but not limited to their growth in the face of
antibiotic exposure. Indeed, antibiotic-resistant strains can protect susceptible strains
against antibiotics, allowing the two to coexist even in high antibiotic concentrations, far
exceeding the minimum inhibitory concentration (MIC) of the susceptible cells (6–8).
Interactions in a community have also been shown to change the sensitivity of a focal
strain (9) or impact its tolerance (10). Further, competition and cooperation for nutrients
could also affect community dynamics and, in turn, the costs and benefits of resistance
and tolerance (11–13). Community context has been shown to impact the evolution
of resistance in general in a variety of environmental contexts, such as sewage (14) and
animal feces (15). Finally, β-lactamase producing strains were shown to impact the
course of polymicrobial infections (16). Thus, both the type and strength of interspecies
interactions can shape the fitness of antibiotic-tolerant as well as resistant bacteria and
modify their evolutionary trajectories.

Here, we studied the evolutionary dynamics of a simple synthetic two-strain bacterial
community exposed to the antibiotic ampicillin, where a resistant strain degraded
ampicillin in the medium, resulting in the protection of a susceptible strain. Surprisingly,
we observed that the susceptible strain repeatedly evolved tolerance in multiple parallel
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lines of this community, typified by a reduced death rate and
a concomitant decrease in the growth rate. By mathematically
modeling this community, we could explain why tolerance was
beneficial in this community context and predicted that tolerance
would become detrimental if we increased the protection pro-
vided by the resistant strain. Finally, we experimentally manip-
ulated the strength of protection in our engineered community
and found that tolerance did not emerge in these conditions, as
predicted by our model. Taken together, our results highlight the
importance of studying antibiotic response through the lens of
community interactions.

Results

Antibiotic Exposure in Communities Leads to the Evolution of
Tolerance. To understand how antibiotic responses evolve in a
community context, we assembled and experimentally evolved

a synthetic community of two Escherichia coli strains, one
susceptible to ampicillin and the other resistant to it (Fig. 1A,
Methods). The resistant strain was an auxotroph for lysine and
could not grow well without it being supplemented to the
growth medium (SI Appendix, Fig. S1). The auxotrophy of
the resistant strain allowed us to control its population size by
supplementing different amounts of lysine and thus (as we later
show) tune the interaction between the resistant and susceptible
strain. Both strains could be distinguished by color and selective
plating (see Methods). When the susceptible strain was exposed in
monocultures to ≥64 μg/mL ampicillin (over 50-fold the MIC,
1 μg/mL), the population rapidly died and went extinct within
three daily dilution cycles into fresh media supplemented with
ampicillin. However, the susceptible population could survive
similar ampicillin exposure and stably coexist in a community
alongside resistant cells in the presence of similar daily growth
and dilution cycles (Fig. 1C).

Fig. 1. In an interacting community with protective interactions, antibiotic exposure leads to the evolution of tolerance. (A) Community interaction network,
where a resistant strain (red), auxotrophic for lysine (circles), degrades ampicillin (diamonds), in turn protecting a susceptible prototroph (blue). By supplementing
lysine, we can modulate the carrying capacity of resistant auxotrophs (curly arrow). (B) Schematic showing our experimental protocol, where we mixed
susceptible (sus) and resistant (res) strains with no lysine and subjected them to 10 cycles of growth and dilution. At the end of 10 cycles, we isolated susceptible
strains and asked what antibiotic response they had evolved. (C) Abundance over different cycles of both strains in the community during an evolutionary
experiment. Values show the mean of multiple replicates plating for one representative line. (D) Kill curves of the isolated ancestral strain (sus wt, blue) and
one representative evolved isolate (green), in 100 μg/mL ampicillin. Values represent the mean across technical replicates. (E) Bar graph showing the average
minimum inhibitory concentrations (MIC) of the susceptible wild-type (ancestor) and eight evolved isolates, Mann–Whitney U test, two-sided, P < 0.005. (F)
Scatter plot showing the death rate and growth rate for the ancestor (blue, n = 8) and evolved isolates (green, n = 8) from the evolutionary experiments as
described in B. The line denotes the linear fit with R2 = 0.84 and P < 0.001. Values show mean of biological repeats. In all cases, error bars show SEM.
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In this community, resistant cells protected susceptible cells
by secreting the enzyme β-lactamase and degrading ampicillin,
such that ampicillin levels dropped below the MIC of the
susceptible cells (SI Appendix, Fig. S4), as previously reported
for a similar community (6). We found only limited evidence of
the susceptible (lysine prototroph) strain benefiting the resistant
(lysine auxotroph) strain (SI Appendix, Fig. S3). Since the
susceptible strain could survive ampicillin exposure in such a
community setting, we hypothesized that it might evolve to better
respond to the repeated ampicillin exposures. In particular, we
were interested in understanding how the susceptible strain would
evolve in response to antibiotic exposure (Fig. 1B); whether it
would increase its MIC (gain resistance), as naively expected,
or evolve an alternate strategy, say elongating the duration,
it can withstand death due to antibiotic exposure (increased
tolerance).

To characterize the evolutionary response of the susceptible
strain upon ampicillin exposure within our communities, we
performed experimental evolution under high ampicillin con-
centrations, far exceeding the MIC of the susceptible strain but
much below the MIC of the resistant strain (see Methods). Each
day the cocultures were diluted 1:50 into fresh media with
high ampicillin exposure (≥64× the MIC). We continued to
serially propagate the communities for 10 growth–dilution cycles
and measured the abundance of the two strains periodically.
We did not study cases where the susceptible population went
extinct, presumably due to stochastic evolutionary dynamics
(SI Appendix, Fig. S2 for statistics). At the end of 10 cycles
(approximately 100 generations), we isolated representatives of
the evolved susceptible strains.

Surprisingly, while the evolved isolates showed only a moderate
increase in their MIC (from 1 μg/mL to ∼2 μg/mL; Fig. 1E),
they had evolved much lower death rates (average decrease
of 48% compared to wild type isolates; Fig. 1 D and F).
To test whether the growth of the evolved isolates had been
affected during evolution as well, we measured their growth
rates. Interestingly, we found that the isolates also had reduced
growth rates and that the decrease in the growth rate was linearly
proportional to the decrease in the death rate (Fig. 1F). The
observed increases in MIC, indicative of resistance, were far from
the exposed antibiotic concentrations (100 μg/mL). Moreover,
a two-parameter regression showed that the increased survival of
evolved isolates, quantified by their surviving frequency after 5 h
of antibiotic exposure, was much better explained by the decrease
in growth rates than increases in the MIC (regression coefficients
3.2 ± 0.2, P < 10−3 for growth rate versus −0.06 ± 0.04,
P = 0.02 for MIC). This suggested that the increase in MIC
alone was not sufficient to explain the increased survival of the
evolved isolates; instead, the increased survival was likely due to
tolerance. Thus, we concluded that to respond to antibiotics in
our synthetic communities, susceptible strains evolved tolerance
by slow growth, i.e., a decrease in the death rate, coupled with a
decrease in the growth rate (17).

A Mathematical Model Explains that Tolerance Is Beneficial
Under Weak Protective Interactions. Having learned that tol-
erance repeatedly evolved in our susceptible populations, we
sought to understand what makes this strategy beneficial. In
principle, a decreased death rate should always be advantageous
since it helps more susceptible cells survive when antibiotic levels
are above the MIC. However, the tolerance observed in our
populations has both a benefit (decreased death rate) and a cost
(an accompanied decrease in the growth rate). Thus, we would

only expect tolerance to be beneficial in conditions when the
benefit outweighs the cost.

To understand when a decreased death rate is beneficial despite
an accompanying decreased growth rate, we calculated the relative
fitness of tolerant isolates in different conditions, using a simple
mathematical model of our synthetic microbial community.
Briefly, our model simulated the growth of a community with
three distinct strains: resistant auxotroph which grew at a fixed
growth rate γR regardless of the antibiotic concentration (Fig. 2A,
red), susceptible ancestor which grew at a rate γS at antibiotic
concentrations below the MIC and died at a rate δS when
antibiotic concentrations are above the MIC (Fig. 2A, blue),
and finally, a tolerant isolate of the susceptible strain, with a
reduced growth rate γM and death rate δM (Fig. 2A, green). We
assumed that the decreases in death and growth rates were linearly
related, consistent with our experimental observations (Figs. 1F
and 2A, Bottom; Methods) as well as previous findings (18, 19).
The entire bacterial community was subjected to daily dilutions,
mimicking our experimental protocol (details in Methods). In
the first growth–dilution cycle, we seeded each community with
a certain number of each strain (see Methods). Each community
was subjected to an externally controlled antibiotic concentration
at the beginning of each day. During each cycle, after an
initial 1-h lag, resistant auxotrophs grew at a rate γR . The rate
of antibiotic degradation was proportional to the number of
resistant auxotroph cells present, regardless of their instantaneous
growth rate. After a similar 1-h lag, susceptible and tolerant
populations both declined at their respective death rates until
the antibiotic concentration dropped below the MIC, after
which they grew at their respective rates. To model the lysine
dependence of resistant auxotrophs, we controlled their carrying
capacity Rsat ; increasing lysine concentrations corresponded to
an increasing Rsat (Fig. 2 B and D; Methods). For simplicity,
the community had a fixed carrying capacity, Nsat ; when the
community size hit Nsat , growth ceased until the next cycle (Fig.
2A, Middle).

Simulations of our model suggested that tolerance is beneficial
when the population size of resistant auxotrophs is small, resulting
in slow (∼5 h) antibiotic degradation and weak protection of
susceptible cells, i.e., a long time for the antibiotic to drop
below susceptible cells’ MIC (Fig. 2B, black). In our model,
this occurs when the resistant auxotroph population has a low
carrying capacity, which we experimentally achieved by not
supplementing lysine. In these conditions, susceptible strains face
a long death phase (Fig. 2C, gray region), during which their
population declines significantly (Fig. 2C, blue). Thus, tolerant
isolates, which have a lower death rate, are fitter, even at the cost
of a lower growth rate (Fig. 2C, green). Since tolerant populations
decline significantly less than susceptible populations, once they
start growing, they can divide more than their ancestors in a
single cycle, making them fitter (see SI Appendix, Text). The
model also explained that the benefit of tolerance depends on
the slope of the growth–death trade-off line (Figs. 1F and 2A,
Bottom). Namely, if the slope of the trade-off is too steep,
such that a small reduction in the death rate results in a large
reduction in the growth rate, tolerant isolates become relatively
less fit. Specifically, there is a threshold slope of this line above
which tolerance ceases to be beneficial (SI Appendix, Fig. S5).
Moreover, the degree of tolerance also depends on the antibiotic
concentration—in lower concentrations, where the susceptible
death phase is shorter, a large decrease in the death rate is not
beneficial (SI Appendix, Fig. S6). Finally, an increase in MIC only
weakly contributed to the relative fitness of tolerant strains in the
model (SI Appendix, Fig. S7). Specifically, increasing the MIC of
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Fig. 2. A mathematical model explains that tolerance is beneficial only when the community has weak protective interactions. (A) Ingredients of our
mathematical model. Top: Plot showing growth rate as a function of antibiotic concentration for three strains: the resistant auxotroph (red), susceptible
ancestor (blue), and a tolerant mutant (green). Middle: Example of dynamics of resistant (red) and susceptible (blue) strains. The resistant strain grows it till
hits its carrying capacity, the parameter Rsat in our model, which is analogous to the lysine concentration in our experiment. Bottom: Scatter plot showing
that all tolerant strains in the model obey a linear relationship between their growth and death rates. (B–E) Dynamics of resistant strain (red), the antibiotic
(black), susceptible ancestor (blue), and tolerant mutant (green) under (B–C) low lysine and (D–E) high lysine concentrations (in our model, low Rsat and high
Rsat ). The dynamics are a cartoon representation (see SI Appendix, Fig. S12 for simulated dynamics); for how we measure the relative fitness, see Methods. The
horizontal dashed line shows the MIC of the susceptible ancestor, and the gray-shaded region shows the region where the antibiotic concentration is above
the susceptible strain’s MIC. (F) Heatmap showing the relative fitness of possible tolerant strains in the model with varying degrees of tolerance and antibiotic
degradation rates (controlled by changing the resistant population size).

tolerant strains in the model to 2 μg/mL (the MIC measured in
our experimentally evolved isolates) increased the relative fitness
of tolerant strains by less than 10%. Thus, the model suggested
that tolerance is the dominant contributor to the fitness of our
evolved isolates, not resistance.

Taking the results from the model together, we concluded that
when the resistant cells offer weak protection from the antibiotic
in the form of slow degradation, to the susceptible cells in the
community, we should expect tolerance to emerge, as seen in our
evolved isolates.

Tolerance Does Not Evolve in Communities with Faster An-
tibiotic Degradation. Having understood that evolving tolerance
could make a susceptible population more fit in a community
with slow antibiotic degradation, we next asked in which
conditions tolerance would not be favored. Interestingly, our
model predicted that strengthening protection from the resistant
auxotroph—by increasing its carrying capacity and thereby
speeding up antibiotic degradation—will abolish the benefits
of tolerance by slow growth. This is because tolerant isolates
are relatively less fit than their susceptible ancestors in these
conditions. With a higher carrying capacity, a larger resistant

auxotroph population degrades the antibiotic much faster. Due
to this faster degradation, susceptible strains spend a shorter
period in the death phase compared with conditions with slow
antibiotic degradation (Fig. 2D); instead, they spend the majority
of each cycle in the saturation phase (Fig. 2E, gray, SI Appendix,
Fig. S4). It is ultimately because of a much shorter death phase
that tolerant isolates are less advantageous than their susceptible
ancestor (Fig. 2E, white). Using our model, we charted the
phase space of tolerance evolution, plotting the relative fitness
of tolerant isolates versus their susceptible ancestors under a wide
range of parameters (Fig. 2F). Using this phase diagram, we
concluded that tolerance is likely to be observed only when the
decrease in the growth rate of emerging tolerant isolates is not
very large and, importantly, when antibiotic degradation is slow.
A corollary of this was the prediction that tolerance would not
emerge in conditions with rapid antibiotic degradation, achieved
when the resistant cells had a large population size and strongly
protected susceptible cells.

To test this prediction of our model, we repeated our
evolution experiment, supplementing the growth medium with
increasing concentrations of lysine, increasing resistant strain
capacities (Fig. 3A, SI Appendix, Fig. S8). In these conditions,
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Fig. 3. Strengthening community interactions (supplying lysine) during antibiotic exposure suppresses the evolution of tolerance. (A) Schematic showing our
experimental protocol, where we mixed susceptible and resistant strains with lysine, and subjected them to 10 cycles of growth and dilution. At the end of
10 cycles, we isolated susceptible strains and asked which form of antibiotic response they had evolved. (B) Susceptible and resistant strains coexist at high
ampicillin exposure and when supplemented with lysine (0.001% lysine shown). Line plots showing the cell densities of the susceptible (blue) and resistant (red)
strain at the end of each growth–dilution cycle, for a representative evolutionary experiment. (C) Kill curves for the susceptible ancestor (blue) as well as the
evolved isolate (green) from the representative line in (B). Shown are the mean of technical replicates; error bars represent SEM. (D) Scatter plot showing the
growth and death rates of different isolates evolved under lysine supplementation (green) and without lysine supplementation (cyan). The growth and death
rates of the ancestral strain (anc) are marked in blue. Values and error bars represent the mean and SEM (n = 8 for isolates evolved under no lysine and n = 12
isolates evolved under ≥ 0.0001% lysine). (E) Susceptible strains evolved in lysine concentrations ≥ 0.0001% (green, n = 12) had similar MIC compared with the
ancestor (blue, n = 8); Mann–Whitney U test, two-sided, P > 0.1.

the susceptible and resistant strains still coexisted (Fig. 3B). In
agreement with our prediction, above 0.0001% lysine, we did not
observe any evolution of tolerance in 8 of 9 lines (SI Appendix,
Fig. S9 and Fig. 3 C and D). Susceptible cells isolated after 10
cycles of evolution showed neither a decrease in the death rate
(Fig. 3D) nor an increase in MIC (Fig. 3E). Indeed, our model
predicted that when the antibiotic degradation rate was very
large, such that there was no death phase for susceptible cells,
there would be no advantage of having an increased MIC, even if
this increase had no associated cost. (In the model, this happens
when τMIC < τlag ; (SI Appendix, Text.) These results suggest
that the evolution of tolerance can be suppressed in communities
which strongly protect susceptible strains from antibiotics.

Another way to shorten the duration over which suscepti-
ble cells die (lower τMIC ) is to reduce the initial antibiotic
concentration. We repeated our evolutionary experiment using
a lower ampicillin concentration of 15 μg/mL. Interestingly,
susceptible strains evolved under low lysine, and low ampicillin
concentrations showed a lower reduction in death rates compared
to those evolved under high ampicillin concentrations (average
death rates of 1.2± 0.1 h−1 vs. 1.8± 0.1 h−1; Mann–Whitney
one-sided test P < 0.05; SI Appendix, Fig. S10, Left panel).
This difference was not significant for isolates evolved under
high lysine concentration (average death rates of 2.2 ± 0.1 h−1

vs. 2.0 ± 0.1 h−1; Mann–Whitney one-sided test P > 0.1;
SI Appendix, Fig. S10, Right panel). These results suggest that

the exposed antibiotic concentration can also control whether
tolerance evolves and to what degree it evolves.

Two Classes of Mutations Are Associated with Tolerance by
Slow Growth. To understand the genetic basis of the “tolerance
by slow growth” observed in our study, we sequenced the whole
genomes of selected evolved isolates. We sequenced all isolates
with increased survival and a few with no increased survival to
serve as controls. We identified a total of 12 isolates carrying
mutations (Table S2). Our analysis revealed two genetic “hot
spots” that had accumulated mutations in several parallel tolerant
evolved lines: the envZ gene and the gln operon (Table S2). Of
the nine tolerant isolates with decreased death rates, eight had
identified mutations in these “hot spots.” Isolates with mutations
in envZ genes had similar decreases in death and growth rates
(Fig. 4, red). In contrast, of the 10 isolates with no decrease in
death rates (Table S2), only three had any detectable mutations
outside of the two “hot spots” (Fig. 4).

Previous literature suggests that these two genetic hot spots
might be linked to the observed slow growth (tolerance). The
envZ gene, in which we detected mutations in four parallel lines,
is a membrane-associated protein involved in osmoregulation.
Its expression has previously been linked to β-lactam resistance
either by down-regulating ompC and ompF (20) or by a different
pathway (21). Genes in the gln operon—namely glnA, glnB,
and glnD—are known for sensing, regulating, and metabolizing
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Fig. 4. Classes of mutations associated with tolerance by slow growth.
Death and growth rates of sequenced evolved isolates in which we identified
mutations are plotted as well as the ancestral strain (black). Each point
represents a distinct isolate, whose color represents which genes or pathway
were mutated in it (envZ in red, gln in blue, and other mutations in green).
Points represent mean values, while error bars represent the SEM.

nitrogen. Nitrogen starvation, in part controlled by gln genes, can
impact cell growth (22, 23). Interestingly, we also detected mu-
tations in ribosomal RNA genes in parallel lines—in particular,
mutations in the rrl operon. Ribosome synthesis is a key growth-
determining process in bacteria, and mutations lowering its rate
could simultaneously reduce both bacterial growth and death
rates (24). However, tolerant isolates carrying rRNA mutations
also had other mutations (Table S2), making it difficult to
pinpoint any causal link between rRNA mutations and tolerance
(25, 26).

In conclusion, we discovered two genetic pathways associated
with the emergence of tolerance. In our synthetic community,
where resistant cells weakly protected susceptible cells, these
mutations were associated with increased fitness of susceptible
populations.

Discussion

In this study, we have shown that when exposed to antibiotics
in a community context in which resistant bacteria protect
susceptible ones, the susceptible population can evolve tolerance.
This tolerance is characterized by a decrease in both the growth
and death rates of the bacterial population, which improves
their fitness in the community. Moreover, we showed that the
evolution of tolerance can be suppressed if we modulate the
interactions between resistant and susceptible bacteria, e.g., by
increasing the carrying capacity of the resistant strain, which
speeds up antibiotic degradation. We achieved this by exper-
imentally evolving a synthetic community in which we could
control the environmental conditions, antibiotic concentration,
and the strength of interactions between resistant and susceptible
bacteria. Finally, using a simple mathematical model of the
community, we could also explain the costs and benefits of
tolerance by slow growth in various conditions and successfully
predict under which conditions it would be expected to emerge
in our experimental communities.

The strikingly linear relationship between the death rates and
growth rates of our evolved isolates hints at a possible causal link
between the two, perhaps even indicating an important biological
trade-off. While our study did not focus on these possible links,
future studies discerning the mechanism behind this pattern are
likely to shed light on both the mechanisms and fundamental

constraints driving such evolution in response to antibiotics in
bacteria.

The evolution of mechanisms other than resistance has been
observed in other studies with single-species populations exposed
to antibiotics above their MIC. One study exposed E. coli
populations to different antibiotics during the stationary phase
and reported the emergence of persistence (a larger subpopulation
of tolerant cells) rather than resistance (27). Another experimental
evolutionary study exposed E. coli populations to different
antibiotics during the exponential phase and found single point
mutations leading to tolerance (to the specific drug class given)
(28). Interestingly, the line evolved under repetitive ampicillin
exposure had a significant decrease in its growth rate. Under the
conditions of this study, persistence also evolved in all treatments,
while resistance did not evolve. In yet other studies, tolerance by
lag evolved (4, 29). One crucial difference between these studies
and ours is that in our study, the antibiotic concentration is
changed naturally by the community itself, instead of having it
changed by the experimentalist. In this way, the community
changes its own antibiotic landscape over time, and these
interactions can make tolerance more beneficial than resistance.

While we focused on the evolution of the susceptible strain in
our study, it is possible that the resistant auxotroph evolved in our
experimental conditions as well. Indeed, it was shown that strains
in an obligate cross-feeding system, when exposed to antibiotics,
evolved autonomous metabolic activity and weakened the mutu-
alistic interactions (12). Moreover, the interactions between the
two strains in our experiment might change during their evolu-
tion. Studying such changes over longer evolutionary timescales
is, in our opinion, likely to be a fruitful avenue for future work.

Our model included several simplifying assumptions. First,
as a proxy for the lysine concentration, we tuned the carrying
capacity of the resistant strain, Rsat . We did not explicitly model
lysine, its dynamics, and dependence on the abundance of the
susceptible strain (say in the form of it producing and secreting
lysine). Second, we assumed that lysine concentration affected
only the resistant strain’s carrying capacity and not its growth
rate, supported by our monoculture measurements (SI Appendix,
Fig. S1). However, in some cocultures evolved under high
ampicillin and high lysine concentrations, resistant cells survived
while the susceptible strain went extinct (SI Appendix, Fig. S2),
which does not agree with our model. This could be recapitulated
in a variant of our model where the growth rate of the resistant
auxotroph increased with the lysine concentration. Third, we
assumed that the resistant strain had an arbitrarily large MIC,
not dying at any ampicillin concentration. Measurements of the
resistant strain “single-cell MIC” (30) indeed show that it is
higher than 800 μg/mL ampicillin. Moreover, we assumed that
bacterial growth was not impacted by antibiotic concentrations
below the MIC.

During the evolutionary experiment, antibiotic concentrations
drop continuously, exposing the susceptible strain to sub-
MIC concentrations. Sub-MIC concentrations can lead to the
evolution and spread of resistance (31, 32). Moreover, there is
an interplay between resistance and tolerance; indeed, tolerance
has already been identified as a stepping stone for resistance
(29, 33, 34). We observed a mild increase in the MIC in several
of the isolates, albeit with a minor contribution to fitness when
compared with tolerance. Nonetheless, in our model, any increase
in MIC is beneficial since it reduces the duration of the death
phase (in the model, τMIC ) without any associated cost.

To summarize, we have shown that in a synthetic community
in which an antibiotic-resistant strain protects a susceptible
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strain, the evolution of tolerance is restricted by the strength
of the protective interaction. This highlights the importance of
expanding our knowledge of the intricate interactions between
ecology and evolution, especially in the context of antibiotic
treatments and their alarming increased failure.

Materials and Methods
Strains and Media. All strains are derived from E. coli BW25113. The resistant
auxotroph strain is based on JW2806-1 taken from the Keio collection (35)
and is deleted for lysA and carries a kanamycin-resistant gene. It contains the
pFPV-mCherry plasmid (36) (also see Addgene plasmid 20956), expressing a
β -lactamase enzyme and an mCherry fluorescent protein. The susceptible strain
was constructed by P1 transduction of the yfp-Cam cassette from M22 (37) to
BW25113.

M9 media (Sigma cat# M6030) supplemented with 0.5 μg/mL B1 vitamin
and 0.2% glucose was used for growth and in the evolution experiments. M9 was
either without or supplemented with different concentrations of L-Lysine (Sigma
cat# L5501) as indicated in the text. Luria Bertani Broth (LB)-agar plates were used
for counting colony forming units (CFUs). Though the colonies of both strains
could be differentiated by their colors, plates were frequently supplemented
with either Chloramphenicol (25 μg/mL, Sigma cat# C0378) or Kanamycin (50
μg/mL, Sigma cat# K0254 ) to select for the susceptible and resistant strains,
respectively.

Evolutionary Protocol of Daily Exposure to Antibiotics. Evolution under
antibiotic exposure started with a 1:1 ratio of overnight susceptible and resistant
strains diluted 1:50 into fresh media supplemented with ampicillin (Millipore
cat# 171254) and lysine (as indicated in the text), volume indicated in Table S3.
In each cycle, samples were incubated at 37°C with shaking at 300 r.p.m. for
24 h and daily diluted 1:50 into fresh media. Samples were periodically plated
on LB-agar plates (with and without antibiotic selection) at the end of cycles to
monitor the capacities of both strains.

Estimation of Population Densities (CFU/mL). For CFU counting, two
methods were used, depending on the number of samples monitored. For
few samples, the classical CFU of serial dilution and plating with glass beads on
LB-agar plates was used. When many samples were monitored, a 96-well plate
was used. First, 10-μL droplets of PBS-diluted samples were plated on 150-mm-
diameter LB-agar plates with or without antibiotic selection. To prepare the 10-μL
droplets, the experimental cultures were serially diluted via 10-fold dilutions
(maximum dilution factor was 107) with a Viaflo 96-well pipettor. Then, droplets
were transferred to the agar plates and allowed to dry, followed by incubation
at 37°C for a day until colonies were visible. The different dilutions allowed us
to find a dilution at which colonies could be optimally counted, and several
plating replicates per isolate were performed to increase accuracy in measuring
population densities. Resistant and susceptible strains were distinguished either
by plating on LB-agar plates and counting red (resistant) and white (susceptible)
colonies. This did not always give the best separation since when one population
was much denser, it obscured the other one. In these cases (and always for lower
dilutions), we plated the samples on LB-agar plates with antibiotic selection;
kanamycin and chloramphenicol were used to assess the density of the resistant
and susceptible populations, respectively.

Antibiotic Survival Assays. To measure the survival under antibiotic treat-
ments, overnight cultures, each grown from a single colony, were diluted 1:50
in fresh medium supplemented with (100 μg/ mL) ampicillin. At indicated time
points, aliquots of the cultures were sampled and CFUs/mL were measured.

MIC Assays. Each column in a 96-well plate was filled with fresh M9 +0.2%
glucose supplemented with increasing amounts of ampicillin and inoculated
with approximately 105 bacteria per well. The plate was incubated overnight at
37°C with shaking at 300 rpm. The MIC was recorded as the highest concentration
which supported growth [measured by optical density (OD630)].

Growth Rate Measurements. The growth rates of the ancestral and evolved
strains were measured by monitoring OD630 in 96-well plates with the multiwell
reader Infinite (Tecan, Switzerland) at 37°C with shaking. The growth rates were
extracted by fitting the exponential part of the growth in three replicates for each
strain.

Description of the Mathematical Model. We formulated a mathematical
model of our community, comprising three kinds of strains: a resistant auxotroph,
a susceptible ancestor, and an evolved tolerant strain. All strains differed from
each other in their growth rates and death rates. The resistant auxotroph had
a fixed growth rate γR regardless of antibiotic concentration. The susceptible
ancestor had a growth rate γS below its MIC (fixed at 1 μg/mL) and a death rate
δS above the MIC. To model the cost of resistance, we assumed that γR < γS
by about 15%, similar to what we measured experimentally for our strains.
The tolerant strain, which we assumed evolved from the susceptible strain, had
reduced growth and death rates γM, δM, respectively; it had the same MIC of
1μg/mL as the susceptible ancestor. To mimic our experimental observation,
we assumed that the growth rate γM and death rate δM of any evolved tolerant
strain were linearly related by a trade-off through the following equation:

γM = κδM + c, [1]

where κ represents the slope of the growth–death trade-off, and c represents
the intercept. We fit κ = 0.21 and c = 0.75 h−1 to match the experimentally
observed slope and intercept, respectively (Fig. 1F). Using our model, we wished
to study and compare the relative fitness of evolved tolerant strains with different
values of γM and δM, all of which obeyed this trade-off relationship.

Using our model, we simulated the dynamics of all three strains growing
together in a community, undergoing several growth–dilution cycles. At the
beginning of the first growth cycle, we added the resistant auxotroph and
susceptible ancestor strains at equal population sizes at their steady-state values,
dividedbythedilutionfactorDandonecellof theevolvedtolerantstrain(tomimic
an emerging mutant) as well as a particular concentration of antibiotic (typically
100 μg/mL). Resistant cells degraded this antibiotic at a rate proportional to
their current population size R, according to the following Michaelis–Menten
dynamics for the antibiotic A:

dA
dt

= −
vmax · A
KM + A

R, [2]

where vmax was the maximal degradation speed, and KM was the half-saturation
constant of antibiotic degradation, respectively (parameter values matched
to those observed). At the beginning of the growth cycle, all three strains
experienced a lag period lasting 1 h, approximately equal to that of the strains
in our experiment. After this lag, the resistant cells R grew at a rate γR according
to the following equation:

dR
dt

=


0 when t < 1 h,

γR · R when t > 1 h and R < Rsat and N < Nsat ,

0 when R ≥ Rsat or N ≥ Nsat.

[3]

Here, Rsat is the carrying capacity of the resistant cell population, which is a
tunable parameter in our model, and Nsat is the carrying capacity of the entire
community, which we fixed to roughly 109 cells. N = (R + S + M) represents
the combined population of the entire community. We do not explicitly model
lysine and instead implicitly increase Rsat to mimic an increase in supplemented
lysine (as experimentally observed). The dynamics of the susceptible ancestor S
and evolved tolerant strains M were as follows:

dS
dt

=



0 when t < 1 h,

−δS · S when t > 1 h and A > 1 μg/mL,

γS · S when t > 1 hr and N < Nsat ,

0 when N ≥ Nsat.

[4]
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dM
dt

=



0 when t < 1 h,

−δM · M when t > 1 h and A > 1 μg/mL,

γM · M when t > 1 h and N < Nsat ,

0 when N ≥ Nsat.

[5]

Each growth cycle lasted 24 h, by which time the community population
size reached N = Nsat . After this 24-h period, we diluted the community by a
factor D = 50 (chosen to match the experiment) and began a new growth cycle
with this new population in a medium replenished with the original antibiotic
concentration. We repeated these growth–dilution cycles until the community
reached steady state, that is, until all strains in the community reached the
same population sizes at end of two consecutive cycles. We performed these
simulations for each tolerant strain separately, where in each simulation we
added only one tolerant strain at a small population size of one cell.

Measuring theRelativeFitnessof TolerantStrains in theModel. Usingour
model outlined above, we studied the benefits of evolving tolerance in different
conditions—varyingγM, δM, and Rsat—by monitoring how much evolved tolerant
strains grew compared with their susceptible ancestors in the same community.
To quantify the benefits of tolerance, we measured the fitness W of a tolerant
strain relative to its susceptible ancestor, defined as the ratio of the logarithms
of their fold-growths over a growth cycle, as follows:

W =
log

M(t = 24)
M(t = 0)

log
S(t = 24)
S(t = 0)

. [6]

We were interested in the relative fitness of tolerant strains that emerged
as mutants and therefore measured this quantity in conditions where the
susceptible ancestor and resistant auxotroph cells were in a steady state; in
these conditions, the addition of one cell of a tolerant mutant would only
negligibly affect their growth dynamics. In SI Appendix, Text, we derive analytical
expressions for the relative fitness as a function of the relevant dynamical
quantities in our model.

Sequencing and Genomic Analyses of Isolates. We grew all strains from a
single colony in 3 mL LB at 37°C, overnight with shaking. We extracted genomic

DNA using the Zymo Quick-DNA plus miniprep kit (Cat No. D4068) and sent
prepared samples of each strain to Quintara Biosciences for library preparation
and Hi-Seqx2x150 sequencing. We trimmed all raw sequencing reads using
Trimmomatic 0.36, using default settings. Using MiniMap2 v2.17, we then
mapped all trimmed reads, sample by sample, to the E. coli reference genome.
We used the reference genome for the strain BW25113, obtained from the
NCBI RefSeq database. We edited this reference sequence to add an insertion
sequence, whose details have been described in the section “Strains and Media.”
In mapping reads to the reference genome, we ensured unambiguous read
mapping by using the settings -ax sr. The resulting read alignments had
an average coverage of 221. To identify mutations and genetic variation in the
sequenced samples, we used the Bayesian genetic variant detector FreeBayes
v1.3.2 using the following settings: --ploidy 1 --haplotype-length
0 --min-alternate-count 1 --pooled-continuous. For down-
stream analysis, we used only genetic variants (single nucleotide polymorphism
(SNPs) and indels) with a Phred quality score ≥ 30 and minimum local read
depth 30. We analyzed the resulting set of variants that passed these filters. To
map the variants with known gene annotations, we used the annotations for
the strain BW25113 from the NCBI database, with the appropriate correction for
our insertion sequence. For all samples, we filtered out all variants identified in
the susceptible ancestor, compared with the BW25113 sequence, arguing that
these mutations merely differentiated our laboratory strain from the reference
sequence in the NCBI database.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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