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Abstract

Background: Omics data can be very informative in survival analysis and may improve the prognostic ability of
classical models based on clinical risk factors for various diseases, for example breast cancer. Recent research has
focused on integrating omics and clinical data, yet has often ignored the need for appropriate model building for
clinical variables. Medical literature on classical prognostic scores, as well as biostatistical literature on appropriate
model selection strategies for low dimensional (clinical) data, are often ignored in the context of omics research. The
goal of this paper is to fill this methodological gap by investigating the added predictive value of gene expression
data for models using varying amounts of clinical information.

Methods: We analyze two data sets from the field of survival prognosis of breast cancer patients. First, we construct
several proportional hazards prediction models using varying amounts of clinical information based on established
medical knowledge. These models are then used as a starting point (i.e. included as a clinical offset) for identifying
informative gene expression variables using resampling procedures and penalized regression approaches (model
based boosting and the LASSO). In order to assess the added predictive value of the gene signatures, measures of
prediction accuracy and separation are examined on a validation data set for the clinical models and the models that
combine the two sources of information.

Results: For one data set, we do not find any substantial added predictive value of the omics data when compared
to clinical models. On the second data set, we identify a noticeable added predictive value, however only for scenarios
where little or no clinical information is included in the modeling process. We find that including more clinical
information can lead to a smaller number of selected omics predictors.

Conclusions: New research using omics data should include all available established medical knowledge in order to
allow an adequate evaluation of the added predictive value of omics data. Including all relevant clinical information in
the analysis might also lead to more parsimonious models. The developed procedure to assess the predictive value of
the omics data can be readily applied to other scenarios.
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Background

The abundance of information contained in omics data
seems like a feast for researchers. The sheer amount
of candidate variables almost guarantees some posi-
tive findings, whatever the research question is [1]. In
many cases, the apparent good prediction performance of
molecular signatures to predict a clinical outcome is due
to methodological flaws [2]. In other cases, the identified
signatures may not be much more than surrogates for clin-
ical variables [3]. Even though it can occasionally be of
interest to identify possible omics representatives for clin-
ical data, researchers are typically interested in additional
insights rather than replacing classical clinical predictors
with omics scores. In most cases, clinical variables are
routinely collected and thus available by default without
additional costs. There is thus an essential asymmetry
between clinical and omics variables: in terms of prediction,
omics data are useful only if they can increase predic-
tion performance compared to models using clinical data
only. When building omics-based prediction models, the
hope is to capture aspects of the prediction problem that
are not already captured by clinical variables. In this arti-
cle we will focus on this (very common) situation. Note
that clinical variables are sometimes used in practice to
define subgroups of patients which are then further inves-
tigated separately, using omics data. However, this case is
not considered here.

In light of these considerations, it becomes clear that it
is of utmost importance in omics model building to not
only appropriately deal with the high dimensionality of
omics data but also to adjust for already existing knowl-
edge in the form of clinical information. The integration
of clinical data, dense in information, and omics data
has attracted more and more attention in recent years,
especially in the field of predictive! modeling of clinical
outcomes [4, 5]. For two example data sets De Bin et al. [6]
systematically compare different strategies for combining
omics and clinical data when modeling survival outcomes.
Vazquez et al. [7] apply a Bayesian approach to incorpo-
rate clinical and multiomic data into prediction models.
Dimitrieva et al. [8] compare the predictive powers of clin-
ical to expression and methylation data on survival and
find that only the integration of molecular and clinical
variables results in improved predictions.

Yet even studies that do include clinical information
often put considerably more effort into modeling the
omics part of the predictor than into modeling the clinical
part. Simple procedures, such as least squares regression,
cannot be applied to handle high-dimensional data: this
is probably why researchers focus their attention on this

Ln this paper, we primarily use the term “predictive” when talking about a
model’s ability to predict the outcome even though the model itself might be
considered “prognostic”, i.e. it is concerned with the outcome, independent of
the treatment received.
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tricky part of the modeling process, while comparatively
ignoring the modeling of clinical data, which they con-
sider to be less problematic. Accounting for clinical vari-
ables naively (for example, by adjusting for a well-known
marker without considering further potential variables)
is better than completely ignoring them. However, if the
available clinical variables are not sufficiently incorpo-
rated into the model, the added predictive value of omics
data might be overestimated. In other words, omics data
might appear more useful than they actually are, as a result
of not fully exploiting the potential of clinical variables.

For example, the prediction of the survival of breast
cancer patients, first based on clinical variables and then
on omics data, has been an important research topic for
years. About 35 years ago the Nottingham Prognostic
Index (NPI) was proposed [9]. The NPI was validated in
many independent data sets and is a well accepted tool
to predict recurrence free and overall survival time for
patients with primary breast cancer [10]. Using the full
information from standard clinical data Winzer et al. [11]
propose an extended version with improved prognostic
ability. They recommend using this extended version as a
benchmark to assess the added value of new information
in this area.

The goal of this paper is two-fold. Firstly, we demon-
strate empirically, based on two applications to breast
cancer data, that the apparent added predictive value of
omics data for prognostic purposes depends on the con-
sidered clinical model. Our conjecture is that the observed
increase in prediction performance yielded by omics data
diminishes when including more information from clini-
cal variables in the model. Secondly, we describe simple
procedures to take more clinical information into account
with different levels of clinical model complexity when
building an omics-based model. This strategy may be used
as a suitable pipeline for future research projects on the
usefulness of omics data.

For these purposes, we use results from Winzer et al.
[11] to assess the added predictive ability of models with
omics variables that were constructed on various levels of
clinical information. For each of these levels, omics vari-
ables are selected via different variable selection methods
and combined with the clinical variables into a Cox pro-
portional hazards model [12] using a training data set. The
resulting models are evaluated on an independent valida-
tion data set and compared to the corresponding models
that only include the clinical information of the respec-
tive level. In this way, the added predictive value of the
omics variables can be investigated for models using a dif-
ferent amount of clinical information. Data and code are
available online so that all analyses are reproducible.

The paper is structured as follows: first, the two con-
sidered breast cancer data sets are introduced and the
study design, as well as the implemented methods, are
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described. Subsequently, the results are presented and
discussed.

Methods

Data

This study uses two different data sets to evaluate the
added predictive value of omics variables in the field of
breast cancer. For a data set to be suitable for the study,
it has to contain omics data (in the form of gene expres-
sion data) as well as a decent amount of prognostic clinical
information and the survival status of the patients.

Hatzis data

The first data set contains information on 508 newly
diagnosed ERBB2-negative breast cancer patients treated
with neoadjuvant chemotherapy. Hatzis et al. [13] col-
lected information from 2000 to 2010 for their study on
a predictor of response to and survival after chemother-
apy. The data is available online from the GEO database
[14] under the accession number GSE25066. It includes
clinical variables as well as processed gene expression
microarray data for 22,283 probe sets, separated into two
independent training and validation data sets contain-
ing n = 310 and n = 198 observations, respectively.
The censored response used in this study is the distant
relapse free survival time (the time interval between the
initial diagnosis and either the diagnosis of distant metas-
tasis or death), with 66 and 45 events in the training and
validation data set, respectively. Missing values in the clin-
ical variables of the tumor grade and estrogen receptor
status of a patient’s tumor are imputed using the clini-
cal information considered in this project plus additional
information on the progesterone status of a patient via a
single imputation within the multivariate imputation pro-
cedure by chained equations algorithm as implemented in
the R add-on package mice [15]. A small constant (1e-05)
was added to the survival time of a patient who experi-
enced the event at day 0, to include this observation in the
modeling process. A detailed description of the clinical
variables included in the data set can be found in Table I
of the original paper. In contrast to the original study and
similarly to De Bin et al. [6], we use all available infor-
mation for nodal status and tumor size. Note that two
patients in the training data and one patient in the valida-
tion data with TO tumors are collapsed with the T1 group.
In the most complex model we include the continuous
variable age. From many studies it is well known that this
effect is non-linear, which is why we include it adopting
the best fitting fractional polynomial function of degree
2 [16]. Using the routine implemented in the R package
mfp [17] and forcing the program to include all variables
by setting their p-value for exclusion to 1, the FP2 func-
tion with power terms (-2, -2) is selected in the training
data.
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GDCdata

The second data set is made publicly available by the
Genomic Data Commons (GDC) Data Portal [18] which
provides harmonized cancer data sets for over 25 dif-
ferent cancer types. The information on breast invasive
carcinoma stems from The Cancer Genome Atlas (TCGA)
[19]. As the database is still being further developed, we
work with the data release 10.0, which provides informa-
tion on breast cancer patients with clinical and follow-up
data as well as gene expressions for 56,963 genes. Starting
with 1097 patients with existing gene expression infor-
mation, we first exclude patients who are either (i) male,
(ii) have received neoadjuvant therapy (which was uncom-
mon at the time of treatment), or (iii) whose tumor has
spread to a different part of the body. We also exclude
those patients with missing information on survival. In
order to analyze the disease free survival time, we com-
bine information on follow up and new tumor events to
construct the target variable. Missing values for clinical
variables are imputed as described for the Hatzis data
set and similar transformations of the survival times are
carried out. In this data set, age is included as a (3,3) frac-
tional polynomial as selected using the mfp package (see
above). This results in a baseline data set of 1039 breast
cancer patients either alive and without recurring cancer
(n. = 856) or with new tumor event or dead (1, =183)
with median survival time of 783 days. A detailed descrip-
tion of the clinical data can be found in Additional file 1:
Section A. For this set of patients the omics data con-
tain a considerable amount of very low gene expressions,
which is why we restrict the omics variables to be analyzed
to those that show expression values unequal to 0O for at
least half of the patients. Consequently, only 30,913 differ-
ent gene expression variables are included in the following
analysis. Finally, we randomly split the data into a training
set that consists of two thirds of the data and a validation
set, using the disease free survival status as a stratifying
variable to ensure that the proportion of censored obser-
vations is the same in the training and validation sets.
This means that the resulting training data set contains
692 observations, 122 of which are informative (events),
whereas the validation data set comprises the remaining
347 observations (61 events).

Note that there is a subtle difference between the two
data sets: while the training data provided by Hatzis et al.
[13] consists entirely of patients that received a neoadju-
vant chemotherapy regimen, the validation data set also
contains 15 patients that received an entirely adjuvant
chemotherapy. Unfortunately, we were not able to iden-
tify those patients to further homogenize the data base.
However, it is unlikely that this difference in treatment
has a relevant influence on the results of our investiga-
tion. For the GDC data, however, we explicitly exclude
all patients that received neoadjuvant therapy to align the
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data sets used for model building and model evaluation
with respect to timing of chemotherapy.

Model building

A popular way of modeling the effect of variables on
survival time consists in applying extensions or variants
of the multivariate Cox regression model. Even though
other methods are available and might yield better results
in some cases, we deliberately restrict our modeling
process to this approach. One advantage of this is the
resemblance to well-known linear regression techniques
(in contrast to nonparametric procedures such as ran-
dom forest [20]); another is the already existing research
on how to combine low-dimensional clinical and high-
dimensional omics data for these methods (e.g. [6, 21]).
Moreover, applying a modeling approach that belongs to
the standard tool kit of researchers might convey the
message of this paper better than a more refined mod-
eling strategy specifically adapted to the particular data
situation at hand.

Thus, we model the hazard A(t|Zy,..,Z4 X1, ..., Xp),
which is the instantaneous failure rate, depending on the
clinical variables Z1, ..., Z4, with ¢ < #, and the omics vari-
ables X, ..., Xp, with p > n. The constructed models take
the following form: the hazard is modeled as the product
of the baseline hazard function Ag(¢) with the exponential
of a linear predictor 5 consisting of the clinical variables
(e.g. tumor size or nodal status) and omics variables (e.g.
the expression levels of different genes):

)"(t | Zl; n')Zq)Xb "-)Xp) = )‘-O(t) : exp(n)

with n = y1Z1 + .. + yuZy + B1X1 + . + BpXp, @
where y1, ..., y; and By, ..., are the regression coefficients
of the clinical and omics variables, respectively. Note that
it is clear from Eq. (1) that we assume all variables to
have a linear effect (except for age, which enters the model
in its transformed form with power terms (-2,-2) in the
GDC and (-3,-3) in the Hatzis data, respectively) and only
consider models with main effects, as usual in this context.
The challenge with omics data in particular is the sur-
plus of variables p over the number of observations #
(n <« p problem). As a result, classical maximum-
likelihood methods fail, which is why omics data typically
call for dimension reduction, regularization approaches or
variable selection techniques. In this study we apply two
popular methods of regularization that eventually lead
to variable selection and provide interpretable prediction
models. We use a clinical model with variables based on
medical knowledge as a starting point to summarize clini-
cal information (i.e. a model of form Eq. (1) with 81 = ... =
By = 0). We then use this clinical model as an offset and
identify possible informative omics variables using regu-
larized Cox models with regularization only on the omics
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variables X, ..., X;, as explained in more detail in the next
paragraph.

In order to fully exploit the predictive value of each
level of clinical information, we start by fitting a Cox
regression on the clinical variables only. The resulting

estimates )?lof ) e )?qaf of the clinical coefficients enable us

to use the linear predictor 7% = )?fle + ...ﬁ;qu as
an offset in the omics variable selection procedure (see
“Selection of omics variables” section). This scenario cor-
responds to the strategy 2 discussed in Boulesteix and
Sauerbrei [21], where the regression coefficients y1, ..., v,

of Eq. (1) are fixed at the values ﬁff . ﬁ;f derived from
the clinical model. As a result, the coefficients g1, ..., B, are
estimated only on the residuals of the clinical prediction
model, whereas the estimation of y1, ..., y; is not affected
at all by the omics variables. Boulesteix and Sauerbrei [21]
state, however, that this strategy might be suboptimal in
terms of prediction accuracy and it also might be suscepti-
ble to potential bias caused by building the clinical model
on the same data that are used for the estimation of the
final predictive model. Although the omics part is fitted
on the residuals of the clinical model (and, therefore, the
information included in the data is not used twice), the
residuals’ variability depends on the clinical model fitting
process. Nonetheless, we think that this approach might
be able to reflect the added predictive value of omics
variables when compared to an already existing clinical
model.

We therefore build two Cox regression models for each
level of clinical information: a purely clinical model and
the so called combined model. Figure 1 illustrates the
model building process that leads to these models. A
notable exception is the level of no clinical information
at all, where there is evidently no clinical offset for the
variable selection of omics variables. Consequently, the
variable selection and model building strategy is applied
to the omics data without specifying an offset. A single
model with linear omics predictor n"”” = B1X1+...+ BsXs
is therefore obtained. We include this level in our study to
further emphasize the need for adequate consideration of
clinical variables.

Levels of clinical information

Based on years of experience in breast cancer research of
one of the authors and in particular the results of Winzer
et al. [11], we propose four models containing differing
amounts of clinical information, which are summarized in
Table 1. These models serve as reasonable starting points
for predicting the survival of breast cancer patients and
are loosely based on the Nottingham Prognostic Index but
adapted to the available data. The different levels of clin-
ical information are designed in such a manner that the
most accepted prognostic factor, nodal status, is included
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Training Data

Clinical Predictors
Zv, .oy Zy

Omics Predictors

Clinical Model
A Z 4+ 30 2,

Xl: cery st Xp
Offset Model
""""""" > | Selection

Combined Model
A7 4+ + 3! Z,
+0: X1+ .+ B X

Validation Data

L

Evaluation

Fig. 1 Model building process. This leads to the two predictive models which are evaluated on the validation data. Note that, depending on the
considered scenario, the clinical predictor may be zero (in case no clinical variables are considered), include clinical variables selected by general
knowledge, and/or include variables which are transformed as a result of MFP analysis

first followed by the number of positive nodes. In the fol-
lowing models we add tumor size and grade, the other two
components from the Nottingham Prognostic Index. The
prognostic role of estrogen receptor and age has been dis-
cussed for along time. Based on the results of Winzer et al.
[11] we add estrogen and finally we add the continuous
variable age, for which we determine the functional rela-
tionship with the fractional polynomials (FP) approach.
Consequently, the set of clinical variables Z,...,Z,, as
defined above, contains age transformed according to a
member of the FP family.

A detailed summary of the levels of clinical informa-
tion included in the modeling process can be found in
Table 1. The final model M4 contains information about
the nodal status (4 categories), tumor size (4 categories),
tumor grade (3 categories), estrogen receptor status
(dichotomous) and age (continuous). As a result, all

Table 1 Levels of clinical information

models of level M4 (purely clinical and combined) include
the five clinical variables Z,,o4aistauss -+ Zage Selected based
on previous clinical knowledge. While the variable selec-
tion procedures decide on which omics variables to
include in the combined model, there is no further
selection of clinical variables even if they show no sig-
nificant effect in the purely clinical model. Note that
the information on tumor grade is not available for
the GDC data set and could therefore not be included
in the modeling process which is indicated by square
brackets.

To contrast the results with the scenario where clini-
cal information is completely ignored, we also consider a
clinical null model (MO0) that does not contain any clinical
variables at all. This model is therefore handled somewhat
differently in the model building process (as described
above).

Model nodal status nodal status tumor size tumor grade estrogen receptor age
(NO/N+) (NO, N1, N2, N3) (TO_1,72,73,T4) (1,23) (yes/no) (FP)
MO - - - - - -
M1 X - - - - -
M2 - X X X] - -
M3 - X X [X] -
M4 - X X (X X

The square brackets indicate variables that are only available for the Hatzis data set
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Selection of omics variables

For each level of clinical information, we re-apply the
variable selection procedures in order to identify relevant
omics variables for distant relapse free survival. We turn
to well-known and widely used methods that are applica-
ble to Cox regression: the Least Absolute Shrinkage and
Selection Operator (LASSO) [22] and model based boost-
ing [23]. Each variable selection procedure can result in
a different set of selected omics variables that determines
the model based on the training data and provides the
corresponding predictor.

The LASSO is a penalized regression approach which
uses a L; penalty. The presence of this penalty allows the
handling of situations where n <« p and forces some
regression coefficients to be exactly 0, i.e. leads to variable
selection. We modify the standard Lagrange multiplier
version of the underlying optimization problem by includ-
ing the estimators of the clinical model as an offset, i.e. we
estimate B as

B = arg max{¢(3”, B) — 18I}, ©)

with £(p%,B) the partial log-likelihood of model (1)
where the parameters in the parameter vector y =
(Y1) - )/q)T are set to the estimates of the clinical model

)?of = ()?lof e ﬁ;f )T and only the parameter vector 8 =
(B eer ﬂp)T is to be estimated. A fundamental challenge
of the LASSO approach is choosing the regularization
parameter A € RT. Here, this is done by determining the
value of X that results in the minimal mean cross-validated
error based on the deviance on 10-fold cross-validation.

The boosting approach for regression is slightly differ-
ent, and can be seen as a forward stagewise procedure
which, starting from the null model, iteratively updates
the regression coefficients through a penalized estimator
(base-learner). The goal is to minimize a loss function, in
general the negative log-likelihood (in our case, i.e. for Cox
regression, the negative partial log-likelihood). In its com-
ponentwise version, each regression coefficient is updated
separately: when the algorithm is stopped sufficiently
early, the boosting approach assures variable selection
(the regression coefficients related to irrelevant variables
remain 0) and shrinkage (due to the updating process
stopping early). Importantly, the componentwise version
of boosting allows working in the » < p framework.
The stopping criterion is determined using 25-fold boot-
strap iterations. The aforementioned offset strategy can
be easily implemented within the boosting algorithm. It
is sufficient to start from the clinical model (as an offset)
instead of the null model [24].

Both variable selection approaches are readily available
and implemented in the R packages glmnet [25] and
mboost [26], respectively. The level of regularization is
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determined using the default option of the corresponding
implementation.

Model evaluation

Evaluating a survival prediction model is not straightfor-
ward. This can be seen from the wide range of literature
that has dealt with this issue (e.g. [27, 28]). Cook [29]
specifically points out that no single measure exists that
could serve as an “ideal method to evaluate the added
[predictive] value of new biomarkers. Several methods
evaluate different dimensions of performance and should
be considered [...]". Along the lines of De Bin et al. [6], we
restrict ourselves to the assessment of the predictive abil-
ity of a model via two of the most popular measures: the
concordance index (C-index) [30, 31] and the integrated
Brier Score (IBS) [32].

The C-index indicates the ability of a model to separate
the survival curves of groups with differing risks by quan-
tifying rank-correlation between predicted and observed
outcomes. The measure usually takes values between 0.5
and 1 which mark no discrimination and perfect separa-
tion of observations with different outcomes, respectively.
Here, we use an alternative version of the original C-index
by Harrell et al. [30] that takes censoring into account [31].
Note that for the clinical model MO, the C-index is not
defined as the model is not able to assign different risks to
any two subjects [31]. In these cases, we set the C-index to
the value 0.5 (corresponding to a random guess) to allow
comparisons.

The IBS, on the other hand, not only considers the dis-
crimination of a model but also the calibration, which is
the similarity between the actual and the predicted out-
comes [32]. The measure is based on the Brier score,
which builds on the predicted time-dependent survival
probability [33]. It should be stressed that while a higher
C-index is associated with a better discriminative abil-
ity, the lower the IBS the better the predictive ability of
a model. These measures are applied both to the training
and validation data sets. One has to keep in mind that an
evaluation on the training data set yields results that are
too optimistic and therefore cannot be trusted for model
comparison [34]. Both C-index and IBS are implemented
using the R package pec [35].

For each level of clinical information, we identify
the added predictive value of the omics variables by
subtracting the concordance index of the purely clini-
cal model from the respective index of the combined
model. Positive differences indicate an added predic-
tive value for the gene expression data, whereas neg-
ative differences imply that the purely clinical models
perform better. Due to the differing orientation of the
IBS (smaller values show better predictive ability) we
subtract the values of the combined models from the
purely clinical models to facilitate interpretation. In this
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way, we compare the added predictive value over dif-
ferent amounts of clinical data and different evaluation
criteria.

Furthermore, we do not want to base our conclusions
on one model building run only. In order to take the
high instability of omics data modeling into account, we
also conduct a simple subsampling analysis: First, a sub-
set of 80% of the observations in the training data are
randomly drawn without replacement. Then, the model
building process as described above is applied to this
subsample. The evaluation, however, is based on the full
validation data set to ensure comparability between sub-
samples. This procedure is repeated 100 times; thus, we
get an idea of the variability in added predictive values for
each level of clinical information.

Results
We restrict the discussion of the results to the analysis
of the boosting method as the results of the LASSO are
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very similar (see Additional file 1: Section B). The code
to reproduce the analysis is available in the online supple-
ment, Additional file 2. We first focus on the evaluation of
the IBS and the C-index on the Hatzis data, then on the GDC
data.

Hatzis data set

In this section, we summarize the main results of the eval-
uation on the validation data set derived from models
using the whole sample, as well as the subsampling scheme
of the training data. For both measures, IBS and C-index,
we find higher differences between the clinical and the
combined model for lower levels of clinical information.
When more and more clinical information is included in
the modeling process, the differences between the mod-
els seem to vanish. This is the case for models derived
from the whole, as well as from the subsampled, train-
ing data. We will now have a closer look at the different
results.

(@)

(b)

0.144
0.0151
4
3 : 3
= 0.134 © 0010
Te] o 4
2 K o
5 2
(%) a
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D 5124 -
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Fig. 2 Results on the validation part of Hatzis data. IBS values (a) for the clinical and the combined models and the differences (b) between the
models as evaluated on the validation data set. C-index values (€) for the clinical and the combined models and the differences (d) between the
models as evaluated on the validation data set. The gray squares indicate the values of the models developed on the whole training data set,
whereas the boxplots indicate the values obtained from the subsampling analysis
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IBS

Figure 2a shows the calculated IBS values for both the
models developed on the whole training data set (gray
diamonds) and the subsampling scheme (boxplots), the
lighter gray standing for the purely clinical models and
the darker shade for the combined models. In theory,
including more clinical information into the modeling
process should result in lower IBS values for both clin-
ical and combined models, indicating an improvement
of the predictive ability, given the clinical information
is indeed useful and does not lead to overfitting. How-
ever, we do not find such a straightforward relationship
for this data set. In fact, model MO seems to have a
slightly higher predictive ability than model M1 (i.e. over-
all lower IBS values). This suggests that the Kaplan-Meier
estimate derived on the training data can better predict
the survival times on the validation data than the model
that takes at least some clinical information into account.
Nevertheless, when only models M1 to M3 are considered,
the expected downwards trend can be discerned. Model
M4, on the other hand, shows signs of potential overfit-
ting as its IBS values are overall higher than most values
of the models M2 and M3. Additionally, the dispersion
of IBS values for model M4 is rather wide, which reflects
that the metric variable “age” (in its FP2 transformation)
renders the models quite flexible and thus susceptible to
overfitting. Overall, model M3 seems to have the high-
est predictive ability and yields lower IBS values than
the combined model MO, especially. This suggests that
the clinical information available for this data set can have a
positive influence on the predictive ability of survival
models.

It is also apparent from Fig. 2a that the IBS values
between the purely clinical and the combined model dif-
fer considerably for MO and M1. Figure 2b shows the
differences between the two types of models for each
level of clinical information. The difference (clinical model
minus combined model) was chosen in such a way that
positive values reflect an added predictive value of the
gene expression data. We see a pronounced added pre-
dictive value especially for the model with no clinical
information at all. This added predictive value, however,
seems to vanish as more and more clinical informa-
tion is included in the modeling process. Particularly, for
model M3 we do not see much of a difference between
the purely clinical model and the combined model. In
fact, starting with clinical model M2, the boosting algo-
rithm no longer selects any omics predictors on the
whole data set. Note that almost no difference is neg-
ative, which indicates that including omics variables in
the modeling process does not worsen the predictive
performance on independent data. We conclude that
the gene expression data have predictive value as mea-
sured by the IBS, yet the added value seems to strongly
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decrease with increasing levels of clinical information
included.

C-index

We now turn to the evaluation of the predictive ability
using the C-index. Figure 2c contains the calculated
C-index values for the validation data set of the Hatzis
data in the already familiar representation. Keep in mind
that there is one important difference: for the C-index,
higher values indicate an increase in predictive ability.
Note that the C-index, which measures the discrimina-
tion ability, can be interpreted as the probability that two
randomly drawn patients are correctly ordered by the
model in terms of survival time. Since the purely clinical
model M1 contains only a binary variable, the predictor
only takes two different values (depending whether the
binary variable equals 0 or 1). Thus, the C-index values
are identical for all resampling iterations provided the fit-
ted coefficient of the binary variable has the same sign.
Furthermore, the purely clinical model MO is set to have
a C-index of 0.5, corresponding to the predictive ability of
a random guess. Just as for the IBS, we do not find a sim-
ple (in this case increasing) relationship between the level
of clinical information and the overall levels of C-index
values. Figure 2c again shows a considerable discrepancy
between the purely clinical and combined models, for the
models with little clinical information. For higher levels of
clinical information, however, this difference diminishes
once more. Again, the model M4 shows signs of potential
overfitting compared to model M3 (albeit less pronounced
than for the IBS) as the C-index values tend to be lower.
A notable discrepancy between IBS and C-index is that
the IBS identifies the model M3 to have the highest pre-
dictive ability whereas the C-index suggests that a model
without adjusting for available clinical information yields
the best results on the validation data set. Although this
might seem contradictory, keep in mind that the IBS and
the C-index measure different aspects of the prediction
performance of a model.

In order to assess the added predictive value of the
omics data using the C-index, we look again at the dif-
ferences between the purely clinical and the combined
models for each level of clinical information. Note that we
consider the reverse difference (the C-index of the com-
bined model minus the C-index of the clinical model)
to facilitate comparisons between IBS and C-index. The
differences of the C-index (Fig. 2d) look quite similar to
Fig. 2b. We observe a considerable added predictive value
for levels of low clinical information, that, however, van-
ishes as we include more and more clinical variables into
the modeling process. Keep in mind that in this case the
models MO and M1, which incorporate omics data, also
yield an overall higher predictive ability compared to the
models with more clinical information. Considering that
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most differences are again positive, these results support
the conclusion that for the Hatzis data set the omics vari-
ables do not harm the predictive ability. Additional file 1:
Section C includes a table to summarize the results using
the (median) values of the measures IBS and C-index.

It is also possible to evaluate the predictive ability on
the training data. However, this is not recommended as
this approach only considers the apparent error (also
often denoted as training error in the literature) and thus
overestimates the predictive ability. When evaluating the
predictive ability using the training data, the Hatzis data
show a downwards trend for the IBS values only for the
purely clinical model (Fig. 3a). Incorporating more clini-
cal information does not seem to noticeably improve the
IBS score of the combined models. Consequently, we find
a decreasing added predictive value for higher levels of
clinical information on the training data (Fig. 3b). For the
C-index we find a similar pattern as on the validation data
but even more pronounced: by including more clinical
information, the combined models that incorporate the
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omics data drop in predictive ability (Fig. 3c). The differ-
ences between the clinical and the combined models as
given in Fig. 3d, thus show an apparent considerable added
predictive value of the omics data which decreases with
the amount of clinical information considered. Note that
when using the training data to validate the models we can
confirm that the poor performance of model M4 on the
validation data is due to overfitting since it performs well
on the training data for both the IBS and the C-index.

GDC data set

We will now turn our attention to the GDC data set. In
contrast to the Hatzis data set, we find that the differences
between the clinical and the combined models are gener-
ally low and that omics information has hardly any effect.
In the following, the results are discussed in more detail.

IBS
Figure 4a shows the IBS values calculated on the validation
data set. Here, we can identify two possible downwards
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trends (MO - M1 and M2 - M4) indicating a better pre-
dictive ability for higher levels of clinical information.
However, the increase in IBS values between the models
M1 and M2 is somewhat unexpected. In contrast to the
Hatzis data set, which shows signs of overfitting for mod-
els that include the variable age, model M4 now yields the
overall lowest IBS values. Another notable difference is
that the purely clinical and the combined models seem to
differ less, even for models with little clinical information.
The results suggest that on this data set, the level of
clinical information considered in the modeling process
has more influence on the predictive ability as measured
by the IBS than the inclusion of omics variables.

As a result, we find that the differences in IBS values
between the two types of models are on a smaller scale
than for the Hatzis data set (see Fig. 4b). Moreover, there is
a considerable number of negative differences suggesting
that incorporating omics data may worsen the predictive

ability of models. While all boxplots show a skewed dis-
tribution of the differences, it is interesting to note that
for low levels of clinical information the boxplots are
skewed to the right (meaning a broader range between
median and upper quartile), whereas the reverse is true
for more clinical information. As the median for all levels
of clinical information is zero, this suggests that models
with higher levels of clinical information more often suf-
fer when including omics data, while models with little
clinical information might benefit.

C-index

Just as for the IBS, the results with the C-index as eval-
uation measure suggest greater differences between the
levels of clinical information than between the clinical
and the combined models. Figure 4c shows a considerable
increase in C-index values for models that adjust for clin-
ical information compared to the model MO. It is worth
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noting that many values of the combined model for MO lie
at 0.5 or below, indicating a predictive ability of a random
guess or worse, respectively. This might be an indication
that the omics variables of this data set do not have much
predictive information to begin with. Further inclusion of
clinical information, however, does not seem to consider-
ably boost the predictive ability, which results in a more or
less steady level of C-index values for models M1 to M3.
Only by adding the variable age to the modeling process,
do we see a rise in C-index values. As a result, the evalu-
ation of both the IBS and C-index points to model M4 as
the model with the highest predictive ability on the GDC
data set.

Again, we look at the differences between the purely
clinical and the combined models for each level of clin-
ical information in order to assess the added predictive
value of the omics data. Once more, the differences for
this measure are on a considerably smaller scale than
for the Hatzis data set and O is always included in the
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inter-quartile range. From Fig. 4d we note that there are
also negative differences for the C-index values. This sup-
ports the results obtained from the IBS values, that the
incorporation of omics variables can lead to overfitting
and therefore a lower predictive ability. In addition, the
range of differences between the purely clinical and com-
bined models seems to decrease as more clinical infor-
mation is included in the modeling process. Especially
for model M4, the differences seem to vanish. This sug-
gests that, as more clinical information is included, the
incorporation of omics variables hardly makes a difference
in terms of prediction accuracy. Again, Additional file 1:
Section C includes a table to summarize these results on
the GDC data set.

When evaluation is performed using the training data,
the GDC data show a clear downwards trend for the IBS
values of both clinical and combined models, see Fig. 5a.
Just like on the validation data set, the clinical variables
seem to have a higher influence on the predictive ability of
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the model than the gene expression variables. As a result,
we find a rather constant added predictive value of the
omics variables for the GDC data (Fig. 5b). This reaffirms
that the predictive ability of the gene expressions in the
GDC data set, as measured by the IBS, might be rather
poor. The results for the C-index, as depicted in Fig. 5c,
show a similar picture than on the validation data. While
the values for the purely clinical models M1 to M3 seem
quite stable, model M4 results in an additional increase
in the C-index. For all models considered, however, incor-
porating omics information raises the apparent predictive
ability. The differences between the clinical and the com-
bined models show an apparent added predictive value of
the omics data that decreases with the amount of clini-
cal information considered (Fig. 5d). Note that we observe
negative differences when evaluating the C-index on the
training data, which further corroborates the supposition
of little predictive ability of the omics variables on the
GDC data set.

Model complexity

Figure 6 gives some further insight into the complexity of
the combined models for all the different levels of clini-
cal information. It is clear that on the Hatzis data (Fig. 6a)
both variable selection procedures choose a considerable
amount of omics variables for combined models with low
levels of clinical information. As the amount of clinical
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information increases, however, the number of selected
omics variables diminishes. In fact, starting with model
M2, no omics variables are selected for models developed
on the whole data set. We find that, for little clinical infor-
mation, the LASSO seems to include more omics variables
in the modeling process than model based boosting. On
the GDC data (Fig. 6b), however, a small number of omics
variables are selected, regardless of the amount of clinical
information. Here, boosting tends to select at least some
omics variables, while the LASSO would not include any
predictors other than the clinical information. Combining
these findings with the results of the model evaluation, we
find that including more clinical information can lead not
only to better predictive ability but also to sparser models,
in a sense that less omics predictors are identified by the
variable selection procedures.

Discussion

We investigate the added predictive value of gene expres-
sion data on two different breast cancer data sets. In cases
where we find a noticeable added predictive value, this
observation is limited to scenarios with little to no adjust-
ment for already existing clinical predictors. We conclude
that for the analyses conducted in this paper, it would
have been negligent to disregard the clinical information.
The models that show the highest predictive ability on
independent data sets include a fair amount of clinical
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information. At the same time, these models tend to
include fewer omics predictors. From a medical point of
view, this is somewhat desirable as the collection of omics
data is typically more complex than that of clinical data.

However, we want to point out that these results have
been obtained from merely two separate data sets, and
that in one of them omics data seem to have no prognos-
tic information. It is evident that we cannot sufficiently
generalize (or infer), from the two analyzed data sets, to
the large variety of omics data. See the recent discussion
of comparison studies with data sets playing the role of
observations drawn from a fictive population of data sets
[36]. Omics data sets are typically very different from one
another for various reasons (e.g., technical issues related
to the collection of the data, study design, applied pre-
processing steps), and yield very variable results due to
their small n/p ratio. In this analysis, we find that the
obtained results are highly susceptible to the researchers’
degrees of freedom, i.e. to the choices that a data ana-
lyst has to make regarding all steps of data analysis; see
an introduction to this problem in the seminal work by
Simmons et al. [37] and the recent discussion of its conse-
quences in high-dimensional settings [38]. The impact of
decisions regarding the analysis strategy can be illustrated
by contrasting our results with those of De Bin et al. [6].
Even though one of the analyzed data sets is identical in
both studies, there are (minor) discrepancies between the
results of the two studies due to differences in study design
and implementation details. For example, it is well-known
that the results of LASSO depend on the number of vari-
ables [39], so it is most likely that the pre-selection step
(not performed in De Bin et al. [6]) changes the results
noticeably. Other discrepancies may be related to the use
of a FP function to model age and to differences in the
standardization step when performing boosting/lasso (in
De Bin et al. [6] the standardization was performed on the
whole training set, while we standardized the variables on
the single subsamples).

Furthermore, we want to highlight the importance of
the preprocessing steps of omics data. With omics data
being such a rich and complex source of information -
but also of noise - one might be tempted to readjust and
adapt one’s data preprocessing strategy to produce the
most interesting or promising results for the analysis. This
phenomenon can be seen as just another example of data
dredging. To date, no clear and universal consensus has
been reached in the scientific community regarding how
to best preprocess gene expression data as used in this
study. We have therefore made the decision to use the
preprocessed form in which the data was made publicly
available and to abstain from further preprocessing steps
as much as possible. We hope that this approach assures
better comparability and generalization. We also want to
point out that both data sets have different underlying
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preprocessing schemes. Both supplied data sources give
detailed and precise information on all preprocessing
and normalization strategies applied to the data and we
would like to refer the interested reader to these extensive
resources.

Of course, we do not postulate that gene expression
cannot improve the prognostic ability of survival predic-
tion for breast cancer patients. After all, we have analyzed
only two data sets that are fairly small and heterogeneous.
However, we want to stress the importance of incorpo-
rating existing medical knowledge in the model building
process as this could possibly have a greater influence than
all the tweaking and fine tuning of the methods for the
omics data. This proposition is likely to generalize to other
fields of medical research and is not specific to the area of
breast cancer research.

For many diseases, the literature about prognostic
models is confusing and researchers have much freedom
to select “their” clinical model. In contrast, in breast can-
cer we have the NPI as a simple and well established
predictor and we agree with the statement from Winzer
et al. [11] that the NPI, or their derived extended version
NPIext, “can be used to summarize standard clinical infor-
mation, also serving as a benchmark to assess the added
value of new clinical or molecular markers in single stud-
ies as well as in the assessment of a marker or a genomic
signature in meta-analysis”.

Through our study we also demonstrated the use of
two simple well-known regression-based approaches—
LASSO and boosting—for this purpose. The idea is to
consider the clinical model (with any level of complex-
ity) as an offset when fitting the omics model, which
amounts to considering the residuals of the clinical model
as a dependent variable. One drawback of this approach
is that the clinical model does not adapt to informa-
tion provided by the omics data. In this study, how-
ever, the simplicity in implementation and comparability
outweigh this downside. For an extensive discussion of
different strategies to combine clinical and omics data
see, for example, [21]. Furthermore, we conducted the
same analyses on a large number of subsamples drawn
randomly from the original data, an increasingly used
approach which allows us to investigate the stability of
results [40, 41]. This procedure may be used in future
research when evaluating the added predictive value of
omics data.

Moreover, our study again emphasizes the need for
independent evaluation of models. When working with
complex omics data it is crucial not to lose track of
basic statistical modeling principles, in particular to care
about overfitting issues when reporting prediction accu-
racy. However, this recommendation is not specific to the
omics part of the predictor: we observe that the clin-
ical data can also be susceptible to overfitting. Thus,
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when incorporating clinical information into the analysis,
it remains of utmost importance to follow good statisti-
cal practice and evaluate the models on independent data
sets. Even though the message we want to convey with this
project might lead to more complex and time consuming
analyses, we assume that this will also lead to more reliable
research.

It would be of interest to apply the same principle of
the study design to more data sets and different fields of
medical research. In our experience it is unfortunately still
not common to publish omics data together with a decent
amount of well-documented curated clinical information.
Of course, there are a few noteworthy exceptions. We
hope that through our study we can emphasize the impor-
tance of clinical variables for survival prediction and high-
light the need for better scientific practice and publication
standards in this respect.

Conclusions

This study uses two exemplary data sets in the field of
survival prognosis for breast cancer patients to highlight
the importance of incorporating all available clinical infor-
mation in omics research. The apparent added predictive
value of omics data is susceptible to the degree to which
the clinical data is exploited in the analysis. We, there-
fore, advocate a better use of standard clinical data in
omics research. Simple and straightforward procedures
can be applied to appropriately consider common medical
knowledge.
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