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Even though the field of medical imaging advances, there are structures in the human

body that are barely assessible with classical image acquisition modalities. One example

are the three leaflets of the aortic valve due to their thin structure and high movement.

However, with an increasing accuracy of biomechanical simulation, for example of the

heart function, and extense computing capabilities available, concise knowledge of the

individual morphology of these structures could have a high impact on personalized

therapy and intervention planning as well as on clinical research. Thus, there is a high

demand to estimate the individual shape of inassessible structures given only information

on the geometry of the surrounding tissue. This leads to a domain adaptation problem,

where the domain gap could be very large while typically only small datasets are available.

Hence, classical approaches for domain adaptation are not capable of providing sufficient

predictions. In this work, we present a new framework for bridging this domain gap in the

scope of estimating anatomical shapes based on the surrounding tissue’s morphology.

Thus, we propose deep representation learning to not map from one image to another

but to predict a latent shape representation. We formalize this framework and present

two different approaches to solve the given problem. Furthermore, we perform a

proof-of-concept study for estimating the individual shape of the aortic valve leaflets

based on a volumetric ultrasound image of the aortic root. Therefore, we collect an

ex-vivo porcine data set consisting of both, ultrasound volume images as well as high-

resolution leaflet images, evaluate both approaches on it and perform an analysis of

the model’s hyperparameters. Our results show that using deep representation learning

and domain mapping between the identified latent spaces, a robust prediction of the

unknown leaflet shape only based on surrounding tissue information is possible, even in

limited data scenarios. The concept can be applied to a wide range of modeling tasks,

not only in the scope of heart modeling but also for all kinds of inassessible structures

within the human body.
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1. INTRODUCTION

Despite ongoing advancements of medical imaging techniques,
there are structures in the human body that are difficult to
visualize using typical medical imagingmodalities like Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), or
Ultrasound Imaging (US). However, the knowledge of these
structures’ shape is highly relevant for clinical decision making
and intervention, e.g., for biomechanical simulations or for

personalized prosthesis shaping. One example of such a structure
is the aortic valve. This valve consists of three thin leaflets
embedded in the aortic root that are pressed together during
diastole to prevent the blood in the aorta from flowing back
into the left ventricle (1). The geometry of the aortic valve,
i.e., the shape of its three leaflets, shows an enormous inter-

patient variability (2). As the aortic valve and root form a
complex biomechanical system with a lot of interaction between
different anatomical structures (3), this individual geometry is
crucial for the correct functionality of the valve. The valve’s

leaflets are extremely thin and flutter in the blood stream,
hence, imaging them using typical medical imaging modalities
is challenging. However, the knowledge about the individual
geometry of the aortic valve is necessary for many applications,
ranging from heart modeling and simulation to the development
of personalized prostheses. For both applications, the leaflet
shape should be assessed in an unpressurized state to avoid stress-
related deformations. Due to the high impact of the individual
valve geometry on a procedure’s outcome, a personalization of
this prosthesis would be beneficial but is out of scope as the
desired prosthesis shape is not assessible using typical in-vivo
imaging modalities. Hence, the synthesis of personalized leaflet
shapes presents a promising approach for solving this problem.

In an ex-vivo setting, it is possible to extract the aortic valve
leaflets and collect high-resolution images of them in a planar
state (4). Such a dataset could serve as a training set for a
generative model aiming on leaflet shape synthesis. An additional
advantage of this approach is that the synthesized leaflet shapes
are already in a planar shape, allowing for directly manufacturing
a prosthesis out of typical material, e.g., pericardium. However,
the shape synthesis should be tailored to the individual patient.
Thus, the generative model should receive a prior in the
form of information of relevant surrounding tissue to estimate
the patient’s individual leaflet shapes. In this case, the three-
dimensional (3D) shape of the aortic root might be a sufficient
prior as its geometry should be closely related to the shape
of the individual leaflet. Additionally, the aortic root is clearly
visible in ultrasound images acquired using transesophageal
echocardiography (TEE).

However, the domain gap between a 3D ultrasound image
of the aortic root where the leaflets are barely visible and an
RGB image of the leaflet shape in its planar state is huge. The
image’s appearance highly differs between both modalities and
even though the acquired organ is the same, both modalities
assess very different parts of the organ with only little overlap
across the modalities. Typical methods for bridging domain gaps
utilize adversarial training, i.e., generative adversarial networks
(GAN), to transfer an image from one domain to the other

one (5). However, GANs need vast amounts of training data
to converge that is typically not available in medical imaging.
Especially for structure shape synthesis based on surrounding
tissue, data collection is very time-consuming and requires extra
effort due to ex-vivo experiments. Additionally, GANs are prone
to sometimes synthesizing unrealistic images (6), which should
be avoided in the scope of medical decision support systems or
prosthesis manufacturing.

In this work, we present a robust approach for synthesizing
aortic valve leaflet shapes with the individual aortic root shape
as geometric prior based on shape encoding with autoencoders.
First, we collect and present a dataset containing 3D US images
of porcine aortic roots as well as 2D planar images of the
corresponding leaflets. Then, we formalize the given problem
and present different ways to solve it. We evaluate all these
approaches on the collected dataset, including a hyperparameter
analysis and a comparison of the different approaches.

1.1. Contribution of This Work
The contribution of this work is three-fold. First, to the best
of our knowledge, we present the first sufficiently large dataset
containing 3D aortic root shapes as well as high resolution images
of the corresponding valve leaflets. Second, we describe a novel
methodology for bridging big domain gaps that works robustly
even on small data. As this method is not limited to aortic valve
leaflet synthesis, our methodological contribution might be of
great interest in the medical image analysis community as well
as for general computer vision researchers. Third, our proposed
method can be directly applied in the scope of personalized
aortic valve modeling, for example for prosthesis development
or cardiac simulation, highlighting not only the methodological
contribution but also the clinical applicability and translational
value of this study.

2. RELATED WORK

In general, dealing with data from different domains is referred
to as domain adaptation (7). Lots of studies aimed at generalizing
across different domains (8–10). However, the typical focus is
dealing with input data from different domains, not to transfer
an image to another domain (11).

The problem of estimating an image based on another image
is called image-to-image translation and was introduced by
(5). Typically, generative adversarial networks (GAN) (12) are
utilized to learn a distribution over the target images, conditioned
by the input image (5). Such approaches have been applied to a
wide range of topics, for example semantic image synthesis (13),
image segmentation (14), style transfer (15), or image inpainting
(16). However, most of these approaches are used in settings with
a moderate domain gap while the general objects in the input
image remain unchanged in their shape.

Several studies focused on image-to-image-translation for
shape deformation, aiming on bridging a wider domain gap
(17). However, all these approaches were evaluated on large
datasets that are typically not available in clinical applications.
Even though, Liu et al. (18) proposed a few-shot approach for
image-to-image translation, the model has to be pre-trained on a
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large dataset that is relatively similar to the small one. Lin et al.
(19) present a framework based on a cascaded GAN structure
to learn image-to-image translation from one image pair only.
However, such a model is not capable of generating the full
variance of anatomies present across patients as it is trained to
fit one anatomy as closely as possible. In contrast, our approach
directly models this variance by encoding all observed anatomies
into latent space descriptions.

Several studies aimed at personalized modeling of the aortic
valve leaflet shape. Typically, this is either done by segmenting
the leaflets from CT data (20) or by deforming a template leaflet
shape according to the surrounding tissue anatomy extracted
from a CT (21). Both approaches incorporate a substantial
amount of expert knowledge as well as manual interaction.
Additionally, due to the deformation constraints, they are biased
toward predicting an average leaflet shape.

In a previous study, it could be shown that the aortic root
shape carries enough information to estimate specific features
of the valve leaflets, i.e., the commissure contour line (22).
Thus, a support vector regression model was trained based
on manually identified geometric features. Even though the
commissure line was predictable, the model was not capable
of estimating the full leaflet shape, i.e., synthesizing images of
the leaflets. Additionally, the evaluation was performed on a
small dataset and the ultrasound volumes were stitched together
and interpolated from several rotated 2D imaging planes. The
approach to use autoencoders to derive a sufficient latent space
containing the shape of aortic valve leaflets was presented in
Hagenah et al. (23). However, this study focused on shape
typification in latent space and no connection between the leaflet
shape and the aortic root geometry was identified.

3. MATERIALS AND METHODS

In this chapter, our methodology is presented. First, we present
the data collection procedure and the preprocessing applied to
the raw data (section 3.1). Then, we formalize the problem of
domain mapping for leaflet shape synthesis and present general
approaches to solve it (section 3.2). In sections 3.3 and 3.4,
our proposed methods for solving the problem are presented.
As there is a wide variety of interpretations of the term shape,
it is important to note that we interpret the shape of a leaflet
as its segmentation in a 2D image that shows the leaflet in a
spreaded state.

3.1. Data Collection
One big challenge of collecting a sufficiently large dataset is that
acquiring high-resolution images of the aortic valve leaflets is
barely possible in-vivo. One typical method is to extract the single
leaflets and photograph them in a planar shape (4, 23). Hence, we
followed an ex-vivo approach examining porcine hearts. The pig
heart’s anatomy and physiology are quite similar to the human
one making it a common animal model (24). This also holds
for the aortic valve apparatus as porcine valves are even used
as xenograft prostheses (25). As the pig hearts were bought at a
slaughterhouse, there are no ethical concerns raised by this study.
All in all, we collected data of 29 porcine hearts. From each of

FIGURE 1 | Experimental workflow. At first, the aortic root is extracted from

the porcine heart (A). After clamping the coronary arteries (B), an ultrasound

image of the aortic root can be acquired. Then, the root is cut vertically and the

leaflets can be extracted (C).

these hearts, we extracted and acquired a volumetric ultrasound
image of the aortic root, followed by an extraction of the leaflets
and their image acquisition. Therefore, the collected data consists
of 29 ultrasound volumes and photographs of the right-coronary,
left-coronary, and non-coronary leaflet, respectively, so 87 leaflet
images in total. Details on the setups, the workflow and data
preprocessing are described in the following paragraphs.

3.1.1. Aortic Root Imaging

Imaging of the aortic root mainly followed the method described
in Hagenah et al. (26). From the fresh pig heart, the aortic root
was extracted by exposing the aorta and then cutting the root
out of the left ventricle around the ventriculoarterial junction.
The coronary arteries were clamped, the root was attached
to a vertical tube within a water basin and, using a water
column within this tube, a constant, physiologically realistic
diastolic pressure was applied. Hence, the valve appeared in a
closed state. Figure 1 shows photographs of the extraction steps.
Within the water basin, an ultrasound probe for transesophageal
echocardiography (TEE) was installed such that the viewing
angle as well as the distance to the aortic root mimics a TEE
examination. Then, a volumetric ultrasound image of the root
was acquired. We used a GE Vivid E95 ultrasound system with
the 6VT-D probe. The size of the image was 84× 202× 84 with a
voxel size of 0.71× 0.49× 0.71mm.

From this ultrasound volume, we cropped out a subvolume
that shows the aortic root. Therefore, we manually identified the
commissure plane, i.e., the horizontal slice through the aortic
root that shows all three commissure points, i.e., the highest point
of the commissures. We defined this plane as the uppermost slice
of the subvolume and added the 31 layers below to it. Hence, the
subvolume covered 22.72mm of the aortic root’s height. Keeping
this dimension fixed, we cropped the other two dimensions,
i.e., horizontal slice images through the aortic root, to a size of
128 × 128 such that the aortic root was roughly in the image
center of the slice images. We performed zero padding around
the cropped root, i.e., areas of the new volume where no image
information was available were filled with a gray value of zero.
After rearrangement of the dimensions for convenience, the final
image size was 32× 128× 128.
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To get rid of imaging artifacts and background noise, we
applied thresholding, setting all gray values smaller or equal to
t = 80 to 0. Finally, the ultrasound images were scaled with the
factor 1

255 to lie in the range [0, 1].

3.1.2. Leaflet Imaging

After the acquisition of ultrasound images of the aortic root, the
three leaflets were extracted and assessed with high resolution,
following the method of Hagenah et al. (23). Thus, the root was
opened by a vertical cut in between the right-coronary and the
non-coronary sinus. Then, the single leaflets were cut off the
root wall and spread on a diffusive glass plate. Special care was
taken to preserve the leaflet’s original shape during extraction and
spreading. From below the plate, blue illumination (470 nm) was
applied as this wavelength is absorbed in the collagen structures
of the leaflets, leading to a high contrast. Then, a photograph was
taken from above using aCanon DS 6041 SLR camera with a fixed
exposure time of 1

6 s. The resolution of this image was 0.037 mm
pixel

.

The preprocessing of the leaflets also followed (23). The
individual leaflets were cropped out and the images were
transformed to grayscale (range: [0, 255]) and inverted. All
background pixels were set to 0 using thresholding withmanually
selected, individual thresholds for each leaflet to avoid holes in
the segmentation. All thresholds were in the range from 158
to 168. The leaflets were centered in the image by translating
the center of mass into the image’s mid point. Then, the leaflet
was aligned by rotating it around the image center so that the
commissure points were vertically aligned. The resulting images
were downsampled to a size of 128 × 64 pixels, leading to a
resolution of 0.34 mm

pixel
, and the grayscale values were scaled by the

factor 1
255 to lie in the range [0, 1]. Figure 2 shows an example raw

image from the dataset as well as one preprocessed leaflet. In the
scope of this study, we also made use of the leaflet image dataset
presented in Hagenah et al. (23), containing 168 images of leaflets
from 56 valves. Note that for these images, no corresponding
ultrasound volume is known and they are used as an auxiliary
dataset to reliably cover the full variety of leaflet shapes.

Furthermore, we assessed the distribution of leaflet shapes in
the collected dataset. Therefore, we identified the length, width
and area of each leaflet automatically. The length was measured
as the maximal leaflet spreading among all image columns and
the width as the maximum leaflet spreading among all image
rows. The area was assessed as the number of pixels that show a
part of the leaflet. The necessary segmentations were performed
using thresholding (t = 0.45, corresponding to a grayscale
value of 115). The resulting distribution of the dataset regarding
the length, width and area for each leaflet type is visualized
in Figure 3. Note that the distribution is visualized across all
available leaflets, i.e., the data collected in this study as well as the
auxiliary dataset. The high variance of leaflet shapes highlights
the need for personalized modeling.

3.2. Problem Formulation
As described in section 3.1, the data lies in two different spaces:
The volumetric ultrasound data space DUS ⊆ R

32×128×128 and
the leaflet data spacesDl

Lf
⊆ R

128×64, l ∈ {rc, lc, nc} for the right-

coronary, left-coronary and non-coronary leaflets, respectively.

In addition, we define a latent representation Z for each data
space, leading to the latent spaces ZUS ⊆ R

ml and ZLf ⊆ R
nl .

Note that we assume a shared latent space representation for
all three leaflet types, i.e., right-coronary, left-coronary and non-
coronary. The latent space descriptions can be derived from the
data space using representation learning on the corresponding
dataset, respectively. Figure 4 shows the different coordinate
spaces and their connection.

The general goal is to synthesize the unknown personalized
leaflet images Irc ∈ D

rc
Lf
, Ilc ∈ D

lc
Lf

and Inc ∈ D
nc
Lf

of one

patient based on the information contained in the patient’s
individual aortic root geometry given by V ∈ DUS. The
direct mapping from V to Irc, Ilc, and Inc is known as image-
to-image translation and typically requires a vast amount of
training data as it is usually solved using GANs (see section
2). First encoding V to its latent representation zUS and then
mapping to Irc, Ilc, and Inc is still interpreted as image-to-
image translation as the only difference is an unsupervised
pretraining of a subnetwork, which is a well-known technique
in deep learning on small data (27). By encoding Irc, Ilc, and
Inc to their latent representations zrc

Lf
, zlc

Lf
, znc

Lf
∈ ZLf using the

encoder qLf , the image to image translation problem can be

reformulated as a regression problem where zrc
Lf
, zlc

Lf
, and znc

Lf

should be estimated based on the ultrasound image data. If a
decoder pLf is known, the corresponding shape leaflet images can
be synthesized. Due to intense preprocessing of the leaflet image
data, ZLf mainly contains shape information. Hence, predicting
this latent information based on the volumetric ultrasound data
V is referred to as shape estimation. Another option is to not
only encode the leaflet images but also the ultrasound data. We
assume that there is a connection between both latent spaces
as they represent different parts and states of the same organ.
However, the difference between both latent spaces is the domain
gap between the data sets. One way to overcome this domain gap
is to train a machine learning model to map from ZUS to ZLf .
Adding the encoder qUS and the decoder pLf , a full path from
an ultrasound volume to synthesized leaflet images is given. This
approach is called domain mapping.

As described above, training an image-to-image translation
model on very limited data until convergence is a challenging
task. In addition, it is likely that an adversarial model learns the
full distribution of leaflets without taking the prior information
V into account, making the model fail in personalized shaping.
Hence, we propose to follow the other two approaches,
namely shape estimation and domain mapping. Details on
our implementation of these approaches are given in the
following sections.

3.3. Shape Estimation Approach
The goal of the shape estimation approach is to encode the
leaflet shape, given as an image, into a latent space description
and predict the individually optimal latent shape based on a
3D US image of the aortic root. Thus, the approach consists
of two models: the leaflet autoencoder for shape encoding and
the regression network for mapping from the US image to the
latent representation.
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FIGURE 2 | Leaflet image acquisition. (A) Raw photograph of illuminated plate with right-coronary, left-coronary, and non-coronary leaflet of one valve. (B)

Right-coronary leaflet after preprocessing.

For the leaflet autoencoder, we used a parameterized
architecture (28). The encoder qLf consists of nc convolutional
layers with nf filters, ReLU activation (29) and followed by
a 2 × 2 average pooling each. Following this convolutional
part, a flattening operation and fully connected layer (ReLU
activation) with as many neurons as outputs of the last pooling
layer connect to the bottleneck layer with nl neurons, featuring
linear activation. The decoder pLf follows the mirrored encoder
architecture utilizing upconvolutisonal and upsampling. The
autoencoder was trained using the adam optimizer, mean
squared error loss and a batch size of 32 for 100 epochs (29).

It is assumed that there is a shared latent space description
over all leaflet types, i.e., right-coronary, left-coronary and non-
coronary leaflets. Hence, the autoencoder is trained on all three
kinds of leaflets, leading to the datasetDLf = D

rc
Lf

∪ D
lc
Lf

∪ D
nc
Lf
.

To ensure a reliable representation, the data collected in Hagenah
et al. (23) was added to the training data as an auxiliary dataset
D
aux
Lf

, containing 168 images of leaflets from 56 valves.

For the regression network, we propose to use a 3D
convolutional neural network (CNN) with a VGG-like
architecture (30). Thus, the network consists of kb convolutional
blocks. Each of these blocks consists of kc 3D convolutional
layers with kf filters and ReLU activation. Each block is followed
by a 2 × 2 average pooling layer. Behind the last convolutional
block and a flattening operation, kd fully connected layers with
ReLU activation and kn neurons each are attached, followed by
the output layer with kl neurons and linear activation.

We assume that the prediction of the individual shapes of
the right-coronary, left-coronary, and non-coronary leaflets are
independent. Hence, three regression models are created and
trained, predicting one leaflet type each. The three models share
the same architecture but are trained independently.

3.3.1. Hyperparameter Analysis

To identify an optimal autoencoder architecture, i.e., an optimal
combination of the hyperparameters nc, nf , and nl, we assessed

multiple of these combinations regarding the model’s ability
to reconstruct the input image after propagating it through
the model in a grid-search approach. Thus, we performed 10-
fold Monte-Carlo crossvalidation (80% train, 20% test) on DLf

(28). After training the autoencoder on the training data, we
propagated the test data through the model and compared the
resulting reconstruction to the original image using root mean
square error (RMSE). As mentioned before, the auxiliary dataset
D
aux
Lf

was added to the training data within each fold. Table 1

shows all combinations of hyperparameters tested.
After identifying an optimal autoencoder architecture, the

hyperparameters of the regression network were optimized in a
similar way. For multiple combinations of the hyperprameters
kb, kc, kf , kd, and kn, the model’s performance on predicting
the latent shape representation of the corresponding leaflets
for unseen ultrasound images is assessed using a 10-fold
Monte Carlo crossvalidation (80% train, 20% test) on DUS and
DLf . Therefore, the autoencoder was trained on the training
leaflet images using the optimal hyperparameters. Then, all
training leaflet images were encoded to the latent space and
the three regression networks were trained to predict the latent
space representation of the respective leaflet based on the
corresponding 3D ultrasound image. The accuracy was assessed
by predicting the shape representation for the test US images,
reconstruct images of the predicted leaflet shapes using the
decoder and comparing these predicted images to the ground
truth leaflet images, once again using RMSE. Table 2 shows all
hyperparameter combinations assessed in this study.

3.3.2. Performance Analysis

After identifying optimal sets of hyperparameters for the
autoencoder and the regression networks, we analyzed the
performance of the shape estimation approach. Thus, we
trained the autoencoder and the three regression networks on
training data, using the respective optimal hyperparameters, and
predicted the leaflet shapes for unseen test data. We did this
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FIGURE 3 | Distribution of leaflet length (A), width (B), and area (C) with regard to the leaflet type. The white dot represents the median value.

using a 10-fold Monte Carlo crossvalidation (80% train, 20%
test) on DUS and DLf , while once again D

aux
Lf

was added to

the training data for training the autoencoder. We compared
the predicted leaflet images to their corresponding ground truth
using fourmetrics: Jaccard similarity, Hausdorff distance, average
symmetric contour distance (ASCD) and RMSE. The ASCD of
two sets of contour points X and Y is given as

ASCD(X,Y) =
ACD(X,Y)+ ACD(Y ,X)

2
(1)

with the average contour distance (ACD) defined as

ACD(X,Y) =

∑
x∈X miny∈Y d(x, y)

‖X‖
, (2)

where d(x, y) is the euclidian distance between the points x and y
(31).

To compute the Jaccard similarity, the Hausdorff distance and
the ASCD, the leaflets were segmented in the predicted images
utilizing thresholding (t = 0.45, corresponding to a grayscale
value of 115).

3.4. Domain Mapping Approach
The key idea of the domain mapping approach is to encode both,
the leaflet images as well as the volumetric US data, into a latent
space description, respectively, and train a model to map from
one latent space to the other. One important advantage is that
the dimensionality of the mapping is much smaller than in the
shape estimation approach. Hence, it is possible to learn this
mapping using classical machine learning methods like random
forests (RF) or multi-layer perceptrons (MLP) (28).

The autoencoder for the leaflet images is the same a presented
in section 3.3. To find a representation of the US data, we
propose a similar architecture but featuring 3D convolution and
pooling. Hence, the encoder qUS consists ofmc 3D convolutional
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FIGURE 4 | Sketch of our proposed approaches. As a direct mapping

between the two data domains, also called image to image translation, is

barely possible in the given scenario, we propose to encode the data to latent

space descriptions using representation learning. Then, the latent leaflet

description can be predicted based on the 3D ultrasound image, called shape

estimation, or based on the latent description of the ultrasound volume,

referred to as domain mapping.

TABLE 1 | Combinations of hyperparameters of the leaflet autoencoder assessed

during hyperparameter analysis.

Parameter Values

nc 3, 4, 5

nf 16, 32

nl 10, 20, 30

The optimal combination is marked in bold.

layers with mf filters, ReLU activation and followed by a 2 ×

2 × 2 average pooling each. Following this convolutional part, a
flattening operation and fully connected layer (ReLU activation)
with as many neurons as outputs of the last pooling layer
connect to the bottleneck layer with ml neurons, featuring linear
activation. Once again, the decoder pUS follows the mirrored
encoder architecture.

To find a mapping between the two latent spacesZUS andZLf ,
we evaluated a random forest with t decision trees and an MLP
with lh hidden layers and ln neurons in each hidden layer. For
the MLP, all hidden layers used ReLU activation, while the output
layer utilized linear activation.

3.4.1. Hyperparameter Analysis

The optimal hyperparameters of the US autoencoder were
identified in a similar way as for the leaflet autoencoder. Thus,
we performed 10-fold Monte Carlo crossvalidation (80% train,
20% test) onDUS and assessed the reconstruction accuracy on the
test data using RMSE. Table 3 shows all evaluated combinations
of hyperparameters.

For finding the mapping between the latent spaces, we
assessed different values of the hyperparameters for both learning
methods. For the random forest approach, we analyzed the values

TABLE 2 | Combinations of hyperparameters of the regression networks

assessed during hyperparameter analysis.

Parameter Values

kb 3, 4, 5

kc 1, 2, 3

kf 16, 32

kd 1, 2, 3

kn 50, 100, 200

The optimal combination is marked in bold.

TABLE 3 | Combinations of hyperparameters of the ultrasound autoencoder

assessed during hyperparameter analysis.

Parameter Values

mc 3, 4, 5

mf 16, 32

ml 20, 100, 200

The optimal combination is marked in bold.

FIGURE 5 | t-SNE embedding of the leaflet’s latent space with the encoded

dataset, divided into right-coronary (rc), left-coronary (lc), and non-coronary

(nc) leaflets. There is a substantial overlap between the shape representations

of the three leaflet types.

50, 100, 150, 200, 250 for t. For theMLP approach, we assessed the
values 1, 2, 3, 4, 5 for lh and 50, 100, 150, 200 for ln.

3.4.2. Performance Analysis

After identifying optimal sets of hyperparameters, we evaluated
the performance of the domain mapping approach on predicting
the individual leaflet shapes based on a 3D US image on
unseen data. Once again, we performed 10-fold Monte Carlo
crossvalidation (80% train, 20% test) on DUS and DLf . Thus, we
trained both autoencoders on the training data (including D

aux
Lf

for the leaflet autoencoder) and encoded the training samples
to their latent space representation. Then we trained models to
predict zLf for a given zUS. As described for the shape estimation
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FIGURE 6 | Exploration of the leaflet autoencoder’s latent space. The median shape was manipulated by adding an offset to a specific dimension. Then, an image of

this manipulated shape was synthesized. The resulting images are shown exemplarily for the first five dimensions of the latent space. Besides few outliers for extreme

offsets, all shapes are realistic. The influences of the individual dimensions on the leaflet shape are consistent and complementary and the shape changes are smooth.

approach, we propose to use three different models, one for
each leaflet type, i.e., right-coronary, left-coronary and non-
coronary. We evaluated RFs as well as MLPs for this regression,
each of them using the optimal hyperparameters. After training
the models, the test US images were encoded using qUS, the
latent leaflet representations were predicted and corresponding
images were synthesized using the decoder pLf . These predicted
leaflet images were compared to the ground truth using Jaccard
similarity, Hausdorff distance, ASCD and RMSE, once again
with a thresholding if necessary (t = 0.45, corresponding to a
grayscale value of 115).

4. RESULTS AND DISCUSSION

At first, the results of the hyperparameter analysis are presented,
followed by the performance analysis of both approaches.
Afterwards, the results are discussed in detail and their impact
on future research is given in an outlook paragraph.

4.1. Hyperparameter Analysis
As described above, all hyperparameters were optimized
regarding a minimal RMSE. For both autoencoders, an
architecture featuring three convolutional blocks with 16 filters

each and a latent dimension size of 20 was identified as optimal,
with an RMSE of 0.0617± 0.0106 for the leaflet autoencoder and
0.0678± 0.0200 for the ultrasound autoencoder.

For assessing the hyperparameters of the shape estimation
approach, we used the optimal leaflet autoencoder
hyperparameters and evaluated the parameter combinations of
the CNN mapping from the ultrasound volume space DUS to the
latent space of the leaflet ZLf . The optimal architecture features
four convolutional blocks with three convolutional layers using
16 filters each, followed by a single fully connected layer with 100
neurons. This indicates that feature extraction needs a certain
degree of abstraction, but the identified features are meaningful
and can be processed with a simple classification model, i.e., a
single fully connected layer. The RMSE between the true leaflet
samples in the latent space description and the predicted ones
reached with this architecture was 0.1331± 0.0392.

For the domain mapping approach, we used the previously
identified, optimal hyperparameters for both autoencoders and
evaluated the hyperparameter influence on the model mapping
from ZUS to Zleaflet . In the case of a Random Forest regression,
200 trees were found to perform best with an RMSE of 0.1365 ±
0.0278, once again measured in the leaflet’s latent space between
the predicted and the true latent representation of the leaflet.
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FIGURE 7 | Qualitative results for leaflet shape synthesis with a geometric prior, exemplarily given for four valves (columns) with their right-coronary (rc), left-coronary

(lc), and non-coronary (nc) leaflet, respectively. The rows show the ground truth, the reconstruction of the ground truth after propagating it through the whole

autoencoder, as well as the synthetic leaflets produced by the different approaches, i.e., shape estimation, domain mapping with random forests, and domain

mapping with multilayer perceptrons. All four valves were drawn from the test set of one fold of the crossvalidation.

Using an MLP for domain mapping, the optimal architecture
consisted of four hidden layers with 100 neurons each, reaching
an RMSE of 0.1386 ± 0.0409. All hyperparameters that were
identified to be optimal are marked in bold within Tables 1–3.

4.2. Latent Space Exploration
The proposed method heavily relies on the identification
of a sufficiently accurate representation of the leaflet shape.
Therefore, we performed an explorative analysis of the
consistency and smoothness of the leaflet autoencoder’s latent
space. Figure 5 visualizes the distribution of leaflet shapes in the
latent space as a t-SNE embedding (32). There is a substantial
overlap between the shape representation of right-coronary, left-
coronary and non-coronary leaflets. This finding validates our
approach of identifying a unified representation for all leaflets
DLf instead of distinct representations for each leaflet type.

To assess the identified leaflet representation regarding its
consistency and smoothness, we performed an exploration study
in the latent space of the leaflet autoencoder. Therefore, after
training the model, we encoded all leaflets from the dataset to the
latent space and computed the median shape over all samples.

Then, we manipulated the individual dimensions of this median
shape by adding an offset o ∈ {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5}
to its value in the current dimension. Then, an image of the
resulting manipulated shape was synthesized using the decoder
network. Thus, the influence of the individual dimensions of the
latent space, i.e., the identified abstract features, can be visualized
and assessed. We found that most of the synthesized shapes
were realistic with a small number of outliers for large offsets.
Furthermore, the influence of the dimensions on the leaflet shape
were consistent and complementary while the shape changes
were smooth. Figure 6 exemplarily shows the synthesized images
for the first five dimensions of the latent space. Based on these
results, we assume that the leaflet representation is sufficiently
consistent and smooth to use it for personalized shape synthesis.

4.3. Performance Analysis
To compare the different approaches for leaflet shape synthesis,
we evaluated all of them in a 10-fold crossvalidation. Figure 7
shows qualitative synthesis results exemplarily for four valves
drawn from a test set within one fold of the crossvalidation.
In general, all three synthesis methods are capable of providing
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FIGURE 8 | Distribution of the predicted leaflet shapes in comparison to the true distribution of the dataset DLf . The columns show the distribution of the length (left),

width (middle), and area (right) in dependency of the leaflet type for the true distribution given in the dataset (blue) and the distribution in the predicted test set

(orange). The rows correspond to the utilized prediction model, i.e., shape estimation (top), domain mapping with RF (middle), and domain mapping with MLP

(bottom). While shape estimation fails in predicting a variety of shapes, the MLP-based domain mapping approach outperforms the RF-based one regarding the

coverage of the full distribution of observed leaflet shapes.

realistic leaflet shapes in all cases. The shape estimation approach
shows vanishing inter-patient variance and tends to predict the
same leaflet for each individual. This is supported by the shape
variance of the predicted leaflets regarding their length, width,
and area compared to the ground truth distribution in the full
dataset (see Figure 8). While the domain mapping approach
with RF provides a fair variance, domain mapping with MLP
shows the highest variance and coverage of the true shape
distribution, highlighting its individualization performance. The
latter approach is capable of following individual shapes relatively
accurately in some cases, e.g., the right-coronary leaflet of valve
1, while it tends to overestimate the leaflet length. All presented
methods struggle in predicting atypical leaflets, e.g., the right-
coronary leaflet of valve 2.

Figure 9 shows the correlation between the length, width,
and area of the predicted leaflets and the corresponding ground
truth for each prediction method. It is clearly visible that the

shape estimation approach predicts a very limited number of
possible shapes and therefor does not provide satisfying results.
In contrast, both domain mapping approaches are capable of
predicting the leaflet length well, with some severe outliers in the
MLP-based approach. This highlights the necessity of encoding
the ultrasound images to a latent representation and visualizes
the higher robustness of the RF-based approach compared
to utilizing MLPs. Both domain-mapping approaches tend to
overestimate the size of smaller leaflets.

These findings are supported by a qualitative assessment
of the leaflet contour line prediction across all different
models. Figure 10 exemplarily shows the comparison of
predicted contour lines, together with the ground truth, for
three typical cases. If the leaflet’s shape is close to the
average one, all models provide a satisfying contour line
prediction. For leaflets that differ from the average shape,
the domain mapping approach with MLP typically shows the
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FIGURE 9 | Correlation between geometric features of the predicted leaflets and the corresponding ground truth. The columns show the predicted length (left), width

(middle), and area (right) in dependency of the true one, respectively. The assessed data points from the test set of one fold (blue) are scattered around the line

sketching optimal correlation (orange). The rows correspond to the utilized prediction model, i.e., shape estimation (top), domain mapping with RF (middle), and

domain mapping with MLP (bottom). While shape estimation only predicts a limited number of possible outputs, both domain mapping approaches approximate the

leaflet length sufficiently, with some severe outliers in the MLP-based approach. Both methods tend to overestimate the leaflet size. Please not the different scaling of

the y-axes.

best prediction regarding the contour line. However, for small
leaflets, all prediction models tend to overestimate the size of
the leaflet.

Table 4 shows the results of this study regarding Jaccard
similarity, Hausdorff distance, ASCD and RMSE, averaged over
all folds and all leaflet types. All three methods are capable
of achieving a Jaccard similarity of more than 80%, while the
shape estimation approach reaches the maximal value of around
83% coverage. This is most likely due to the high overlap
between the test leaflets and an average one. However, regarding
the contour line accuracy, the domain mapping approach
provides lower ASCD values, indicating that it outperforms
the shape estimation approach regarding finer details of the
leaflet shape. As the image resolution was 0.34 mm

pixel
, the domain

mapping with an MLP achieves an ASCD of 0.97mm and hence
is shown to predict the leaflet contour with sub-millimeter

accuracy, with a maximum distance, i.e., Hausdorff distance, of
2.39mm.

In Figure 11, the ASCD is given for each method regarding

the accuracy in predicting the different leaflet types, i.e., right-
coronary, left-coronary, and non-coronary. The results show that

all methods are by far better in predicting the non-coronary
leaflet shape than the other two leaflet shapes. This might be due

to the fact that the inter-patient shape variance is higher for the

right- and left-coronary leaflets than for the non-coronary one
(see Figure 3). Additionally, the shape estimation performs worse

in predicting the left-coronary leaflet than the right-coronary
one, while both accuracy values are comparable in the case
of domain mapping, regardless of the regression method. This
indicates a higher robustness of the latter approach by utilizing
meaningful features that describe the aortic root geometry that
were identified during representation learning.
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FIGURE 10 | Comparison of predicted leaflet contour lines for the different prediction models as well as the ground truth, exemplarily shown for three typical cases.

Typically, the domain mapping approach with MLP shows the best approximation (A). For leaflets that are close to the average shape, all models provide a satisfying

prediction (B). If the leaflet is small, all prediction models tend to overestimate the size of the leaflet (C). The contour lines are given in pixel coordinates.

4.4. Discussion and Outlook
Our results indicate that bridging the high domain gap between
volumetric ultrasound images of the aortic root and the
planar shape of its three leaflets is possible even on a small
amount of data. As the domain mapping with MLP provided
personalized synthetic shapes, the ultrasound image carries
enough information for this mapping when it is combined with a
proper leaflet representation. However, the relevant information
seems to be hidden within the ultrasound image and hard to
extract as the shape estimation approach was not capable of
providing adequately personalized synthetic images. By encoding
the images to a latent space representation, it is possible to
extract the relevant information, but still a relatively high level
of abstraction is needed to make use of it as the optimal MLP
featured four hidden layers. Accordingly, even though the RF
grasps some parts of this information, its performance lags
behind the MLP-based approach. Hence, in this scenario, the
domain mapping approach with MLP clearly outperformed the

other methods. However, this might be highly task-dependant
and it is conceivable that the shape estimation method might
perform better in tasks with lower-dimensional surrounding
tissue data, i.e., 2D images. A broader analysis of the performance
of the proposed methods for different applications and scenarios
could provide important insights.

There are only few studies aiming at personalized
aortic valve prosthesis shaping (33, 34). As the influence
of personalized leaflet shaping on cardiac simulations or
prosthesis performance has barely been studied, it is not
clear what quantitative value for the accuracy of leaflet
synthesis can be considered as clinically acceptable. The
methods proposed in this work present the first model to
personalize leaflet shapes in a data-driven way and hence open
up possibilities for the asssessment of the influence of individual
leaflet shaping, for example in a whole-heart simulation or,
after fabricating a personalized prosthesis, in a left-heart
simulator setup.
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FIGURE 11 | Accuracy of all methods regarding the predicted leaflet type, given as the ASCD (mean ± standard deviation) in pixels.

TABLE 4 | Accuracy of leaflet shape prediction for all methods, regarding RMSE, Jaccard similarity, Hausdorff distance, and ASCD.

Method RMSE Jaccard Hausdorff ASCD

Reconstruction of test data 0.0641± 0.0138 0.9463± 0.0123 2.86± 1.31 1.70± 7.53

Average leaflet 0.1440± 0.0449 0.8225± 0.0723 6.51± 3.99 3.19± 7.36

Shape estimation 0.1383 ± 0.0.0434 0.8310 ± 0.0679 6.10 ± 3.39 4.03± 9.87

Domain mapping with RF 0.1417± 0.0479 0.8230± 0.0737 6.45± 4.29 3.10± 6.81

Domain mapping with MLP 0.1482± 0.0482 0.8060± 0.0796 7.02± 4.46 2.84 ± 5.01

The values for the Hausdorff distance and the ASCD are given in pixels, while the resolution was 0.34 mm
pixel

. The table shows the mean value over all cross validation folds, averaged over

all three leaflet types, and the standard deviation. As a comparison, the reconstruction accuracy of the test leaflets after propagation through the autoencoder is given, along with the

prediction accuracy if the prediction is always the average leaflet shape.

In this study, we only aimed on predicting the leaflets’ shapes.
However, regarding personalized biomechanical modeling or
prosthesis development, a prediction of the leaflet’s inner
structure, i.e., the distribution of the prominent collagen
fibers, would also be of high interest. The autoencoder used
in this study smooths the inner structure and focuses on
representing the general shape, which is desired in the scope
of this work. However, if the leaflet representation could
be extended to also contain information about the inner
structure, the approaches described here would be capable of
predicting the full leaflet structure, i.e., the shape and the
inner structure. This once again highlights the flexibility of the
presented framework.

It is important to note that in this study, all examined
aortic roots and valves can be assumed to be healthy. In
several clinical scenarios, this is not a limitation, e.g., for
personalized aortic valve prosthesis shaping for patients suffering
from aortic valve stenosis. In this case, the aortic root shape
should not be altered significantly and hence, a prediction should
still be possible. In contrast, there are clinical applications of

the proposed framework that demand for predicting healthy
leaflet shapes from pathological priors as well. This arises for
patients suffering from morphological changes of the aortic root,
e.g., due to an aneurysm. Therefore, the proposed framework
should be evaluated in a setting where the geometric prior
corresponds to a pathological state in the scope of a future
study. As an alternative, it is possible to estimate the individual
healthy aortic root shape based on the pathological one
(35). The integration of this estimation step into the clinical
pipeline might be a promising approach to apply the proposed
framework also in scenarios where only a pathological prior can
be assessed.

The output of the proposed method is a planar shape of the
leaflet. Regarding the fabrication of personalized aortic valve
prostheses, this is actually desirable since the planar shape
can serve as a stencil to cut the leaflet out of the fabrication
material. If the material mimics the leaflet’s biomechanical
properties sufficiently, the in-vivo shape under realistic prestrains
will mimic the original healthy leaflets shape. However, it
should be notes that in some application, the 3D curved
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shape of the leaflets under prestrains is desired, e.g., for
when the fabrication material does not sufficiently reproduce
the complex biomechanics or in digital twin scenarios. In
these cases, a prediction of the planar, ex-vivo state without
external strain is not sufficient. In contrast, Xu et al. (33)
or Hsu et al. (34) aimed at directly modeling the 3D curved
shape of the leaflet within the aortic root. But it should be
noted that the presented framework is very flexible and can
easily be adapted to other imaging modalities. Hence, if it is
possible to collect image data of the leaflets in-vivo with a
sufficient resolution, the framework could be used to predict
this curved in-vivo shape as well. The only difference to
the presented approach would be a different input for the
leaflet autoencoder, the mapping approaches stay the same.
This highlights the flexibility of the proposed framework and
opens up new possibilities beyond personalized heart valve
prosthesis shaping.

5. CONCLUSION

In this work, we presented a new framework to synthesize the
shape of unknown anatomical structures based on the geometry
of surrounding tissue by solving a domain mapping problem.We
formalized the problem and proposed two general approaches to
solve it. In an evaluation of this framework for the application
of synthesizing aortic valve leaflet shapes based on volumetric
ultrasound images of the aortic root, we could show that our
method is capable of reliably synthesizing realistic leaflet shapes
and that the geometric prior carries enough information to
synthesize personalized leaflet shapes when both domains are
encoded into a latent space and an MLP is used to learn a
mapping between both latent spaces. This proof-of-concept study
does not only open up plenty of applications of personalized
aortic valve modeling but also presents a transferable approach
for anatomical shape synthesis with geometric prior in general.
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