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Abstract

Cancer is a complex disease caused by multiple types of interactions. To simplify and nor-

malize the assessment of drug effects, spheroid microenvironments have been utilized.

Research models that involve agent measurement with the examination of clonogenic sur-

vival by monitoring culture process with image analysis have been developed for spheroid-

based screening. Meanwhile, computer simulations using various models have enabled bet-

ter predictions for phenomena in cancer. However, user-based parameters that are specific

to a researcher’s own experimental conditions must be inputted. In order to bridge the gap

between experimental and simulated conditions, we have developed an in silico analysis

method with virtual three-dimensional embodiment computed using the researcher’s own

samples. The present work focused on HeLa spheroid growth in soft agar culture, with

spheroids being modeled in silico based on time-lapse images capturing spheroid growth.

The spheroids in silico were optimized by adjusting the growth curves to those obtained

from time-lapse images of spheroids and were then assigned virtual inner proliferative activ-

ity by using generations assigned to each cellular particle. The ratio and distribution of the

virtual inner proliferative activities were confirmed to be similar to the proliferation zone ratio

and histochemical profiles of HeLa spheroids, which were also consistent with those identi-

fied in an earlier study. We validated that time-lapse images of HeLa spheroids provided vir-

tual inner proliferative activity for spheroids in vitro. The present work has achieved the first

step toward an in silico analysis method using computational simulation based on a

researcher’s own samples, helping to bridge the gap between experiment and simulation.
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Introduction

Cancer research models for screening have included the creation of spheroid microenviron-

ments to test drug effects [1–3]. In one of the earlier studies using a spheroid-based screen,

Friedrich et al. [4] pointed out that using spheroid integrity and volume monitoring through

phase-contrast imaging improved agent measurement when accompanied by the security of

clonogenic survival. Various researchers have continued under this concept and expanded it

by changing spheroid culture systems, drugs tested, and microscopes used [5–7]. One of the

studies showed that spheroid cells were viable, with altered patterns of metabolism owing to

lactate dehydrogenase activity and glucose utilization [8].

Moreover, image-based monitoring of cell aggregation and microspheroid growth allows

for the study of morphological changes during spheroid growth. Such techniques have the

potential to provide an important source of information regarding not only the self-assembly

of spheroids but also spheroid use for a wide range of biofabrication methodologies in tissue

engineering. The methodology used to monitor the aggregation of individual spheroids was

proposed though image analysis of microscopy data [9, 10].

Cancer is a complex disease caused by multiple types of interactions across diverse physical,

temporal, and biological scales. Numerous studies on cancer have extended the context of

molecular, cellular, and physiological phenomena [11]. For the integration of individual stud-

ies, computational models lend themselves to understanding and predicting complicated phe-

nomena. These models often involve three aspects. One relates to statistical cancer models at

the genomic, transcriptomic, and biomolecular pathway levels. The second aspect often

involves statistically inferred network models that include mechanistic bases for signaling

(including metabolism), and the third is a continuum and agent-based model of cancer cell

populations and tumor progression at longer timescales [12]. Computational models of metab-

olism, growth, proliferation, and death of single cells are described quantitatively using equa-

tions that describe biochemical and mechanical cell–cell and cell–environment interactions

and their interrelations [13]. In particular, growth and organization processes are demon-

strated using diverse cell-based simulations [14]. In addition, the interactions among many

cells have been simulated mechanically and biochemically in relation to their microenviron-

ment in multicellular simulations [15, 16]. These studies have been performed using statisti-

cally determined parameters based on bioassays. However, the simulations are several steps

removed from a researcher’s own experiments, as they are performed only on formulated

objects. Even if the objects can be adjusted based on parameters, barriers to adjusting the

parameters to precisely match specific experimental conditions will exist.

We aimed to bridge this gap between spheroid data in vitro and in silico and to investigate

apparently living spheroids including virtual inner activity. For this purpose, we have devel-

oped an in silico analysis method with virtual three-dimensional (3D) embodiment computed

using a researcher’s own samples. In the present work focusing on individual HeLa spheroid

growth in soft agar culture, spheroids were analyzed in silico by matching growth conditions

with those observed in microscopy time-lapse images. The agarose format was selected because

it is a scalable technique that provides uniformly sized spheroids [10] and allows for real-time

monitoring of the cell aggregation process [17]. Preceding studies [18, 19] illustrated that

spheroids presented with the composition of a central necrotic core region surrounded by a

zone of quiescent viable cells, followed by an outer layer of actively proliferating cells. In other

words, spheroids exhibited a gradient descent toward the center for nutrients, oxygen, and

metabolites, which led to the observed composition. In silico analysis performed 3D computa-

tional replication of spheroids whose growth curves were adjusted to those obtained from

time-lapse images of spheroid growth to optimize these factors. Furthermore, the in silico
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analysis assigned each cellular particle virtual inner proliferative activity, which corresponded

to whether it was a proliferating cell in vitro. We then validated that time-lapse images of HeLa

spheroids provided virtual inner proliferative activity that replicated the composition in spher-

oids in vitro.

In the present work, we achieved the first step toward an in silico analysis method using 3D

computational simulation based on a researcher’s own samples. This research provides a foun-

dation to develop drug testing affording sensitivity with regard to both the appearance and vir-

tual inner activity of living spheroids along the time course from drug addition. Moreover,

these highly sensitive readouts are complementary to conventional agent measurements

obtained following testing, thereby permitting the extraction of more detailed information

from the drug test.

Materials and methods

The work was designed as a framework for bridging the gap between spheroid data in vitro
and in silico using simulations based on experimental data (Fig 1). Virtual inner proliferative

activity was examined when growth curves of spheroids in silico were in accordance with those

of the spheroids in vitro.

In vitro spheroid analysis

The human cervical cancer cell line HeLa was obtained from Dr. Masao Kawakita at The

Tokyo Metropolitan Institute of Medical Science (Rinshoken) (Tokyo, Japan) [20] on October

7, 2009. The cells were grown in soft agar in accordance with an assay protocol, a detailed

description of which is shown in S1 Table. HeLa cells in 0.35% agarose medium were seeded

on a solid layer of 0.7% agarose medium in a 6-well culture plate and incubated for 1 day. Seed-

ing density was kept sufficiently low (500 cells/well) to prevent spheroids from touching each

other to analyze the individual growth process of each spheroid via time-lapse imaging of its

Fig 1. Framework to bridge between spheroids in vitro and those in silico.

https://doi.org/10.1371/journal.pone.0231774.g001
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growth. After 5 mL/well of the growth medium was added, the cells were incubated for 14 days

from day 2–15 in a BioStation CT (Nikon, Tokyo, Japan) composed of a transport unit for

plate transportation within the incubation area and an observation unit for automated imag-

ing. During this period, the transport unit individually conveys the plates from the storage

rack to the observation stage in accordance with configured schedules. Spheroid images were

captured automatically in each well at 3 h intervals with a phase-contrast microscope at 10×
magnification at each time point. Fig 2 shows an example of time-lapse spheroid growth.

Growth curves of spheroids in vitro
A spheroid appeared over time in each captured image of 1000 × 1000 pixels with 256 gray lev-

els. The spheroid was segmented using ImageJ by a conventional step consisting of binariza-

tion and morphological processing. Thresholding by pixel value was used to convert each

image to binary, one indicating whether the pixel belonged to the spheroid. The morphological

processing was used to adjust the binary image to cover the entire spheroid and remove back-

ground noise. As a result, the binary image showed one single region in which pixels all

belonged to the spheroid. Subsequently, the region was replaced as a conceptual circle with the

same area as the segmented region. The present work assumed that a spheroid was a sphere

based on the fact that spheroids frequently appear as spheres in scanning electron microscopy

Fig 2. Time-lapse microscopy images of the growing process of a spheroid. The growing process was captured for

each spheroid as time-lapse images by positioning the place that a cell was recognized at the center of the frame in the

one-cell stage. A series of time-lapse images was chosen for the same spheroid in vitro, such that the spheroid was in

focus over time, and its entire body was completely visible in the image and appeared alone without contacting with its

surroundings over time. The scale bar is 100 μm.

https://doi.org/10.1371/journal.pone.0231774.g002
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[21]. The size of a single cell was determined in the same manner from the region segmented

into images of the one- or two-cell stage.

Using images, Martin et al. demonstrated that an aggregate consisted of cells for which the

count was in the range between the lower and upper bounds calculated by 3D simple cubic lat-

tice packing and face-centered cubic lattice packing, respectively [22]. A spheroid was assumed

to consist of cellular spheres packed with a face-centered cubic lattice inside. The number of

cells was estimated as the number of the single cells packed with face-centered cubic lattice

structure in the spheroid sphere approximated by the replaced circles. Consequently, a growth

curve of spheroids in vitro could be obtained by plotting this estimated number of cells.

In silico spheroid analysis

The in silico spheroid analysis involved a spheroid growth simulation based on the lattice-free

particle model, which is a numerical simulation method to evaluate the physical quantities of a

particle at a calculation point. A spheroid in silico consisted of cellular particles that moved

without lattice restriction while maintaining a tiny predefined distance, which was relative to

the cell diameter. The size of an individual cellular particle was set as 10 μm, using the average

size of a typical human erythrocyte (7.2 μm) as a guide [23]. This is reasonable for a relative

spatiotemporal transformation between in vitro and in silico information because cells gener-

ally have bodies that are 10–30 μm in size [24].

The simulated growth sources, which consisted of nutrients and oxygen, were delivered to

the outer cellular particles directly, diffused toward the center, and then supplied to cellular

particles inside. A cellular particle divided in accordance with its cell cycle was controlled by

the supplied growth sources and its environment.

Models for spheroids in silico
A spheroid in silico consisted of cellular particles with heterogeneous structure comprising

simple cubic structure and hexagonal close-packed structure. This structure was sustained by

attractive and repulsive forces between two cellular particles. The force between the particles is

determined as follows:

F ¼ k 1 �
r

R � r0

� �

1 �
r

G � r0

� �

; ð1Þ

where k is a constant, R is a repulsion constant, G is an attraction constant, r is the distance

between the particles, and r0 is the base distance. The constants were derived from the packing

density in a hexagonal close-packed structure and provided balance for attractive and repulsive

forces.

Cell population growth in vitro depends, in a general sense, on the growth sources that are

available in the culture medium. Focusing on individual spheroid growth, the growth curves of

spheroids in vitro allowed us to estimate decreases in growth sources locally (i.e. locally around

the spheroids) during incubation. Fig 3 shows the relationship between cell population growth

(Fig 3A) and changes in the growth source at the local level (Fig 3B). The residual growth

source decrease depends on increases in the cell population. The residual growth sources at

the local level were estimated as follows: let Ct be the consumed growth sources, namely, the

sum of the growth sources supplied to each cellular particle at time t. An index Rt of residual
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growth sources is calculated as follows:

Rt ¼ 1 �

Xt� 1

k¼0

Ck

Q0

; ð2Þ

where Q0 is the initial amount of growth sources. After growth sources were supplied to the

outer cellular particles, the residual growth sources diffused into the center of the spheroid.

The residual growth sources were conveyed to cellular particles inside. However, it is impossi-

ble to determine the exact amount of the growth sources supplied and consumed in each

Fig 3. Residual growth source estimated from the growth curve. (A) A growth curve was estimated from the time-

lapse spheroid images, drawn using a dashed line. (B) Growth sources were consumed corresponding to the

approximated growth curve. The residual growth sources at the local level are the reverse of the consumed sources

because no replenishment was carried out during incubation.

https://doi.org/10.1371/journal.pone.0231774.g003
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cellular particle. Assuming that the consumption was fixed, the residual growth sources dif-

fused to a cellular particle according to the following formula:

@Rt
@t
¼ D

@2Rt
@r2

� �

� a; ð3Þ

where r is the distance between the particles, D is the diffusion coefficient, and α is the particle

consumption. This was repeated for inner cellular particles up to 200 μm from the outer sur-

face of the spheroid because it has been reported that oxygen is conveyed up to approximately

this distance from blood vessels [25].

A basic outline of the cell cycle was determined using the Monod equation, which relates

population growth rate to nutrients [26]. In addition, the cellular environment of the particles

was introduced as a mechanism of cell cycle control. The environment was defined as the den-

sity of a cellular particle, which was the number of cellular particles in its surroundings. The

maximum density corresponds to the kissing number in geometry problems [27], specifically

12 in three dimensions, which is the maximal number of cells that each cell can touch without

overlapping in the hexagonal close-packed structure. The density decreases toward the spher-

oid surface. Mobility was also introduced as a ratio of distance between the particle and the

spheroid center to the spheroid radius. The mobility increases toward the surface.

The cell cycle Tz for a cellular particle z is determined as follows:

TZ ¼
1

m
¼

1

mmaxð1þ Kc2Þ
1þ

Kc
NðZÞ

� �2
 !

1þ DZ
Ke
PZ

� �

; ð4Þ

where μmax is the specific maximum growth rate, Kc is a relaxation coefficient for growth

sources, N(z) is the amount of growth sources conveyed to z, Dz is the density, Ke is a relaxa-

tion coefficient for the environment, and Pz is the mobility. The specific maximum growth

rate was calculated by the minimum cell cycle time measured in the images in the first stage.

The cell cycle was practically controlled by the two relaxation coefficients.

Simulation for spheroid growth

Simulation was performed using a program running on a PC (CPU: Intel CoreTM i7 3.33 GHz;

RAM: 24.0 GB). The program was developed in FORTRAN by the authors. The simulation

started on day 4 to avoid an initial fluctuation in the growth curve as shown in Fig 3A. Table 1

summarizes the parameter values predefined in the execution. Growth source transport, cell

division, and cell movement were simulated in 1 min steps. If a cellular particle divided, the

original cell was replaced by its daughter particles. Nevertheless, the spheroid maintained a

Table 1. Parameters for the simulation.

Parameter Value

Time interval 1 min

Total time User settings

Cellular particle diameter 10 μm

Forces between cellular particles Constant k = 0.005

Repulsion constant R = 1.106

Attraction constant G = 1.5

Growth sources diffusion Maximum diffusion distance 200 μm

Diffusion coefficient with fixed particle consumption α/D = 20

Minimum cell cycle time User settings

https://doi.org/10.1371/journal.pone.0231774.t001
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mostly hexagonal close-packed structure because cellular particles surrounding the daughter

particles moved so as to keep the forces well balanced. A generation number was assigned to

each daughter particle, which signified how many cell divisions preceded their production.

Only two parameters, total time and minimum cell cycle time, were specified by users.

Parameters for forces were fixed theoretically based on the hexagonal close-packed structure.

With regard to the diffusion of the growth sources, the parameters were fixed based on prelim-

inary examinations assuming that no growth sources were beyond 200 μm away. The total

time was set as 20 days and the minimum cell cycle time was 18 h in the present work.

Bridge between spheroids in vitro and in silico
A bridge was used to adjust the in silico growth curves to those in vitro toward integration of

the experiment and the simulation. This is equivalent to determining the relaxation coeffi-

cients in the cell cycle calculation. To do this systematically, an error function was introduced

as follows:

f ðKc;KeÞ ¼
X

t

Log eðtÞ � Log nðtÞ
Log eðtÞ

� �2

; ð5Þ

where e(t) is the number of cells estimated from an image at time t, and n(t) is the number of

cellular particles in the spheroid in silico at time t for relaxation coefficients Kc and Ke. Opti-

mizing the relaxation coefficients corresponded to finding values for Kc and Ke that locally

minimized the error on a plane with the Kc and Ke axes.

Spheroids in vitro varied in size and shape despite being incubated under the same condi-

tions. The bridge provided a feature space of spheroids for visualization of the variations.

Assuming that the growth curve of a spheroid in vitro was related to this variation, the parame-

ters used in approximating the growth curves as a mathematical function could be used to

characterize the spheroids according to a solid statistical foundation with principal component

analysis (PCA) in machine learning [28].

A growth curve was approximated using the generalized logistic curve with five parameters,

known as a Richard’s curve [29] as follows:

y ¼ Aþ
C

ð1þ Te� Bðx� MÞÞ
1
T
; ð6Þ

where A is the lower asymptote, B is the growth rate, C is the upper asymptote,M is the time of

maximum growth, and T is a parameter that fixes the inflection point. Parameters B andM are

involved in the exponential phase in sigmoid graphs of the population growth curve, and espe-

cially with the transitional phase toward the plateau phase.

Optimization by nonlinear least squares (Solver tool, Excel1; Microsoft Corp., Redmond,

WA, USA) provided a five-dimensional vector associated with the growth curve. As for each

parameter, centering and scaling were applied to value sets of spheroids in vitro to normalize

the value distribution. Characterization of the growth curves was performed by PCA, using a

program written in C by the authors.

Results

Growth features in spheroids in vitro
By applying PCA to five-dimensional vectors associated with growth curves obtained from 18

spheroids in vitro, a feature plane was defined as the eigenspace. These spheroids were chosen

from multiple wells in different plates, because they were in focus in the series of time-lapse
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images, and each entire body was completely visible and alone, without contact with its sur-

roundings, during the time of analysis. In Fig 4A, the factor-loading plot shows correlations

between parameters of the Richards’ curve and each quadrant of the feature plane. Fig 4B

shows the variation in growth on the feature plane and the relationships between the quadrants

and the graphs of the Richard’s curves using (1)–(4). Point (2) is representative of the second

quadrant and is the closest to the origin. Points (1), (3), and (4) are typical points that are sur-

rounded by many other points in the first, third, and fourth quadrants, respectively. The tran-

sitional phase was clearest at (2) on the second quadrant, followed by (1) on the first, (3) on the

third, and then (4) on the fourth. The feature plane lends itself to the identification of variation

in the spheroids.

Growth features in corresponding spheroids in silico
The bridge took approximately 5 h 20 min to optimize a spheroid in silico on day 15, with

relaxation coefficients taken into account in the cell cycle calculation. The optimization was

performed by changing values approximately 15 times for each spheroid.

Fig 4. Approximated growth curves plotted on the feature plane. (A) Principal components were selected in order of largest contribution to the eigenvalues. The

contribution rate was 56.57% for the first principal component (C1) and 40.02% for the second (C2), with the accumulated rate of 96.59%. The eigenvectors

corresponding to these components formed a feature plane as the eigenspace. The factor-loading plot demonstrates that Richard’s curve parameters correlate C and T, B

and M, and A with the first, second, and third quadrants of the plane, respectively. The fourth represents no correlation with the parameters. (B) Each approximated

growth curve is plotted as a point on the feature plane by C1 and C2. The origin of the plane is the average of the growth curves because of normalization with centering

among each parameter. For points (1)–(4), the Richards’ curves generated by parameters of the points are illustrated with the same number.

https://doi.org/10.1371/journal.pone.0231774.g004
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Fig 5 shows the growth curves obtained from estimation and simulation for the representa-

tive points. The bridge enabled the relaxation coefficients to adjust the simulated growth

curves to the estimated ones for spheroids (1)–(3). The adjustment appeared insufficient to fit

two growth curves of spheroid (4) during the transitional phase. However, the final number of

cells was almost the same in both growth curves. In addition, Fig 5 shows that the sooner the

growth curve reaches the plateau phase, the more quickly the cell population grows. For the

feature plane, the cell population grows the quickest in descending order of the second, first,

third, and fourth quadrants.

Verification of spheroids in silico
Each spheroid in silico on day 15 consisted of cellular particles bounded by a simple cubic

structure (lower) and a hexagonal close-packed structure (upper) (Table 2). As an example of

spheroids in silico, Fig 6A illustrates the cell density profiles of the spheroid in silico (2) in Fig

5. The diameter is given in Table 2. The cell density can be seen to have maintained a mostly

hexagonal close-packed structure. The cell density was approximately 12 and decreased toward

the surface. In addition, as Fig 6B shows, the period until day 10, in which the ratio of more

than 10 cells increases rapidly, corresponds to the exponential phase in Fig 5 (2). Fig 6C illus-

trates that the growth source index decreases to keep pace with increases in the ratio and then

Fig 5. Growth curves in estimation and simulation. The bridge adjusted the simulated growth curves approximately to the

estimated ones through the optimization of relaxation coefficients for points (1)–(4). The day to reach the plateau phase was

calculated as 10.875, 10.375, 11.625, and 11.5; the number of cellular particles on the day was 9646, 9891, 8499, and 6192; and the

error function value was 0.094, 0.055, 0.055, and 0.101 for points (1)–(4), respectively. For (4), the day was invalid because the

adjustment was insufficient.

https://doi.org/10.1371/journal.pone.0231774.g005
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is exhausted on day 13, so that the ratio reaches a plateau with respect to the increase. In addi-

tion, the index increases slightly toward the exterior for the spheroid in silico until day 10.

Moreover, as shown in Table 3, the spatiotemporal relative relationship with regard to the

diameters of spheroids was generally maintained between spheroids in vitro and in silico. The

descending order of their size in silico [(2), (1), (3), and (4); shown in Table 3A] is consistent

with that of the quickness of cell population growth shown in Fig 5.

For the diameter on day 15, (A) demonstrates an index of the relative spatial relationship

that is the ratio of each spheroid (1)–(4) to spheroid (2), and (B) demonstrates an index of the

relative temporal relationship that constitutes the growth ratio from the first day for each

spheroid.

Distribution of the generation in spheroids in silico
Fig 7 shows three orthogonal cross sections through the center of spheroids in silico (1)–(4),

which comprise generation profiles colored based on the generations assigned to cellular parti-

cles. The descending order of their section sizes [(2), (1), (3), and (4)] is consistent with that of

their size in silico given in Table 3A. Both the range and distribution of the generations are dif-

ferent based on the quadrant. As expected, each spheroid has its most recent generations near

its surface, consistent with the knowledge that the frequency of cell division increases toward

the surface [19]. The generation number represents the degree of proliferative activity, which

is high for the proliferation zone and low for the quiescent zone including the central necrotic

core. The complexity of various generations around the center appears more clearly in the

descending order of spheroids in silico (4), (3), (1), and (2), which is equivalent to that of the

slowness of cell population growth as shown in Fig 5. By contrast, the generation mixture

appears more simply in the descending order of spheroids in silico (2), (1), (3), and (4). In

addition, generations of spheroid (4) were assigned as being younger and more uniform,

because the simulated growth rate was more rapid than the estimated growth rate (see (4) in

Fig 5). The relationship between the growth rate and the generation mixture is described later

in detail.

Fig 8A shows that for the spheroid in silico (3), cellular particles of the 14th and 15th gener-

ation are decreased and those of the 16th and 17th generations are increased. Virtual inner

proliferative activity was defined as low when no difference occurred in the number of cellular

particles in that generation and as high when there was a difference. Up to the 13th generation,

the virtual inner proliferative activity should be low; therefore, the ratio is 41.17% as shown in

Fig 8B (3). Comparing spheroids in silico (1) and (2) on day 13, no difference was detected in

the number of cellular particles. These cells in the spheroid in silico (2) were unable to divide,

because growth sources were exhausted on day 13 as shown in Fig 6C. This was also the case

for spheroid in silico (1), because the growth curves in Fig 5 exhibit similar transitional phases

between spheroids in silico (1) and (2). In addition, growth curves were calculated to reach the

plateau phase on days 10.875 and 10.375 for spheroids in silico (1) and (2), respectively. These

Table 2. Spheroids in silico on day 15.

(1) (2) (3) (4)

Number of cellular particles 11594 11990 10357 6506

Lower bound 9312 9569 7718 5140

Upper bound 13172 13536 10917 7271

Diameter [μm]� 289 291 271 237

�Scale in silico

https://doi.org/10.1371/journal.pone.0231774.t002
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Fig 6. Cell density profile in the spheroid in silico (2). (A) The horizontal axis shows the distance from the center and the symbol •

denotes a region where the attractive force acts. The vertical axis shows cell density in the regions. The cell density gradually reaches the

kissing number 12 at the center on day 13. Outside the center, numerous regions exist with cell density more than 12 because the density

was increased by 1 even when the region partly included the cellular particle. Finally, the cell density decreases rapidly toward the surface.

Over time, the range of cell density narrows around the center. (B) The ratio of more than 10 cells increases rapidly up to day 10 and is

subsequently maintained. (C) Growth source index for each region is plotted on the same horizontal axis as in (A).

https://doi.org/10.1371/journal.pone.0231774.g006

Table 3. Spatiotemporal relative relationship between spheroids in vitro and in silico.

(A) (1) (2) (3) (4)

In vitro 0.93 1 0.94 0.74

In silico 0.99 1 0.93 0.81

(B) (1) (2) (3) (4)

In vitro 28.64 30.66 28.92 22.70

In silico 28.87 29.14 27.12 23.68

https://doi.org/10.1371/journal.pone.0231774.t003
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are slightly earlier than day 11.625 for spheroid in silico (3). Their generation ratios with low

activity must be greater than those for spheroid in silico (3) because the growth source index

decreases earlier. If the virtual inner proliferative activity is low up to the 13th generation, the

ratios are 45.02% and 52.36% for in silico spheroids (1) and (2), respectively, which are slightly

larger than the ratio of 41.17% for in silico spheroid (3). If the activity is low up to the 14th gen-

eration, both ratios are over 70%. Given this, the growth curves must reach the plateau phase

much earlier than they do for in silico spheroid (3), which is inconsistent with the growth

curves. Therefore, the activity should be low until the 13th generation. For in silico spheroid

(4), Fig 8A shows that the number of cellular particles decreases in the 13th generation and

increases in the 14th generation. Until the 12th generation, the activity should be low. Thus,

Fig 7. Generation profiles of spheroids in silico on day 15. The spheroids are presented by three orthogonal cross sections through their

center at the position corresponding to their own quadrant. The bars represent 50 μm in silico.

https://doi.org/10.1371/journal.pone.0231774.g007
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spheroids in silico were given their virtual inner proliferative activity according to the genera-

tion, which was assigned to each cellular particle.

Fig 8. Cumulative ratio of the generation in spheroids in silico on day 14. (A) Difference in the number of cellular particles between

day 14 and day 15 plots for each generation. (B) The dashed line represents the cumulative ratio of generations with low activity and the

dotted line illustrates the upper limit. The ratio of generations with low virtual inner proliferative activity is shown under the dashed line

and that of generations with high virtual inner proliferative activity is shown over the line.

https://doi.org/10.1371/journal.pone.0231774.g008
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Fig 8B also shows the rate of cell population growth depending on the generation range. A

higher rate of growth would lead to a graph of near-linear cumulative generation ratio over a

narrow range of generations. As the rate of growth slows, the graph would transform gradually

to a sigmoid-like curve over a wider range of generations. As the growth rate reduces, older

generations remain and the ratio of generations with high virtual inner proliferative activity

(“high”) is greater.

For the feature plane, the descending order of complexity of the generation mixture [(4),

(3), (1), and (2)] is equivalent to that of ratio of the high, which corresponds to that of slowness

of the growth rate. In other words, the descending order of quickness of the growth rate [(2),

(1), (3), and (4)] is also equivalent to that of ratio of the generations with low virtual inner pro-

liferative activity, which corresponds to that of simplicity of the generation mixture.

In addition, the ratio of the high shown in Fig 8B is roughly consistent with 0.60, the ratio

of cell volume labeled with [3H]thymidine to total volume, which Folkman et al. demonstrated

using a 1.0 mm diameter and 20-day-old V-79 spheroid grown in soft agar [30]. For several

tumor cell lines, spheroid diameters were shown to be inversely proportional to the number of

spheroids in a flask, and isolated spheroids reached a maximum mean diameter beyond which

no further expansion was possible for self-regulation of the cell population in 3D culture.

Virtual inner proliferative profiles for spheroids in silico
Fig 9 demonstrates spheroids in vitro and their corresponding virtual proliferative profiles,

given by their virtual inner proliferative activity. The virtual proliferative profiles were consis-

tent with spheroid schematics, which involved a typical zone of cell proliferation, as reported

in a previous study [19]. Furthermore, the relative relationship with regard to the size was gen-

erally maintained between spheroids in vitro and in silico in Table 3A. Fig 9 shows that the

smaller the size becomes, the thicker the layer with high virtual inner proliferative activity also

becomes. In other words, the slower the cell population grows, the smaller the ratio of low vir-

tual inner proliferative activity becomes.

Fig 10 shows the histochemical profiles around the center of HeLa spheroids incubated for

14 days with a seeding density of 5000 cells/well. The density was increased to select clearer

cross sections from many spheroids. The spheroids are slightly smaller than those in Fig 9

because the seeding density was higher. This observation is in accordance with the study of

Folkman et al. [30]; i.e., the size of spheroids was inversely proportional to the number of

spheroids in a flask. In addition, regarding the size, a combination of cell-cell interactions and

cell–matrix interactions has been shown to contribute to the compaction of spheroids in previ-

ous work [31–34].

The ratio and distribution of high virtual inner proliferative activity in spheroids in silico
(1)–(3) in Fig 8B and Fig 9 are similar to the proliferation zone ratio and histochemical profiles

shown in Fig 10A. This also holds true for spheroid in silico (4) in Fig 8B, Fig 9 and Fig 10B.

These results demonstrate that the virtual inner proliferative activity given to spheroids in silico
on day 14 is compatible with the histochemical profiles of cross sections around the center of

spheroids in vitro on the same day. Moreover, the histochemical profiles shown in Fig 10A

were similar to those shown in the V-79 spheroids, and the proliferative zone ratio of 48.8%

estimated from the spheroids in Fig 10A was close to the proliferative volume ratio of 0.60 of

V-79 spheroids. Therefore, the ratio of the high virtual inner proliferative activity given by the

generation of the spheroids in silico (1)–(3) is consistent with the proliferative volume ratio of

V-79 spheroids.
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Discussion and conclusion

We have developed the first step toward an in silico analysis method to bridge the gap between

experiments and simulation. HeLa spheroids were analyzed through spheroids in silico opti-

mally replicated by 3D growth simulation created for soft agar culture. The present method

involved generating a growth curve from time-lapse images of spheroid growth, growth simu-

lation with several mathematical models, and a bridge between spheroids in vitro and those in
silico. The latter allowed us to characterize spheroids in vitro on the feature plane with the

Fig 9. Spheroids in vitro on day 14 and their virtual inner proliferative profiles. Spheroids in vitro (1)–(4) are presented with their

provided virtual proliferative profiles at three orthogonal cross sections through the center of the spheroids in silico computed based on

their microscopy time-lapse images, where cellular particles are depicted with a light color for the low and dark for the high. The bars

represent 100 and 50 μm for spheroids in vitro and in silico, respectively.

https://doi.org/10.1371/journal.pone.0231774.g009
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growth curves and replicate those growth curves in silico by optimizing parameter values in

the model. The bridge enabled the feature plane to be applied to spheroids in silico. Moreover,

analyzing the generations assigned to cellular particles allowed us to assign virtual inner prolif-

erative activity to spheroids in silico. This method was validated and found to be consistent

with the histochemical profiles of HeLa spheroids grown under the same conditions.

As for cross-fertilization of real cell imaging and virtual cell imaging through modeling,

Ulman et al. described that virtual cell imaging provided the ability to improve the quality of

the algorithms applied to real cell image analysis [35]. By contrast, a distinguishing feature of

the in silico analysis method is to promote understanding of actual spheroids by means of

those in silico, embodied by growth simulation based on time-lapse images from the research-

er’s own samples.

In the present work focusing on individual HeLa spheroid growth in soft agar culture,

experimentally observed spheroid growth curves could be well characterized by two principal

components and classified into four types according to the quadrant of the feature plane.

Although growth simulation successfully regenerated the growth curves plotted on the first,

second, and third quadrants, that on the fourth was slightly out of alignment, especially in the

transitional phase (see (4) in Fig 5). Preliminary trials suggested that the cell cycle model

Fig 10. Histochemical profiles of HeLa spheroids on day 14. Spheroids were chosen to be as round as possible

though their cross sections for every 20 μm. The sections stained with hematoxylin and eosin are shown as a

consecutive pair including the largest size, and have a dark exterior and a light interior on the ground color. Scale bars

are 100 μm. In cross sections associated with the largest size, both regions of the spheroid and the light color interior

were approximated into two different circles covering each contour. Using the volume of spheres derived from the

circles, the ratios of the quiescent zone to the whole area were approximately estimated as (A) 51.2% and (B) 26.2%. In

(A) and (B), the proliferation zone ratios are inversely 48.8% and 73.8%, respectively.

https://doi.org/10.1371/journal.pone.0231774.g010
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improved replicas in the transition phase depending on the quadrant. Therefore, further

refinement of the model would achieve more precise simulation of spheroid growth; this will

constitute an important subject of our future work.

The generation profiles in spheroids in silico showed differences depending on the quadrant

to which they belonged (see (1)–(4) in Fig 7). The complexity of the generation mixture is for-

mulated as (2)< (1) < (3)< (4), which notably coincides with the converse of growth rates

with a formulation of (2)> (1) > (3)> (4) (see Fig 8B).

The relationship of the quadrant in terms of complexity agrees with both the descending

order of high virtual inner proliferative activity [(4), (3), (1), and (2)], and the ascending order

of their diameter [(4), (3), (1), and (2)] (see Fig 8B and Table 2). These observations suggest

that a spheroid that proliferates quickly has a larger surface, so that growth sources are simulta-

neously supplied to more cells, cell division is more synchronized, growth sources are

exhausted more rapidly, and the number of cells with low virtual inner proliferative activity

increases.

The ratio and distribution of virtual inner proliferative activity in Fig 8B and Fig 9 are simi-

lar to the proliferation zone ratios and histochemical profiles in Fig 10. Note that these are sim-

ilar to those demonstrated using V-79 spheroids [30].

The results obtained from the analysis of individual spheroid growth suggest that the inner

proliferative activity of HeLa spheroids can be predicted through 3D simulations in silico
based on time-lapse imaging of HeLa cells in soft agar culture. This also suggests that time-

lapse images of spheroid growth can provide accurate virtual inner proliferative activity for

spheroids in vitro; thus, the relationship in silico between the virtual inner proliferative activity

and the rate of spheroid growth allows us to reveal the relationship in vitro. This strongly sup-

ports the fact that our framework, assumptions, and modeling are appropriate for the investi-

gation of living spheroids. In particular, soft agar culture contributes greatly to the

performance of the first step toward the in silico analysis method, because spheroids are

formed only by proliferation.

Different culture techniques based on the concept of biofabrication have been developed

for the formation of spheroids, such as the hanging drop method, rotating wall container, and

micro-mold technology [36]. The in silico analysis method can be performed on these cultures

if bases have been formed, including the acquisition of time-lapse images of the formation pro-

cess, tracking of a spheroid through the images, and mathematical modeling of the formation

process caused by both proliferation and mechanisms specific to the culture techniques. Build-

ing the bases is a prerequisite of the in silico analysis method.

Therefore, even if it is limited to soft agar culture at the moment, the in silico analysis

method will facilitate the expansion of the application scope of this method for the first step.

Potential modifications for the control include the analysis period being extended after

medium exchange when the growth source is exhausted, and cell culture changed to plain

media without growth supplements. In addition, expanding this to experiments with a drug

such as anticancer drugs to inhibit cell growth would require analysis of the collapse of the

dose-response relationship on spheroids. Sensitivity regarding both the appearance and the

virtual inner proliferative activity of spheroids will allow measurement along the time course

from initial drug addition. The sensitive measures are complementary to conventional agent

measurement following drug testing, allowing for more detailed information to be extracted

from the test. Moreover, spheroids will evolve into co-cultured spheroids and even organoids.

If the information extracted from such tests and the knowledge of cellular receptors, proteins,

and gene expression can be integrated to create a response model for drug delivery and effi-

cacy, such models will be introduced to the in silico analysis method to permit more extensive

and refined prediction.
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Hence, we believe that the concept of in silico spheroid analysis can be effectively used for

cell biology experiments on tissue cell cultures. Such analyses with virtual embodiment com-

puted using a researcher’s own samples will reduce the gaps between real experiments and

simulations. Therefore, additional research is urgently required to analyze cell populations,

extend the range of cell lines, improve mathematical models, and increase computing power.

A long-term challenge is the extension to culture systems for biofabrication. In turn, the in sil-
ico analysis method might facilitate drug discovery and the assessment sensitivity for drug

delivery and efficacy testing for various diseases including cancers.
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