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1  |  INTRODUC TION

In mammalian reproduction, every significant milestone such as 
gamete production, maturation of gametes, fertilization, embryo de-
velopment, implantation and the development of the foetus happen 
under tightly controlled parameters. Communication between the 
maternal tissue and the gametes and embryo is thought to be one of 
the main mechanisms utilized in regulation of the peri- implantation 
microenvironment in favour of establishing a successful pregnancy.

An important aspect of embryo maternal communication is im-
mune modification. Since the embryo is a semi- allograft, containing 
unique antigens transcribed from the paternal genome, the maternal 

immune system should be rejecting the implantation. However, in 
a unique instance of acquired immune tolerance, the maternal im-
mune system not only ignores the embryo, but also facilitates the 
implantation and in some species, the subsequent invasion. These 
actions are thought to be initiated by embryo- maternal communica-
tion (Fair, 2016).

Conventionally, embryo maternal crosstalk is thought to be 
achieved using endocrine, paracrine or juxtracrine mechanisms uti-
lizing various hormones and chemical signals produced by the em-
bryo and the maternal tissue. While there are decades of rigorous 
research corroborating various signalling pathways used in embryo- 
maternal communication, the consensus of the scientific community 
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Abstract
The mammalian reproduction is a process of controlled cellular growth and develop-
ment regulated by constant communication between the gametes, the subsequent 
embryo and the maternal system. Extracellular vesicles (EVs) are involved in these 
communications to a significant degree from the gamete production and maturation 
to fertilization, embryo development and implantation. They regulate the cellular 
physiology and the immune reaction to bring about a favourable environment for a 
successful pregnancy. Deciphering the mechanisms employed in EV- mediated em-
bryo maternal communication could improve our knowledge in mammalian reproduc-
tion and increase the efficiency of animal breeding.
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is that the overall mechanism of the system is not yet fully eluci-
dated. Intercellular signalling mediated by extracellular vesicles (EVs) 
is increasingly identified as a novel facet of the embryo- maternal di-
alogue. The ability of EVs to transfer labile molecules such as miRNA 
in a safely contained system is hypothesized to be a key component 
in EV- mediated intercellular communication.

2  |  E X TR ACELLUL AR VESICLES

Extracellular vesicles are nano- sized semi- spherical membrane- 
bound structures (Kurian & Modi, 2019) produced by almost all types 
of cells by different means of biogenesis. They are broadly classified 
as exosomes (40– 100 nm), microvesicles (100– 1000 nm) and apop-
totic bodies (1– 2 μm) (Raposo & Stoorvogel, 2013). EVs are enclosed 
by a lipid bilayer and contain lipids, proteins, RNAs (lncRNA, mRNA, 
small non- coding RNA, rRNA and miRNA) and DNAs (dsDNA, ssDNA 
and mtDNA) (Chivet et al., 2014). The composition and concentra-
tion of EVs largely depend on the physiological and environmental 
conditions. EVs can regulate different physiological and pathological 
conditions through epigenetic and phenotypic modifications in re-
cipient cells (de la Canal & Pinedo, 2018) and participate in different 
biological activities. They can be utilized as candidate biomarkers of 
health and disease and as potential targets for therapeutics (Gould 
& Raposo, 2013).

EVs regulate different reproductive events such as sperm mat-
uration (Caballero et al., 2010), sperm viability, capacitation and 
acrosome reaction (Hasan et al., 2021), oocyte maturation (Silveira 
et al., 2014), recognition of conceptus in implantation (Ruiz- González 
et al., 2015), maintenance of pregnancy and parturition (Salomon 
et al., 2018). Moreover, a growing body of evidence indicate that 
EVs are also involved in pathological conditions such as early preg-
nancy loss, polycystic ovaries, endometriosis, gestational diabetes 
mellitus, hypertension and preeclampsia (Rooda et al., 2020). This 
review highlights the potential roles of EVs in selected aspects of 
mammalian reproduction.

3  |  THE ROLE OF E Vs IN MALE GAMETE 
MATUR ATION

Spermatozoa produced by the mammalian testicles are not com-
pletely matured and lack motility and fertilizing ability. Spermatozoa 
gain functionality while transiting through male and female repro-
ductive system (Robaire et al., 2002). Studies showed that EVs pro-
duced from the male reproductive tract, including epididymosomes 
and prostasomes, play vital roles in the maturation process of sper-
matozoa (Saez et al., 2003; Wu et al., 2017). Spermatozoa undergo 
several physical and biochemical changes during their journey to-
wards oocyte starting from the anterior vagina after coitus (Reshi 
et al., 2020). These modifications possibly occur due to the crosstalk 
between the spermatozoa and the female reproductive tract leading 
to functional maturation.

EVs isolated from uterine and oviductal fluids of mice contain 
sperm adhesion molecule 1 (SPAM1) and plasma membrane cal-
cium pump (PMCA4), which are vital for sperm maturation (Griffiths 
et al., 2008). Furthermore, in vitro studies have confirmed the trans-
fer of fertility regulating proteins from EVs to the sperm. Oestrogen 
hormone is believed to regulate the expression of these macromol-
ecules (Al- Dossary et al., 2015). Therefore, Uterine EVs are possibly 
responsible for spermatozoa capacitation, membrane stabilization 
and final maturation via miRNA transfer. The presence of SPAM1 
protein in EVs suggests the possible role of inhibiting a premature 
acrosomal reaction during the uterine transit of the spermatozoa 
(Griffiths et al., 2008; Martin- DeLeon, 2016). On the other hand, 
oviductal EVs carry αV integrin, CD9, heat shock proteins A8, lactad-
herin, oviductal specific glycoprotein (OVGP), lipids, SPAM1, RNAs 
and miRNAs (Al- Dossary & Martin- Deleon, 2016) which are involved 
in several spermatozoa functions such as sperm viability and motil-
ity (OVGP) and acrosome reactions (SPAM1), reducing polyspermy, 
inducing the protein phosphorylation, modulating fertilization and 
embryo development (Alminana- Brines, 2015; Avilés et al., 2015; 
Martin- DeLeon, 2016; Saccary et al., 2013; Zhao et al., 2016).

4  |  THE ROLE OF E Vs IN FEMALE GAMETE 
MATUR ATION

The development and maturation of the ovarian follicles and oo-
cytes are highly associated and important for subsequent proper 
embryo development upon the fertilization. These complex pro-
cesses are regulated by intercellular communication within the fol-
licular microenvironment and structural transformation of different 
cell types constituting the follicle (Eppig, 2001). In addition, the 
crosstalk between oocytes and theca and granulosa cells are mainly 
done through gap junction proteins (Eppig et al., 2002).

The presence of EVs in follicular fluid has been well established 
(Hasan et al., 2020, 2021; Reshi et al., 2021). EVs play vital roles 
in intercellular communication related to follicular development and 
oocyte quality. Concentration of EVs negatively correlates with the 
size of follicles (Hasan et al., 2021). Bovine follicular fluid derived EVs 
affects the transcriptomes of oocytes, adjacent granulosa cells and 
oviductal epithelial cells, playing essential roles in oocyte maturation 
and embryo development (Dalanezi et al., 2017; Hasan et al., 2020). 
Similarly, supplementation with FF EVs during in vitro maturation 
(IVM) enhances the cumulus cell expansion (Hung et al., 2015), the 
proliferation of granulosa cells (Hung et al., 2017) and enhance blas-
tocyst development rates (Silveira et al., 2017).

EVs indirectly affect the competence of oocytes by improving 
the function of cumulus cells (Rodrigues et al., 2019). During the 
early stages of oocyte maturation, transzonal projections extend 
from the cytoplasm of cumulus cells and mediate RNA transfer be-
tween cumulus cells and the oocyte (Macaulay et al., 2014; Silveira 
et al., 2017). In addition to RNA, exosomal cytokines can regulate 
various physiological aspects, including proliferation and differentia-
tion of cells, survival or atresia of follicles and maturation of oocytes 
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(Field et al., 2014; Zolti et al., 1991). Follicular fluid exosomes pos-
sess cytoprotective effects against stress and under the stresses 
the cells experience an increased secretion of EVs that enhances 
the defence system preventing the cell death (Carver & Yang, 2016; 
Rodrigues et al., 2019). During oxidative stress, the granulosa- cells- 
derived EVs contain higher proportion of antioxidants and other 
substances associated with cellular defence compared with normal 
conditions (Saeed- Zidane et al., 2017). Treatment of oocytes with 
follicular- fluid- derived EVs reduces the apoptosis of cumulus cells 
and damage to oocytes caused by heat shock (Rodrigues et al., 2019; 
Saeed- Zidane et al., 2017).

5  |  ROLE OF MATERNAL E Vs DURING 
FERTILIZ ATION

Fertilization is a series of coordinated events taking place in the ovi-
duct. This includes sperm capacitation, sperm- zona pellucida bind-
ing, acrosome reaction, zona penetration by sperms, sperm- oocyte 
binding and fusion, cortical reaction, oocyte activation and meiosis 
resumption (Georgadaki et al., 2016). Several studies have shown 
the contribution of EVs in facilitating these processes.

The protein PMCA4a is known to maintain the Ca2+ homeosta-
sis in the sperms (Al- Dossary et al., 2013), which is crucial for its 
progressive and hyperactivated motility and fertility. The murine 
sperms receive their PMCA4a via EVs from the oviductal and uterine 
luminal fluids (Al- Dossary et al., 2013). In pigs too the co- incubation 
of sperms and EVs deriving from seminal plasma increased the ac-
rosome reaction (Siciliano et al., 2008). Barraud- Lange et al. (2007) 
showed that oocytes transfer proteins, via EVs, to the sperm that 
has already entered the perivitelline space indicating that EVs 
are crucial for sperm membrane re- organization and fertilization 
(Barraud- Lange et al., 2007). The interactions between the Izumo1 
protein of the sperm membrane and the Juno protein of oolemma 
plays a vital role during fertilization (Bianchi et al., 2014). Following 
the fertilization, the prevention of polyspermy is a crucial require-
ment. It is shown that Juno is removed from the oolemma and sent 
out via EVs where binding of these EVs to spermatazoa can block ac-
rosome reacted spermatozoa, hence preventing polyspermy (Bianchi 
et al., 2014).

Following the fertilization, the early embryo gradually develops 
when passing through the oviduct into the uterine lumen for further 
implantation. Oviductal fluid is the first micro- environment to which 
early mammalian embryos are exposed (Saint- Dizier et al., 2020). 
Embryo- maternal communication at the oviduct is vital for the sub-
sequent embryonic development, and any errors in this dialogue are 
found to be detrimental for the prospective implantation. During 
its free- floating transport in the uterus, the embryo communicates 
with the mother using various mediators, including EVs (Nakamura 
et al., 2020). Uncovering embryo- maternal interactions during the 
pre- implantation period may help to answer questions related to re-
productive issues, such as recurrent implantation failure and ectopic 
pregnancy.

6  |  EMBRYO MATERNAL 
COMMUNIC ATION IN THE OVIDUC T

Delineating the embryo- oviduct cross talks is difficult; thus, many 
in vitro models have been employed to understand the embryo- 
maternal communication at the oviduct (Kölle et al., 2020). The ad-
dition of oviductal EVs to the embryo culture media improved the 
bovine embryos produced in vitro and increases blastocyst rate 
(Almiñana et al., 2017), trophectodermal and total cell number and 
better cryo- survival post- vitrification (Lopera- Vasquez et al., 2016). 
Moreover, EVs isolated from different regions of oviduct show dif-
ferential impacts on embryonic development. EVs isolated from 
isthmic oviductal fluid increased survival rate, development and 
better- quality blastocysts; however, EVs from ampullary oviductal 
fluid had no impact (Lopera- Vasquez et al., 2017). Though the mech-
anisms are unknown, it is possible that the transfer of embryo- tropic 
factors from the maternal tract to the embryos via the EVs (Kurian 
& Modi, 2019) since internalization of EVs by embryos has been 
demonstrated (Almiñana et al., 2017; Pavani et al., 2019). In a similar 
study, addition of oviductal fluid derived EVs to the embryo transfer 
media in mice significantly increased live birth rates (Qu et al., 2019). 
These indicate the possible translational value of maternal tract EVs 
in improving the embryo transfer efficiency during ARTs. From a 
mechanistic point of view, supplemented EVs may impart effects 
via changing the embryonic gene expression and previous studies 
demonstrated that the oviductal EVs can modulate the expression 
of certain key genes related to the early embryonic development. 
Furthermore, the supplementation of frozen– thawed oviductal 
EVs to the bovine embryo culture resulted in 221 differentially ex-
pressed genes (DEGs) compared to the control while 28 DEGs in the 
case of fresh oviductal EV supplementation vs control (Bauersachs 
et al., 2020). Based on an integrative bioinformatic analysis of ovi-
ductal EV mRNA and miRNA identified altered mRNA transcriptome 
in response to oviductal EVs, indicating that oviductal EV cargo may 
mediate their effects on embryos via multiple mechanisms. Possibly, 
(1) increased delivery of transcripts to the embryos, (2) protein 
translation from the delivered mRNA that alter the gene expression 
by embryos, (3) miRNA- based gene silencing. Overall, these studies 
show the positive paracrine effects that the oviductal EVs can exert 
on preimplantation embryos.

The impacts of embryo on the oviduct have been studied ex-
tensively (García et al., 2017; Maillo et al., 2015; Schmaltz- Panneau 
et al., 2014), however, the effects of embryonic EVs on the ovi-
duct are less studied (Dissanayake et al., 2021). Maillo et al. (2015) 
showed that the coculture of bovine embryos with bovine oviductal 
epithelial cells (BOECs) downregulated specific genes of the Bone 
Morphogenetic Protein (BMP) signalling pathway. Interestingly, the 
role of embryonic EVs on the gene expression of oviduct was re-
cently investigated and the supplementation of good quality day 
5 embryo derived EVs could alter the gene expression (25 DEGs) 
in BOECs. However, the degenerating embryo- derived EVs did 
not have such effects (Dissanayake et al., 2021). Among the seven 
upregulated genes in BOECs with quality embryo- derived EVs; 
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interferon- stimulated genes (ISGs) such as ISG- 15, MX1, OAS1Y and 
LOC100139670 are of particular significance. The interferon- tau 
(IFN- τ) is a type 1 interferon and is the major the pregnancy rec-
ognition molecule of the ruminants, and it is possible that bovine 
embryos can transfer IFN- τ to the maternal tract via EVs (Nakamura 
et al., 2016). Moreover, two independent studies reported that these 
ISGs were upregulated in the oviductal epithelial cells in vitro and 
in vivo (Schmaltz- Panneau et al., 2014; Smits et al., 2016), in the 
presence of embryos. Thus, it is likely that preimplantation embryos 
use EVs as a mediator to notify the mother about their presence or 
quality while maternal signals also communicated to embryo via EVs 
(Figure 1). Hence, further studies on EV- mediated embryonic effects 
on the oviduct and oviductal EV effects on embryos would help us 
to understand the overall mechanisms behind embryo- maternal 
communication in the oviducts.

7  |  INVOLVEMENT OF E Vs IN EMBRYO - 
ENDOMETRIAL INTERFACE DURING 
IMPL ANTATION

Embryo implantation is recognized as the most critical step in early 
stages of pregnancy. Majority of assisted reproduction technologies 
(ART) failures occur because of implantation failure. Implantation 
mechanisms are highly species- specific with different types of 
placentation (Green et al., 2021; Johnson et al., 2021). However, 
there are common events that occur in every mechanism of suc-
cessful implantation. The bidirectional communication between the 
embryo and the endometrium is one such commonality (Es- Haghi 
et al., 2019; Østrup et al., 2011; Paulson & Comizzoli, 2021) where 
many including us have reported the presence and possible actions 
of EVs in the embryo- maternal interface.

Recognition of the embryo by the maternal immune system is cru-
cial for a successful implantation. The primary maternal recognition 

signal in ruminants, IFN- τ is secreted by the elongating conceptus 
and acts primarily on the endometrium shutting down the PFG2α 
mediated luteolytic pathway. It is reported that sheep endometrial 
epithelial EVs are enriched with endogenous retroviral mRNA that 
can act through Toll Like Receptors in trophectoderm to induce the 
secretion of IFNτ (Burns et al., 2016). Ovine trophoblast EVs are 
also enriched in IFNτ and can induce altered expression of ISGs in 
in vitro endometrial models, suggesting a significant involvement of 
EVs in the recognition of conceptus by the ewe. Similarly, in cows 
embryonic EVs from uterine flashings were enriched with IFNτ, and 
they upregulated the expression of apoptosis- related genes and ad-
hesion molecules in endometrial epithelial cells suggesting that EV- 
mediated communication might be utilized in animals with similar 
placentation (Kusama et al., 2018; Nakamura et al., 2016, 2019). In 
animals with epitheliochorial placentation such as pigs, the crosstalk 
is deemed of the highest significance because of the lack of embryo 
invasion. In sows EVs are reported to be important in recruiting the 
natural killer (NK) cells and T- cells to the uterine microenvironment 
and maintaining the proinflammatory status (Bidarimath et al., 2017).

The most investigated cargo types carried by EVs are the miR-
NAs. The miRNA cargo in serum EV populations of pregnant and 
non- pregnant domestic animals significantly changed where non- 
pregnant mares showed significant enrichment of miRNA target-
ing focal adhesion molecules (FAM) (Klohonatz et al., 2019). These 
integrin- containing molecules are regulators of the extracellular 
matrix (ECM) and play a vital role in embryo adhesion indicating 
the potential to be used as a biomarker of receptivity (Klohonatz 
et al., 2019). In pigs, embryo- derived EVs carrying miR- 125b were 
reported to induce gene alterations in implantation- linked LIF 
and its receptor LIFR in the endometrial epithelium (Krawczynski 
et al., 2015). Conditioned media used in in vitro embryo develop-
ment is enriched with EVs carrying miRNA cargo of developmental 
stage dependent. In bovine embryos, the embryo- derived EVs are 
enriched with miRNA such as miR- 24- 3p, miR- 191 and miR- 2887 

F I G U R E  1  Extracellular vesicles 
mediated communication inside the 
oviduct. EVs involve in a constant 
regime of communication between 
the gametes, embryo and the maternal 
system. The maturation of spermatozoa 
is facilitated by follicular fluid EVs 
during their transition through the 
oviduct. In fertilization, EVs may be 
used in communication between the 
ovum, spermatozoa and the surrounding 
maternal tissue. The fertilized embryo 
communicates with the surrounding 
oviductal cells using EVs while oviductal 
cell derived EVs and follicular fluid EVs are 
used to signal the embryo.
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that influence the endometrial transcriptome and the innate immune 
function (Kusama et al., 2021; Rio & Madan, 2021). The possible 
communication pathways via EVs in the endometrium are depicted 
in Figure 2.

8  |  POTENTIAL USE OF E V-  MEDIATED 
EMBRYO - MATERNAL COMMUNIC ATION IN 
“BENCH TO FARM”

In ART, which is growing ever popular in livestock management, 
the main challenge is deciding (1) which embryo to transfer and 
(2) when to transfer. Existing methods of embryo grading heavily 
depend on morphology, which is subjective, and embryo biopsy, 
which is highly invasive. Embryonic EVs have been proposed as 
a non- invasive embryo marker. Studies report that competent 
embryos produce different populations of EVs compared with 
degenerating embryos, and their effects on maternal system are 
quantifiably different (Dissanayake et al., 2020, 2021; Godakumara 
et al., 2021). Similarly, analysing the EVs produced by maternal tis-
sue could also be a non- invasive method to determine the state 
of receptivity (Aleksejeva et al., 2022; Luddi et al., 2019). There 
have been efforts to use EVs as therapeutic agents in mammalian 
reproductive pathologies such as polycystic ovary syndrome, en-
dometriosis and preeclampsia (Esfandyari et al., 2021). EVs can also 
be used as an agent of spermatozoa maturation (Hasan et al., 2021). 
Clearly, the true potential of EVs in diagnostics and therapeutics 
is just being revealed. EV research has been a very popular field 
of study in the recent decades. However, most of the mechanisms 
of action that govern the intercellular communication mediated by 
EVs are not yet fully understood. Whether EVs are specific to a cer-
tain type of target cell or a tissue and whether the cargo of the EVs 
is truly functional at the receiver cells are only a couple of funda-
mental questions about EVs without a clear answer at the present. 

Nevertheless, the field of EVs are moving steadily towards thera-
peutics and diagnostics. EVs are a potential goldmine for biological 
engineering and the best discoveries are expected soon, hopefully 
increasing our collective understanding of the mysteries shrouding 
mammalian reproduction.
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