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Abstract: The degree of degradation of pure poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
[P(3HB-co-4HB)] and its composites with cork incubated under industrial and laboratory composting
conditions was investigated. The materials were parallelly incubated in distilled water at 70 ◦C as a
reference experiment (abiotic condition). It was demonstrated that addition of the cork into polyester
strongly affects the matrix crystallinity. It influences the composite degradation independently on
the degradation environment. Moreover, the addition of the cork increases the thermal stability of
the obtained composites; this was related to a smaller reduction in molar mass during processing.
This phenomenon also had an influence on the composite degradation process. The obtained results
suggest that the addition of cork as a natural filler in various mass ratios to the composites enables
products with different life expectancies to be obtained.

Keywords: poly(3-hydroxybutyrate-co-4-hydroxybutyrate); composites; cork; (bio)degradation; composting

1. Introduction

In recent years, many efforts have been made to design composites with the advantages of being
stable during use and being susceptible to microbial attack during organic recycling [1]. The addition
of natural fillers to composites has been widely discussed in the literature because of their effect on the
mechanical properties of composites. Moreover, it has been proven that natural fillers influence the
degradation ability of these composites [2].

A material prepared by combining two or more constituents is called a composite material. Such
multicomponent materials are gaining more interest for applications because of many advantages, such
as low mass, high strength, and most importantly, low maintenance costs, of industrial appliances [3].
It is worth mentioning that even concrete and steel are currently being replaced by composite materials.
In addition to the building industry, where composites are applied in both structural (e.g., bridges and
roof structures) and nonstructural constructions (e.g., windows and door frames), they are also used
in structural parts of a vehicle’s body (e.g., dashboard fascia and scooter frames) in the automotive
industry [2].
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There is, however, a critical limitation in terms of the reuse and recycling of composites prepared
with a conventional polymer as a matrix [4]. However, natural composites may cause serious
problems in the area of construction materials because of their easily degradable nature, although
this characteristic is crucial for short-life applications. Environmental protection is also afforded as an
advantage of composites made of biodegradable polymers as the matrix and reinforcement made of
natural fillers [5].

Biodegradable plastics undergo relatively rapid degradation, and this process takes several
months to several years to complete (depending on the material and degradation conditions).
These plastics are biodegradable according to the European Union Standards (EN 13432) [6], and they
can be organically recycled in compost. Biodegradable composites made of polylactide (PLA) are
commonly used in food packaging; however, a balance between the mechanical and physical properties
of these composites and their rapid degradation during composting is still required. Moreover, the
food packaging industry demands intensive exploration and study regarding the use of biodegradable
plastics and composites. Polyhydroxyalkanoates (PHAs) have a very important advantage for
composite applications, namely because their polar character causes better adhesion to lignocellulose
fiber [7]. PHA composites with vegetable or grain fillers may find an application in horticulture
as environmentally friendly low-cost plastic crop containers intended to replace conventional ones.
The main advantage of this solution is the biodegradation in soil after application [8]. In food
packaging applications, where the container should be degraded at the same time as the food product,
such composites can be used for the packaging of fresh fruits or vegetables [9]. Packages made of
biodegradable plastics can be composted in household composters. According to the respective EU
directives, the amount of biodegradable municipal waste stored in landfills must be reduced. It is well
known that compostable plastics provide environmental sustainability, because they are produced
from renewable raw materials. This contributes to reductions in the use of nonrenewable petrochemical
materials [10].

Many research groups have confirmed the utility of biodegradable polymers as matrices for
composites with natural fillers [11,12]. The addition of natural fillers to composite materials tends to
improve the materials’ properties and lower the price [13]. Polyester mixed with cellulose-based
fillers afford an economical material. Flax, sisal, jute, and wooden powder are considered
as environmentally friendly fillers in engineering composites [14]. Gatenholm et al. showed
that cellulose fibers have no significant influence on the thermal properties and crystallinity of
PHB. Moreover, they also found that PHB composites with wheat straw, depending on the filler
content, present much better or similar mechanical properties compared with neat matrix. [15]
In the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites, increased contents of
3-hydroxyvalerate units as well as fiber contents in the matrix influences their mechanical strength,
elasticity, and crystallization kinetics [16]. The use of flax, cellulose, abaca, and jute fibers in PHBV
composites as a filler resulted in an increase in the tensile strength and tensile stiffness modulus at
the observed drop in elongation at the break [11,17,18]. Luo and Netravali described the mechanical
and thermal properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] composites
with fibers obtained from pineapple leaves depending on the fiber direction [19]. Composites with
fibers arranged in the longitudinal direction were characterized by higher values of tensile strength
and Young’s modulus as compared to the unfilled matrix, while for the transverse direction of the
fibers, a decrease in the obtained values was observed. The values of the bending strength and flexural
modulus increased with the increase of the longitudinal direction of fibers. Semicrystalline PHAs
exhibit comparable properties with polypropylene and can replace it in some applications, especially
in the packaging and automotive industries.

Cork is a versatile material of natural origins. It is a material containing extractives, suberin,
lignin, waxes, tannins, and polysaccharides (cellulose and hemicellulose), but cellulose does not
play a main role in cork’s mechanical properties as in other wood fillers [20]. This natural filler has
excellent properties, such as a low mass, density, and thermal coefficient; good electrical, thermal,
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acoustic, and vibration insulation; buoyant ability; and impermeability to gases and liquids. It also
exhibits elasticity and deformation without fracturing under compression and has considerable
durability. These advantages of cork along with its renewability, possibility of incinerating with
energy recovery, and reduced concerns about health and safety make it an interesting alternative as a
filler in biodegradable composites [20–22]. Composite materials also provide low abrasive wear to
processing equipment, such as extruders and molds. Additionally, high adhesion between fillers and
the matrix of composites is important as it influences the properties of the final product. Although
fillers tend to be stable during the degradation process in soil, they probably allow microorganisms to
attack the composite [23].

The degree of degradation of a composite is relevant to determine the shelf life of packaging
applications. The presence of natural fillers in the obtained composites affects the degradation degree;
this feature enables the time for which the packaging can be used to be determined. In the last few
years, the range of biodegradable plastics has expanded incredibly in terms of both commercially
available and under development products. Furthermore, technological progress has enabled the
production of bio-based polymers, meeting the demand for environmentally friendly products.
These features of biodegradable polymers have led to the development of strategies for replacing
petrochemical feedstock with bio-based ones. The main goal of such development was to provide
the market with biodegradable polymers with a variety of properties that are suitable for specific
applications. Currently, the application of bio-based polymers in the packaging sector is restricted
to food products and organic waste. An interesting alternative for composite application is the
possibility of packaging charge-sensitive electronic circuit boards by using PHA/graphene composites.
Composites with graphene used as a filler show considerable improvements in material stiffness and
electrical conductivity, and these composites may be used in charge dissipating floor coverings for
use in laboratories with AC/DC standards, where the equipment is very sensitive to electrostatic
discharge [24,25]. The broadened horizons in ecological and economical areas should lead to an
increase in the market of bio-based materials. Biodegradable materials can undergo controlled
biological decomposition. This property has led to the development of safe and environmentally
friendly products that are not harmful to human life and health, as opposed to traditional polymer
waste stored in landfills that threaten the surrounding environment. The introduction of biodegradable
composites in packaging into the market requires many scientific uncertainties to be overcome and
many experimental studies to fully understand how such materials can be applied in daily life [26].

This paper presents the results of comparative studies on the biodegradation of pure
P(3HB-co-4HB) containing 8 mol% of 4HB units and its composites with cork under industrial and
laboratory composting conditions. P(3HB-co-4HB) was chosen as a polymer matrix in the presented
studies due to its good mechanical properties, high elasticity, low crystallinity, and low melting
temperature, compared with the PHB, the most common type from the PHAs family [27]. The materials
were degraded under real industrial composting conditions in the sorting and composting plant in
Zabrze. To verify the composting conditions and their influence on the degradation rate of the
material, two industrial composting systems were applied: BIODEGMA and KNEER Collateral, abiotic
degradation tests in distilled water were carried out under laboratory conditions. The addition of
cork to the P(3HB-co-4HB) matrix had a marked influence on the degradation process. The changes in
samples during the degradation process were monitored by visual observation and changes in the
molar mass and thermal property (Tmax, T5%, Tg, Tm, ∆Hm).

2. Materials and Methods

2.1. Materials

Cork powder with an average particle size of 1.0 mm, bulk density of 65 kg·m−3, and humidity
value of approximately 4.6% was provided by Corkpol, Ożarów Mazowiecki, Poland. P(3HB-co-4HB)
in powdered form, with a number-average molar mass of Mw = 625,000 g/mol and a molar mass
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dispersity of Mw/Mn = 2.5 estimated by gel permeation chromatography (GPC) (with PS standards)
with 8% of 4-HB units (calculated by 1H NMR) under the trade name, Sogreen 00A, was obtained from
Tianjin GuoYun Biological Material Co. Ltd., Tianjin, China.

2.2. Cork Preparation

Cork powder with an average particle size of 0.35 mm was obtained using the cryogenic grinder,
SPEX SamplePrep 6870 model, equipped with a metal crucible, with a precooling time of 2 min and
core crushing rate of 15 beats/min. The size of the prepared cork powder was measured using the
laser analyzer, Coulter LS230, equipped with a dry measurement module to analyze the grain size in
order to control the degree of specimen fragmentation. Before compounding, the cork powder was
dried at 80 ◦C in a vacuum oven (Memmert, Schwabach, Germany).

2.3. Compounding and Processing

The composites based on cork powder as a filler and pure P(3HB-co-4HB) matrix were prepared
using the micro-extruder, MiniLab (Thermo-Haake, Austin, TX, USA), equipped with corotating twin
screws. The rate of screw rotation was 100 rpm. The type 1BA test specimen according to the ISO 527–2
standard [28] was prepared in the MiniJet (Thermo-Haake, Austin, TX, USA) mini injection molding
machine. The mold temperature was set at 60 ◦C. The specimen processing parameters are presented
in Table 1.

Table 1. Processing parameters for sample preparation.

P(3HB-co-4HB)/Cork
(Mass Ratio)

Temperature of
Plasticizing Zone (◦C)

Injection
Temperature (◦C)

Injection
Pressure (bar)

100/0 140 140 350
90/10 140 140 450
70/30 140 140 650

2.4. Degradation Environments

2.4.1. Degradation under Industrial Composting Conditions

The study of organic recycling was carried out at the sorting and composting plant in Zabrze.
The research was conducted in two industrial composting systems: KNEER and BIODEGMA. KNEER
(container) is an intensive composting system with closed containers that are connected to a biomass
aeration system. The container system contains leaves, branches, grass, and collected domestic organic
waste from selected segregation. During the process, water circulates in a closed cycle. The generated
gases are released to the atmosphere through a biological filter. The BIODEGMA composting system
provides simple, economic, and efficient technological solutions to biodegrade organic waste, including
separately collected biogenic and garden waste, sewage sludge, and the organic component of mixed
municipal waste.

2.4.2. Degradation under Laboratory Composting Conditions

The biodegradation process under laboratory aerobic conditions was performed using the
Micro-Oxymax respirometer (Columbus Instruments S/N 110315) in mature compost prepared in
accordance with the guidelines of composting technology used at the sorting and composting plant
in Zabrze. For the respirometric test, samples with an average mass of 2.4 g were placed in glass
jars containing 300 g of mature compost at a humidity of 40% and pH of 7.9 and then incubated at a
temperature of 58 ◦C (±2 ◦C) for 21 days.
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2.4.3. Abiotic Degradation under Laboratory Conditions

For the abiotic degradation experiments, samples were first dried under vacuum at room
temperature to a constant mass and then incubated in screw-capped vials with air-tight PTFE/silicone
septa, containing 25 mL distilled water. The degradation experiment was conducted at 70 ◦C (±0.5 ◦C)
as described elsewhere [29]. The temperature was selected according to the accelerated degradation
test conditions of ISO 15814:1999 [30]. After a predetermined degradation time, the samples were
separated from the degradation medium and dried under vacuum at room temperature.

2.5. Characterization of the Samples Before and After the Degradation Tests

2.5.1. Visual Examination

The surface of the materials was examined using a Zeiss optical microscope (Opton Axioplan)
equipped with a Nikon Coolpix 4500 color digital camera. Microscopic observations were performed
at a magnification of 120x. Microscopic changes were analyzed by the scanning electron microscopy
(SEM) method. SEM studies were performed using the Quanta 250 FEG (FEI Company, Fremont, CA,
USA) high-resolution environmental scanning electron microscope operated at 10 kV acceleration
voltage. The samples were observed without coating under low vacuum (80 Pa) by using a secondary
electron detector (large field detector).

2.5.2. Gel Permeation Chromatography (GPC) Analysis

The molar mass and molar mass dispersity of the samples studied were determined by the GPC
method, which was performed with a chloroform solution at 35 ◦C and a flow rate of 1 mL/min using
the Spectra Physics 8800 solvent delivery system with two Mixed C Styragel columns with a mixed bed,
a linear range of Mw 200–2,000,000, and the Shodex SE 61 refractive index detector. Sample solutions
in chloroform (10 µL, 3% w/v) were injected into the system. Polystyrene standards (Calibration
Kit S-M-10, Polymer Laboratories) with a narrow molar mass dispersity were used to generate the
calibration curve.

2.5.3. Thermal Properties

Thermal characteristics of the received materials were determined using the TA DSC 2010
apparatus (TA Instruments, New Castle, DE, USA). The first calorimetric trace (I-scan, first heating
run) in which the thermal history was suppressed and the third calorimetric trace (III-scan, second
heating run) were acquired from –80 ◦C to 200 ◦C at a heating rate of 20 ◦C/min. All the experiments
were performed under a nitrogen atmosphere, with a constant nitrogen flow rate of 50 mL/min.
The instrument was calibrated with indium standards. The melting temperature (Tm) was considered
as the temperature of the melting endotherm maximum and the glass transition temperature (Tg) as
the midpoint of the specific heat step associated with the transition. Thermogravimetric analysis (TGA)
was performed with the TGA/DSC1 Mettler-Toledo thermal analyzer at a heating rate of 10 ◦C/min in
a stream of nitrogen (60 mL/min). The obtained TGA data were analyzed with the Mettler-Toledo Star
System SW 9.30.

2.5.4. Nuclear Magnetic Resonance (NMR) Measurements

1H NMR spectra were recorded using a Bruker-Advance spectrometer (Fremont, CA, USA).
Each spectrum was collected with 64 scans, 11 µs pulse width, and 2.65 s acquisition time.
The spectrometer operated at 600 MHz using tetramethylsilane (TMS) as the internal standard and
CDCl3 as the solvent.
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3. Results and Discussion

The addition of a natural filler to the biodegradable polymer matrix increases the application
possibilities of ecoproducts, such as packages, disposables tableware, acoustic, and heat insulation,
as well as in the transport industry, such as interior door panels, dashboard elements, etc. obtained
from those materials. An economical product is of considerable importance for manufacturers, but
the ability to change the properties of the product by using different amounts of filler can create
new application perspectives. The presence of the filler and its amount can influence the material
degradation rate [31]. Three different composting systems used in this case study provide the complete
information about material behavior during organic recycling. In the laboratory condition, the organic
recycling of the investigated materials was assessed in the mature compost using the Micro-Oxymax
respirometer. The water present in all composting systems initiates the hydrolysis process in the
investigated materials. Study of the hydrolytic degradation conducted in the laboratory conditions
facilitates an understanding of the degradation processes that occur in composting conditions [32].

3.1. Cork Effect on the Degradation Process

The molar mass changes provide information about differences in the degradation progress of
investigated materials after incubation in the abovementioned environments. The introduction of the
natural filler into the polymer matrix slightly influenced the samples during processing (Figure 1) and
significantly affected their degradation, because it reduced the molar mass loss during degradation
(Figure 2, Table 2).
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Figure 1. Overlay of selected GPC elugrams of pure P(3HB-co-4HB) before (0) and after processing (1)
as well as the P(3HB-co-4HB) matrix with 30% cork (2).

After 21 days, independently from the degradation environments, the neat P(3HB-co-4HB) matrix
showed a more noticeable decrease in molar mass as compared to composites. Furthermore, the results
of GPC analysis showed the order of shifts in the GPC traces to higher retention volume values for the
molar mass of the pure P(3HB-co-4HB) matrix degraded in the water > container system > BIODEGMA
system > respirometer. Because of the specificity of the environments, humidity played an important
role during the degradation of the investigated materials. The KNEER system with closed water
circulation and the biomass aeration system provide more favorable conditions for the growth of
thermophilic organisms. In this system, enzymatic degradation may also play an important role due to
the higher humidity of the compost [33]. After incubation in water and in the container system, where
moisture was the highest, the shifting of the GPC traces of the pure P(3HB-co-4HB) matrix to higher
retention volume values was clearly observed.
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Figure 2. Overlay of selected GPC elugrams of the pure P(3HB-co-4HB) (100/0) and P(3HB-co-4HB)/
cork composites with the mass ratio of 90/10 and 70/30, respectively, before (A) and after 21 days of
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Table 2. Molar mass before and after 21 days of degradation of pure P(3HB-co-4HB) and P(3HB-co-4HB)/
cork composites.

P(3HB-co-4HB)/Cork
(Mass Ratio) Environment Mw [g/mol] Mw/Mn

100/0
Before degradation

501,000 5.0
90/10 554,000 5.0
70/30 560,000 5.1

100/0
Respirometer

189,000 3.7
90/10 230,000 3.6
70/30 330,000 3.9

100/0
BIODEGMA

143,000 4.0
90/10 341,000 4.1
70/30 218,000 4.0

100/0
Container

49,000 3.2
90/10 479,000 4.2
70/30 455,000 5.4

100/0
Water

19,000 3.3
90/10 62,000 3.1
70/30 68,000 3.4

The degradation of composites was much slower. The composite samples showed a decrease in
molar mass only after 21 days of degradation in water at 70 ◦C. This phenomenon can be explained by
the properties of the filler. The characteristics of the cork result from its cellular structure, primarily its
cell dimensions and topology, and from the chemical composition of the cell wall, which is composed
of 53% suberin and 26% lignin. Lopes et al. showed that the molar mass (Mn) of the suberin extracts
determined by vapor pressure osmometry ranged from 528 to 968 g/mol [34]. This explains the
presence of the small peak on the elution curves in the range of a low molar mass (high retention
volume), which was especially apparent for P(3HB-co-4HB)/cork (70/30) samples. Suberin is a
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hydrophobic, elastic, and fire-retardant substance, and because of its impermeability and buoyant
ability, it can inhibit the degradation of composites containing cork [35]. Cork containing suberin
protects against the migration of water, microbial attack, and exposure to heat [36]. These properties
may slow down not only the hydrolytic degradation process, but also the overall degradation of
the compost, where microorganisms play an important role in addition to water. Interestingly,
there was only a small difference in the molar mass reduction of the composite matrix and the
pure P(3HB-co-4HB) matrix regarding the degradation in the respirometer; however, tendency was
maintained. These differences could be caused by the use of mature compost in the respirometric
tests. Further, after incubation in the BIODEGMA system, a difference in the degree of degradation
was noted for both composites. The decrease in molar mass for the P(3HB-co-4HB)/cork composite
with a mass ratio of 70/30 was more apparent and comparable to the degradation in the respirometer.
This phenomenon observed after degradation in the BIODEGMA system could be explained by the
heterogeneity of composted waste fractions and the influence of the presence of mixed municipal
waste in the composted material as mentioned before.

3.2. Material Examination and Failure Analysis

Microscopic evaluation of the investigated samples after 21 days of degradation in the determined
environments indicated small differences in the material surface between the pure matrix and
composites (Figure 3).Polymers 2018, 10, x FOR PEER REVIEW  9 of 16 
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Figure 3. Photomicrographs (120x) of the pure P(3HB-co-4HB) (100/0) and P(3HB-co-4HB)/cork
composites with a mass ratio of 90/10 and 70/30, respectively, before (A) and after 21 days of
degradation in a respirometer (B), BIODEGMA (C), container (D) and water (E).



Polymers 2019, 11, 547 9 of 15

Microscopy images show that for pure P(3HB-co-4HB), less damage was found on the surface,
which together with a higher molar mass loss (see Figure 2) may indicate a greater contribution
to hydrolytic degradation. The abiotic degradation experiment in water at 70 ◦C led to erosion,
as evidenced by the local discoloration (most visible for the pure P(3HB-co-4HB) matrix) due to
possible crystallization of degradation products formed during hydrolysis inside the samples (see
Table 3) [37]. Small cracks were also observed for composites because of water absorption during
hydrolytic degradation.

The SEM analysis (Figure 4) showed that the degradation media excluding water penetrated the
surface of the samples, especially in the case of composites; this indicates the dominance of enzymatic
degradation. This is also evidenced by the small loss of molar mass (see Figure 2), which is typical
during the initial stage of biodegradation. In SEM images on the micrometer scale, during degradation
in all studied environments, microcracks were observed on the entire surfaces of all the examined
composites. The most radical changes in the sample surface together with only slight changes in
molar mass (see Figures 2 and 4) were observed after 21 days of incubation in the Micro-Oxymax
respirometer and in the container system, where the highest impact of enzymatic degradation was
observed. In these samples, many pinholes, cavities, and cracks were visible. In the BIODEGMA
system, these changes were less visible on the sample surface together with some changes in the molar
mass (see Figures 2 and 4), especially for the P(3HB-co-4HB)/cork composite with a mass ratio of
70/30. This is because the BIODEGMA system belongs to the type of composting systems in which the
input material is undefined. This can lead to differences in the humidity of the composted material,
and as a result, the process temperature changes in this system.
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3.3. Thermal Behavior of the Investigated Samples during Degradation

The thermal decomposition curves of the pure P(3HB-co-4HB) matrix before and after degradation
in the investigated environments followed a single mass loss step. For the composites, the second
step of the mass loss occurred in the range related to the thermal degradation of cork, which reached
the maximum decomposition temperature (Tmax) at 419 ◦C. Furthermore, the addition of the natural
filler increased the thermal stability of the obtained materials (Table 3). After degradation, this same
phenomenon was observed for all investigated samples and for the pure P(3HB-co-4HB) matrix.

During 21 days of incubation in all investigated environments, the formation of P(3HB-co-4HB)
degradation products can be assumed. Abiotic hydrolysis is mostly considered to be the main
degradation step as high humidity and temperatures enable the cleavage of ester linkages by water
uptake, thus causing reduction in the molar mass. The oligomers and acids formed during degradation
of the investigated samples were present in all environments depending on the degradation degree [38].
Some of the degradation products could have migrated into the degradation medium, while the other
products remained in the material [39,40]. The presence of the acidic degradation products and the
compounds derived from the filler in the samples was responsible for increasing the thermal stability.
The cork extract contains natural thermal oxidation stabilizers, such as suberin, which acts not only
as a plasticizer, but also has antioxidant properties due to its high content of phenolic compounds,
which are known to be capable of scavenging radicals. These molecules could be responsible for the
stabilizing effect observed for cork composites [41]. After 21 days of incubation in water at 70 ◦C and
in the KNEER system, where the humidity was the highest, the largest increase in thermal stability
was observed for the pure matrix sample. These results overlap with the small decrease in the molar
mass in the same environments, which would lower the thermal stability of the material. Hence, we
can conclude that the respective presence of the degradation products inside the sample influenced
the thermal stability of the material.

Table 3. Thermogravimetric parameters before and after 21 days of degradation of pure P(3HB-co-4HB)
and P(3HB-co-4HB)/cork composites.

P(3HB-co-4HB)/Cork
(Mass Ratio) Environment Tmax (◦C) T5% (◦C)

100/0
Before degradation

243 217
90/10 251/409 227
70/30 255/412 237

100/0
Water

297 275
90/10 289/413 277
70/30 295/422 277

100/0
Container

271 249
90/10 266/414 245
70/30 260/413 240

100/0
BIODEGMA

258 231
90/10 266/411 251
70/30 272/419 256

100/0
Respirometer

263 240
90/10 287/413 251
70/30 280/420 261

Tmax—maximum decomposition temperature, T5%—the temperature corresponding to 5% mass loss.

During degradation of all the investigated materials with different cork mass ratios, significant
changes occurred in the thermal behavior.

The thermal properties of the investigated samples by DSC for the first heating run are listed in
Table 4.
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Table 4. Calorimetric parameters of P(3HB-co-4HB) and P(3HB-co-4HB)/cork composites before and
after 21 days of degradation in different environments.

P(3HB-co-4HB)/Cork
(Mass Ratio) Environment Tg (◦C) Tm (◦C) ∆H (J/g)

100/0
Before degradation

–9.4 140.5/179.5 46.0/0.9
90/10 –0.6 128.9/160.9 74.5
70/30 5.4 132.1/152.0/160.5 77.8

100/0
Water

–9.0 137.1/140.6/148.4 71.3
90/10 –2.5 141.9/157.8 66.9
70/30 1.8 134.9/153.8 68.1

100/0
Container

–4.5 142.1/154.3 70.2
90/10 1.2 130.6/151.9 73.0
70/30 5.4 135.8/153.3 70.4

100/0
BIODEGMA

–4.3 147.0 50.4
90/10 –1.2 130.5/147.6 57.3
70/30 5.3 131.6/156.4 67.8

100/0
Respirometer

–3.3 140.3/160.6 83.3
90/10 –0.8 129.1/148.5 56.1
70/30 3.5 132.6/149.2 72.0

Tm—melting temperature, ∆Hm—melting enthalpy (first heating scan, 20 ◦C/min), Tg (second heating scan after
rapid cooling, 20 ◦C/min). (Thermograms in the Supplementary Materials Figure S1).

The Tg and the melting enthalpy (∆Hm) of the composites were higher than those for the pure
matrix. When the cork content increased, the Tg of P(3HB-co-4HB) increased, indicating the occurrence
of physical entanglement. The cork plays a role of an antiplasticizer, which increased the glass
transition temperature of the investigated materials. It is apparent from the DSC traces of the pure
samples that for the composites with 10% and 30% cork content, the melting peaks were broader, and
a double endotherm peak was observed in both composites (data not shown). This phenomenon may
be caused by the polymorphism tendency of the composites toward filler nucleation. This tendency
was more apparent for the samples with a higher amount of cork. The obtained results indicated
that the presence of cork as the nucleation agent initiates crystallization by nucleation. Multiple
melting peaks in the DSC curves observed for the investigated materials have also been reported
for many semicrystalline polymers. This can be explained by the formation of a dual population of
crystallites during processing [38]. After degradation of the pure P(3HB-co-4HB) matrix, especially
in an environment with high humidity, a significant increase in ∆Hm was observed. This finding
suggests that the crystallization of the material can be explained as a consequence of the degradation
mechanism. The different forms of degradation products can also play roles as nucleation agents.

The melting enthalpy of the composites after degradation showed a downward trend. According
to Rydz et al., amorphous forms of the polymer absorb water quicker than crystalline forms [42].
Hence, for the composites with higher ∆Hm before degradation, the degradation process slowed down.
This was confirmed by the changes in the molar mass (see Figure 2).

3.4. Structural Characterisation of P(3HB-co-4HB)

The composition of P(3HB-co-4HB) was determined based on 1H NMR analysis. The 1H NMR
spectrum of P(3HB-co-4HB) before degradation showed signals corresponding to the protons of
3-hydroxybutyrate constitutional repeating units (3HB, signals 1-3) and signals corresponding to the
protons of 4-hydroxybutyrate constitutional repeating units (4HB, signals 4–6), two components of the
copolymer (Figure 5). The spectrum also showed low signals corresponding to the dicarboxylic
acid—azelaic acid. Azelaic acid derivatives are usually added to PHAs as a plasticizer [43,44].
Furthermore, small amounts of crotonic acid and its oligomers, products of P3HB degradation, and
poly(3-hydroxyhexanoate), an additional product of microbial synthesis, were identified. Additives
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and impurities did not exceed 2% of the total polymer and did not significantly affect the course of
(bio)degradation.Polymers 2018, 10, x FOR PEER REVIEW  13 of 16 
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The analysis by 1H NMR (see Figure 5, based on the methylene moiety of the P4HB and methyl
group of the P3HB) after 21 days of degradation indicated only slight changes (no more than 1%) in
the compositions of the copolymer investigated in the biodegradation experiment.

4. Conclusions

The obtained results indicate that the addition of cork as a natural filler to P(3HB-co-4HB) changed
the properties of the composites in comparison to those of the pure matrix. This particularly applied
to the thermal behavior of the samples. Thermal stability of the composites was higher than that for
the pure matrix. Furthermore, this value increased after 21 days of incubation in all environments.
The presence of cork also significantly affected the degradation profile of the obtained composites.
The degradation rate of the pure matrix was higher than that of the composites in all investigated
environments. In the case of pure P(3HB-co-4HB), higher molar mass loss and less damage were
found on the surface. This finding indicates a greater contribution to hydrolytic degradation. The cork
properties inhibit the penetration of water into the polymer matrix in composites, because this filler is
impermeable to liquids [21]. Changes on the surface of composites together with a small loss of molar
mass indicate that because the occurrence of hydrolysis was difficult, enzymatic degradation and/or
mechanical changes due to the presence of filler could have prevailed in the composting conditions.
The obtained results suggest that the addition of cork as a natural filler in various mass ratios to the
composites generates the possibility of obtaining products with different life expectancies.
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Figure S1: DSC plot of P(3HB-co-4HB)/cork composites (100/0), (90/10), (70/30) before and after 21 days of
degradation in different environments.
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