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ABSTRACT Genetic mutations play a central role in evolution. For a significantly
beneficial mutation, a one-time mutation event suffices for the species to prosper
and predominate through the process called “monophyletic selective sweep.”
However, existing methods that rely on counting the number of mutation events to
detect selection are unable to find such a mutation in selective sweep. We here
introduce a method to detect mutations at the single amino acid/nucleotide level
that could be responsible for monophyletic selective sweep evolution. The method
identifies a genetic signature associated with selective sweep using the population
genetic test statistic Tajima’s D. We applied the algorithm to ebolavirus, influenza A
virus, and severe acute respiratory syndrome coronavirus 2 to identify known biolog-
ically significant mutations and unrecognized mutations associated with potential
selective sweep. The method can detect beneficial mutations, possibly leading to
discovery of previously unknown biological functions and mechanisms related to
those mutations.

IMPORTANCE In biology, research on evolution is important to understand the signifi-
cance of genetic mutation. When there is a significantly beneficial mutation, a popu-
lation of species with the mutation prospers and predominates, in a process called
“selective sweep.” However, there are few methods that can find such a mutation
causing selective sweep from genetic data. We here introduce a novel method to
detect such mutations. Applying the method to the genomes of ebolavirus, influenza
viruses, and the novel coronavirus, we detected known biologically significant muta-
tions and identified mutations the importance of which is previously unrecognized.
The method can deepen our understanding of molecular and evolutionary biology.
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Genetic mutation plays a central role in evolution. Mutations, particularly those in
the coding region or functional elements of the genome, can lead to phenotypic

change, although most are deleterious and few are neutral or beneficial (1). In this arti-
cle, we discuss genetic selection at the level of the single amino acid defined by the
DNA/RNA codon. The concept of genetic selection at the amino acid level includes
diversifying selection, or pressure to keep changing its encoding amino acid (i.e., posi-
tive selection in a narrow sense), purifying selection, or pressure not to change its
encoding amino acid, and directional evolution, or pressure to possess a specific amino
acid. Directional evolution can occur either by polyphyletic occurrences of mutation to
a specific amino acid or by population expansion of monophyletic strains with a spe-
cific amino acid. We call the first case “polyphyletic convergent evolution” and the sec-
ond case “monophyletic selective sweep” (Fig. 1).

Rapidly evolving viruses such as influenza A virus are subject to strong evolutionary
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forces (2). Viruses undergo adaptive genetic mutations within individual hosts and
populations of the hosts. Establishing infection in new hosts often requires numerous
adaptive changes, such as receptor specificity adjustments (3–5) and overcoming host
antiviral defenses (5–7). An example of diversifying selection is the evolution of the he-
magglutinin (HA) gene of influenza A virus to evade the host’s immune response, lead-
ing to antigenic drift (8–10). Polyphyletic convergent evolution can be observed in the
emergence of drug-resistant mutations; for example, the same mutation in the neur-
aminidase (NA) gene of influenza A virus arose independently in patients treated with
oseltamivir (11–13). When a mutation is substantially advantageous for viral replication
or transmission, strains with the mutation will reproduce more effectively than other

FIG 1 Schematic explanation of different types of selection. Evolutionary pathways and phylogenetic trees are shown for five evolutionary models. The top
portion of each panel represents the theoretical concept of each evolutionary model. Gray rectangles indicate a population in the same generation. Viruses
with different genetic signatures are depicted as serrated circles with different patterns. As for polyphyletic convergent evolution and monophyletic
selective sweep, strains with the beneficial mutation are in red. Beneficial and nonbeneficial mutations are indicated by thick solid and thin dashed arrows,
respectively. In this scheme, population size is constant, and increase of fitness is expressed as the increased number of offspring in the next generation.
The bottom portion of each panel represents an example of phylogenetic reconstruction from our simulations under each model. Taxa are colored
according to the kind of deduced amino acid at a designated position. Strains with the beneficial mutation for polyphyletic convergent evolution and
monophyletic selective sweep are in red.
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strains, outcompeting those without the mutation (14, 15). This is what we call “mono-
phyletic selective sweep” in this study.

Many methods for detecting signatures of natural selection in genomic data were
first applied using viral data because of the rapid evolution of viruses. Calculation of
relative ratios of nonsynonymous and synonymous mutations (dN/dS) is a popular way
to detect diversifying selection and purifying selection (16, 17). Detection of polyphy-
letic convergent evolution can be accomplished by studying biased frequencies in pro-
tein substitution patterns (18, 19). These methods count the number of mutation
events through an evolutionary pathway. Yet a mutation responsible for monophyletic
selective sweep occurs only once in an evolutionary pathway. When there is a signifi-
cantly beneficial mutation, a one-time mutation event must suffice for the viral strain
to prosper and dominate an entire population (20). Therefore, the methodology of
counting the number of mutation events cannot detect such a mutation leading to
monophyletic selective sweep. Methods of detecting selective sweep are available for
entire genes or alleles (21), and a few tools to detect a specific region or mutation caus-
ing selective sweep are also available (18, 22–25). However, because they do not con-
sider the phylogenetic relationship of strains with a beneficial mutation, they could fail
to detect monophyletic selective sweep.

Here, we introduce a method to detect mutations at the single amino acid/nucleo-
tide level that could be responsible for monophyletic selective sweep, Tajima’s D-based
identification of mutation associated with monophyletic selective sweep (DMAMS).
The method detects mutations associated with monophyletic selective sweep with a
statistical test using Tajima’s D, which is a scaled ratio of two measures of genetic di-
versity-the mean number of pairwise differences and the number of segregating sites-
to test neutral evolution through a site-frequency spectrum (26). A negative Tajima’s D
value suggests recent selective sweep or population expansion, whereas a positive
value suggests balancing selection or sudden population contraction. In this study, we
establish our algorithm, DMAMS, which detects a genetic signature (a certain amino
acid or nucleotide at a certain position) associated with selective sweep by identifying
a monophyletic population with the specific genetic signature that has a large-magni-
tude negative Tajima’s D value. We further demonstrate the application of the algo-
rithm to ebolavirus, influenza A virus, and severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) to determine whether known biologically significant mutations and
unrecognized mutations are associated with potential selective sweep through
evolution.

RESULTS
Algorithm and concept of DMAMS. Figure 2 illustrates the DMAMS algorithm.

Details of the algorithm are described in Materials and Methods. Briefly, DMAMS deter-
mines if there is a monophyletic cluster of strains that share a specific mutation, scan-
ning all 20 amino acids at every position. All nodes in the phylogenetic tree are
scanned for each amino acid at each site for clustering. When it finds a cluster of
monophyletic strains with a certain amino acid at a certain position that is not shared
with strains outside of the monophyletic cluster, Tajima’s D for the cluster is computed
to check potential selective sweep. Tajima’s D values are also computed for internal
nodes, comparing the values at nodes in the cluster with the values at other nodes
outside the cluster to see the cluster-specific effect.

Population growth and selective sweep are known to have similar effects on
Tajima’s D (26). The purpose of DMAMS is to detect selective sweep of strains with a
certain mutation in a monophyletic subpopulation. Because monophyletic selective
sweep is a result of population expansion of a subgroup that consists of monophyletic
strains with a certain genetic signature (Fig. 1), differentiation of selective sweep from
population expansion is not required in DMAMS. Furthermore, DMAMS will not be
affected by changes in an entire population size. When a whole population has
expanded and monophyletically clustered strains have shared a certain mutation just
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by chance, DMAMS will not detect the mutation as associated with selective sweep.
That is because DMAMS does not only calculate Tajima’s D of a cluster of monophyletic
strains with the mutation of interest ensuring potential selective sweep but also com-
pares Tajima’s D values at nodes between inside and outside the cluster. That will
ensure the cluster-specific effect of population expansion possibly by monophyletic
selective sweep.

Simulation of evolution and performance of DMAMS. To test the performance of
DMAMS, evolution of a viral genome was simulated, and we applied DMAMS to the
data generated by the simulations. Details of the simulations are given in Materials
and Methods. Phylogenetic trees for virtual viral strains from our simulations repro-
duced characteristic features of five evolutionary scenarios: neutral evolution, diversify-
ing selection, purifying selection, polyphyletic convergent evolution, and monophy-
letic selective sweep (Fig. 1). The trees showed unbiased distribution of mutations in a
designated site in the neutral evolution model, a wide variety of mutations on the des-
ignated site in the diversifying selection model, a conserved polymorphism on the des-
ignated site in the purifying selection model, multiple independent occurrences of a
designated mutation in the designated site in the polyphyletic convergent evolution
model, and rapid expansion of a monophyletic subpopulation of strains with the desig-
nated mutation in the designated site in the monophyletic selective sweep model.

Algorithms named SLAC, FUBAR, and MEME for analyzing diversifying selection
using different assumptions and statistical models (27, 28) detected selection on the
designated site in 35% to 79% of the diversifying selection simulations (Fig. 3A). SALC
and FUBAR can also be utilized to detect purifying selection. They detected purifying
selection on the designated site in 81% to 82% of the purifying selection simulations.
Another algorithm for convergent evolution named DEPS (18) detected selection for
the designated mutation in the designated site in 59% of the polyphyletic convergent
evolution simulations. DMAMS detected the beneficial mutation that had been accu-
mulated polyphyletically by convergent evolution in only 10% of our simulations.
Since DMAMS was developed to detect selective sweep of strains with a certain muta-
tion in a monophyletic subpopulation, the sensitivity of DMAMS was not high enough

FIG 2 Schematic principle of DMAMS. First, the rooted phylogenetic tree is scanned if there is a
cluster with a genetic signature that is rarely shared with strains outside of the cluster. When a
cluster with a certain genetic signature is detected, Tajima’s D for the cluster is calculated. Tajima’s D
values for nodes inside the cluster and in the rest of the tree are also computed. There are two
criteria to detect a cluster under monophyletic selective sweep: one is an absolute criterion that
Tajima’s D of the cluster is significantly low, and the other is a relative criterion that Tajima’s D values
at each node in the cluster are significantly smaller than the values at each node in the rest part of
the tree. When both criteria are met, the genetic signature of the monophyletic cluster is considered
to have an association with potential selective sweep.
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FIG 3 Detection of selection by different methods for different evolutionary scenarios. (A) Proportion of detection of selection at a specific site by various
tools for 100 simulations under the neutral evolution, diversifying selection, purifying selection, polyphyletic convergent evolution, and monophyletic
selective sweep models. Population size, 200 for all simulations. For the monophyletic selective sweep model, the selection coefficient by a beneficial
genetic signature is 2.0. (B) Proportion of detection of selection at a specific site by DMAMS for 100 simulations under the neutral evolution and
monophyletic selective sweep models. An entire population size is either decreasing (contraction) or increasing (growth). For the monophyletic selective
sweep model, the selection coefficient by a beneficial genetic signature is 2.0. Details of the population change in the simulations are described in Materials
and Methods. (C) Proportion of detection of selection at a specific site by DMAMS for 100 simulations under the neutral evolution and monophyletic
selective sweep models using the evolutionary model with parameters obtained from the HA gene of influenza A virus. Population size, 200. For the
monophyletic selective sweep model, the selection coefficient by a beneficial genetic signature is 2.0. (D) Proportion of detection of selection at a specific
site by DMAMS for 100 simulations under the monophyletic selective sweep model according to the selection coefficient by a beneficial genetic signature.
Population size, 200. (E) Proportion of detection of selection at a specific site by DMAMS for 100 simulations under the monophyletic selective sweep
model according to the effective population size. The selection coefficient by a beneficial genetic signature is 2.0. (F) Proportion of detection of selection at
a specific site by DMAMS for 100 simulations under the monophyletic selective sweep model according to the sampling size. Population size, 400. The
selection coefficient by a beneficial genetic signature is 2.0.
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to detect a beneficial mutation under polyphyletic convergent evolution. Those tools,
SLAC, FUBAR, MEME and DEPS, detected selection in 3% to 17% of the monophyletic
selective sweep simulations. Other tools to detect a region under selective sweep,
SweeD and OmegaPlus, also did not detect the beneficial mutation in the monophy-
letic selective sweep simulations. This is likely because their algorithms are not suitable
for detecting selective sweep that has caused a selection advantage in monophyletic
strains. Details are presented in Discussion. In contrast, DMAMS detected selective
sweep by the designated mutation in the designated site in 97% of the monophyletic
selective sweep simulations. The false-positive rate of DMAMS was 2% (positivity in the
neutral evolution simulations).

Sensitivity and specificity of DMAMS in different evolutionary scenarios and
population models.We then tested the performance of DMAMS for a viral population
whose effective population size has expanded or contracted because Tajima’s D is
strongly affected by changes in population size. When a whole viral population has
expanded and monophyletically clustered strains in a subpopulation have shared a
certain mutation just by chance, DMAMS did not detect the mutation as associated
with selective sweep (i.e., few false positives, as shown in the left side of Fig. 3B). Also,
when a whole viral population size has contracted but monophyletically clustered
strains have predominated because of monophyletic selective sweep by a certain ben-
eficial mutation, DMAMS detected the mutation as associated with selective sweep
with high sensitivity (i.e., few false negatives, as shown in the right side of Fig. 3B). The
good performance was achieved because DMAMS not only calculates Tajima’s D of the
cluster of strains with a mutation of interest ensuring selective sweep but also com-
pares Tajima’s D values for nodes inside the cluster and the values for nodes in the rest
of the tree to see the effect that is specific in the monophyletic cluster of strains with
the certain mutation.

We also simulated the evolution of a viral genome assuming a general time reversi-
ble (GTR) nucleotide substitution model with gamma distribution of evolutionary rates
among sites using parameters obtained from data of the HA gene of human influenza
A virus, along with a deleterious effect for most nonsynonymous mutations, to repro-
duce a more realistic evolution of the viral genome. DMAMS still detected a beneficial
mutation as associated with selective sweep in 90% of the monophyletic selective
sweep simulations (i.e., true positives) and detected a nonbeneficial mutation in only
1% of the neutral evolution simulations (i.e., false positives) (Fig. 3C).

The high sensitivity in detecting a genetic signature causing monophyletic selective
sweep by DMAMS was achieved when the selection coefficient was 200% (i.e., strains
with the designated genetic signature were twice as likely to produce offspring in the
next round as were strains without the genetic signature) (Fig. 3A to C). The sensitivity
of DMAMS depends on the degree-of-fitness increase by the genetic signature
(Fig. 3D). The sensitivity of DMAMS also depends on the effective population size and
sampling size (Fig. 3E and F). The increase in Tajima’s D value is attributed to the low
sensitivity of DMAMS in evolutionary scenarios with a small selection coefficient and
small effective population size (see Fig. S1A to C in the supplemental material).
Changing the parameter setting for “minimum size of cluster to test” in DMAMS might
restore sensitivity in some scenarios (Fig. S1D). On the other hand, the specificity of
DMAMS was robust over those different evolutionary scenarios and settings in DMAMS
(Fig. S2).

Application of DMAMS to viral data. We applied DMAMS to real viral genetic/
genomic data. As described in the introduction, DMAMS was developed to detect not
sites with frequent mutations but genetic signatures associated with monophyletic
selective sweep. Ebolavirus has been introduced into human populations several times
(29), and the largest outbreak occurred in West Africa in 2014 to 2015 (30). A mutation
at position 82 of the glycoprotein (GP) gene of the virus was reported under positive
selection using the calculation of dN/dS (i.e., diversifying selection) (31). The mutation
could affect its infectivity, which may have led to the large outbreak (31, 32). The diver-
sifying selection on the site was detected using not only viral genetic data during the
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2014-2015 outbreak but also historical data since 1976 (31). Although repeated jumps
of the host species barrier from a natural host to humans made the possibly adaptive
mutation at position 82 of the GP gene evident, whether the mutation affected the
spread of the disease in 2014 to 2015 remains inconclusive (33). In fact, when we ana-
lyzed sequence data collected only during the 2014-2015 outbreak, neither SLAC nor
DEPS detected positive selection on the site because of the limited number of muta-
tion events on the site in the single outbreak (Table 1). In contrast, DMAMS identified a
monophyletic cluster with the genetic signature 82V in the GP gene (Fig. S3A) and
found an association with potential selective sweep. The result provides supporting
evidence for the importance of the mutation in the spread of the disease during the
outbreak. DMAMS also found other genetic signatures associated with monophyletic
selective sweep during the 2014-2015 outbreak (Table 1). Among them, 111C in the
nucleoprotein (NP) gene and 759G in the RNA-dependent RNA polymerase encoded in
the L gene were reported to affect the replication efficiency shown by molecular
experiments (34).

We next tested if drug-resistant mutations of influenza A virus were associated with
monophyletic selective sweep because of the global transmission and spread of drug-
resistant strains among human populations (35–37). Oseltamivir-resistant mutations in
the influenza A virus have been reported mainly in patients given the antiviral (12, 38),
and calculation of dN/dS using sequence data of the NA gene of influenza A(H1N1)
pdm/09 virus revealed diversifying selection on a site responsible for the drug sensitiv-
ity (39). However, in the 2007-2008 season, a strain of human H1N1 virus with a specific
oseltamivir-resistant mutation, 275Y in the NA gene, emerged, and its monophyletic
descendants spread to people, including those without a history of antiviral use (36,
40). We analyzed genetic data of the virus collected in that single season, because the
effective population size of influenza A virus fluctuates from season to season (41). We
identified both a monophyletic cluster with the genetic signature 275Y and sporadic
occurrence of strains with the mutation (Fig. S3B). Whereas DEPS identified a signifi-
cantly high frequency of 275Y substitutions, DMAMS showed that Tajima’s D of the
monophyletic cluster of strains with the mutation was not smaller than that of the
other strains without the mutation (Table 1). The result suggests that there was no
association between the monophyletically clustered drug-resistant strains and selec-
tive sweep at a population level, which seems reasonable because the antiviral was
not administered to most people for prophylaxis or treatment.

We also utilized DMAMS to investigate intrahost viral evolution (i.e., quasispecies).
Rogers et al. reported a case of influenza infection by analyzing the mutational spec-
trum of an H3N2 influenza A virus population sampled from an immunocompromised
patient who had shed virus over a 21-month period (42). The patient was infected with
quasispecies of drug-sensitive and -resistant viruses during the course of treatment
with neuraminidase inhibitors. Although the study by Rogers et al. simply investigated
the time course trend of frequency of drug-resistant mutations, DMAMS can take
advantage of their data because they used PacBio single-molecule sequencing, which
yielded read lengths long enough to perform phylogenetic analysis. It is important to
mention that there must be an expansion of population size in intrahost evolution of
the virus. Still, DMAMS is not affected by such changes in an entire population size, as
shown in our simulation (Fig. 3B).

Two mutations responsible for resistance against a neuraminidase inhibitor, 119V
and 222V encoded in the NA gene, emerged during the treatment. Unfortunately, the
number of long reads covering the region including position 119 was not sufficient to
perform phylogenetic analysis; we focused on position 222. At the beginning of the
appearance of the drug-resistant 222V mutation, strains with the mutations did not
form a phylogenetic cluster (Fig. S3C). Two weeks after treatment began, the propor-
tion of strains with the drug-resistant mutations increased (42). DMAMS found that the
222V mutation was associated with a monophyletic cluster under potential selective
sweep, while the site showed a dN/dS of,1 (Table 1 and Fig. S3D). The results indicate
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that the drug exerted evolutionary pressure at an individual host level to induce not
diversifying selection but monophyletic selective sweep caused by the mutation.
Another genetic signature, 242I, was found in the same cluster under potential selec-
tive sweep along with 222V (Table 1). Acquisition of a drug-resistant mutation is known
to lead to a reduction in viral growth efficiency (43). The 242I mutation warrants further
investigation; it may have the potential to compensate for a decrease in viral growth
efficiency by a drug-resistant mutation.

Finally, we applied DMAMS to the data of SARS-CoV-2. SARS-CoV-2 appeared at the
end of 2019 and caused a worldwide pandemic in 2020 (44). A recent study reported
an increase in frequency of a certain mutation, D614G in the S gene encoding spike
protein; the mutation potentially increases the fitness of the virus, as shown by clinical
and experimental data (45, 46). Still, the significance of the mutation for public health
in the real world is controversial (47–49). Using sequence data of the virus published
by July 2020 from all over the world, a phylogenetic tree of the virus showed multiple
substitution events between D and G on the site and a monophyletic cluster with the
genetic signature 614G (Fig. S3E). The site was not under diversifying selection eval-
uated by SLAC or under convergent evolution toward G detected by DEPS (Table 1). In
addition, DMAMS did not show the 614G-specific population growth of monophyletic
strains (Table 1). Actually, not only the monophyletic strains with the genetic signature
but also strains outside of the cluster without the genetic signature had large-magni-
tude negative Tajima’s D values, 22.79 and 22.80, respectively. The result reflects a
rapid growth in population size of the novel virus by a global pandemic in a naive pop-
ulation. There was no significant difference in Tajima’s D values between strains with
and without the 614G mutation.

DISCUSSION

Here, we report an approach to detecting genetic signatures associated with mono-
phyletic selective sweep. Our method simply uses genetic sequence information as
data and can identify possibly beneficial mutations even if the mutation event
occurred only once throughout an evolutionary pathway. We also showed a proof-of-
concept application for viral genetic data.

Previously developed tools to detect selective sweep do not consider monophyletic
subpopulations with beneficial genetic signatures (22–25). In addition, they were
developed to detect a gene or a subregion of a gene under selective sweep; they could
not specifically identify a specific site associated with the selective sweep.
Furthermore, most of such tools, including SweeD and OmegaPlus tested in the pres-
ent study, were built for a diploidy genome (24, 25). They assume accumulation of al-
leles with characteristic genetic signatures by recombination, and they search the
region under selective sweep by checking linkage disequilibrium. Therefore, they are
not applicable to our idea of monophyletic selective sweep, that is, the expansion of a
monophyletic subpopulation caused by a one-time beneficial mutation. Looking at
this from the opposite perspective, DMAMS cannot be applied to data that include
sequences generated by recombination. This is because DMAMS depends on recon-
struction of the evolutionary path by a phylogenetic tree. The phylogenetic tree using
whole sequences cannot reflect the true evolutionary path when recombination has
occurred.

Another tool to detect convergent evolution, DEPS (18), was not sensitive enough
to detect a mutation under directional evolution that is shared only among monophy-
letic strains (Fig. 3A). Our algorithm, DMAMS, can identify a mutation associated with
monophyletic selective sweep even when the mutation event has occurred only once
in an evolutionary pathway. Still, it should be noted that DMAMS is not sensitive
enough to detect a beneficial mutation shared among polyphyletic strains (i.e., poly-
phyletic convergent evolution). Such a mutation is not the target for DMAMS. In other
words, DMAMS is not a tool to replace existing tools for detecting (polyphyletic)
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convergent evolution but is a complementary tool to evaluate the significance of
mutations shared only among monophyletic strains.

Because DMAMS utilizes a site-frequency spectrum of genetic sequences by calcu-
lating Tajima’s D, it can detect genetic signatures not only of deduced amino acids in a
coding region but also nucleotides in both coding and noncoding regions. With
increasing understanding of the functional roles of genetic sequences themselves,
including regulation of DNA/RNA stability, transcription and translation efficiencies,
and interaction with other molecules (50–53), methods of identifying genetic signa-
tures responsible for selective sweep at the nucleotide level should be of great interest.
Unfortunately, because genetic data of noncoding regions were not abundant com-
pared to those of coding regions, we could not find a good example to show this
advantage of our method.

We showed that the sensitivity of DMAMS depends on the magnitude of the selec-
tion coefficient given by a beneficial mutation. We defined the selection coefficient in
our simulations as the likelihood to produce offspring in the next round of generation
(Fig. 3D). In real data of viral evolution, the definition of generation is context depend-
ent, such as “a single round of replication in a cell” or “transmission from one host to
another,” and those are difficult to observe. Therefore, magnitudes of selection coeffi-
cient are hard to be inferred using real viral genetic data. It is important to note that
no detection of mutations associated with selective sweep by DMAMS does not neces-
sarily mean that there is no selective sweep, especially when the degree of fitness by a
beneficial mutation is not very high.

Our method is limited by the fact that DMAMS cannot detect causal relationships
between genetic signatures and selective sweep but simply detects an association
between them. Theoretically, DMAMS cannot distinguish a true beneficial mutation
causing monophyletic selective sweep apart from “hitchhiking” mutations that were
introduced simultaneously with the beneficial mutation (54, 55). There is also a caveat
that the data set for DMAMS should include only strains circulating in the same envi-
ronment. For example, when DMAMS detects a mutation that was found only in a spe-
cific geographical area as a mutation associated with potential selective sweep, it is
possible that the expansion of the subpopulation is not caused by selective sweep by
the certain mutation but is due to external factors that are different between the two
areas, such as size and density of the host population, host genetic factors, and envi-
ronmental conditions. Mutations identified by DMAMS should be further investigated
for possible confounding with other factors.

As we have seen, the emergence of mutation and its fixation process can be
observed in real time, particularly with rapidly evolving viruses (2, 56). DMAMS can
identify genetic signatures associated with monophyletic selective sweep. However, it
cannot prove a causal relationship between mutation and selective sweep. Further
studies are required to show the biological significance of identified mutations. Even
though DMAMS cannot yield direct evidence of the evolutionary significance of a cer-
tain mutation, it is a useful tool, like genome-wide association study, to identify a can-
didate mutation that is potentially important (57). DMAMS has the potential to reveal
previously unrecognized biological functions and mechanisms, thereby deepening our
understanding of molecular and evolutionary biology.

MATERIALS ANDMETHODS
The DMAMS algorithm. Aligned genetic (DNA or RNA) sequence data and their associated rooted

phylogenetic trees were used to detect genetic signatures associated with monophyletic selective
sweep. Figure 2 illustrates the schematic principle of the Tajima’s D-based identification of mutation
associated with monophyletic selective sweep (DMAMS) algorithm. First, a rooted phylogenetic tree was
scanned for a monophyletic cluster with a genetic signature that is rarely shared with strains outside the
cluster. Genetic signature can be either an encoded amino acid or a nucleotide at a certain position.
DMAMS scans all 20 amino acids (or 4 nucleotides) at every position of sequence data. In addition, all
nodes in the phylogenetic tree are scanned for each amino acid (or each nucleotide) at each site for clus-
tering. The minimum cluster size to test can be determined at the user’s discretion. In the present paper,
the parameter was set at 5% for the minimum cluster size for all analyses unless otherwise noted. When
the proportion of strains with a genetic signature in a monophyletic subgroup was higher than 90%
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and the proportion of strains with the genetic signature in the rest of the data set was smaller than 50%,
the monophyletic subgroup was regarded as a cluster with the genetic signature. Although ideally
100% of the monophyletically clustered subpopulation shares the same beneficial mutation, there might
be further mutations resulting in the loss of the beneficial mutation in some strains in the subpopula-
tion. Therefore, we set a 10% margin. For example, when “the minimum size of cluster to test” is 5%,
the minimum percentage required for the detection of a potentially beneficial mutation by DMAMS is
(5% � 90% =) 4.5%. We regarded that as small enough to detect selective sweep in its early stage.

When a monophyletic cluster with a certain genetic signature was detected, Tajima’s D for the clus-
ter was computed. Tajima’s D values were also computed for nodes inside the cluster and for nodes in
the rest of the tree, excluding the outgroup used for rooting the phylogenetic tree. The nodes for the
calculation of Tajima’s D should include at least the minimum size of strains for a cluster. Similar inferen-
tial methods to measure fitness (i.e., selection coefficient) of strains in a phylogenetic clade are discussed
elsewhere (10, 23, 58, 59). We set two criteria to detect a monophyletic cluster under potential selective
sweep. One is an absolute criterion that Tajima’s D of the cluster is lower than 21.5 (with approximately
90% confidence [26]), and the other is a relative criterion that Tajima’s D values at each node in the clus-
ter are significantly smaller than the values at each node in the rest of the tree. The absolute criterion is
to detect potential selective sweep for monophyletically clustered strains with a genetic signature. The
relative criterion is to see their cluster-specific selective sweep, excluding the effect of changes in effec-
tive population size of an entire population. When both criteria were met, the genetic signature of the
cluster was considered to have an association with potential selective sweep. For the relative criterion,
comparison of Tajima’s D values at nodes in the cluster with the values at nodes outside the cluster
was made with the Mann-Whitney U test. A P value of less than 0.05 was considered statistically signif-
icant after adjustment for false discovery using the Benjamini-Hochberg procedure (60). The algorithm
of DMAMS was implemented in a script we developed, which is available at https://github.com/
yukifuruse1217/DMAMS.

Simulation of evolution. The evolution of viral genes was simulated with a constant population
size of 50 to 400 or under an exponential growth or contraction population model. The effective popula-
tion size increases from 10 to 400 at 1,000 rounds of generation in the slow growth model, it increases
from 10 to 400 at 100 rounds of generation in the rapid growth model, and it decreases from 1,000 to
200 at 1,000 rounds of generation in the contraction model. The virtual gene was composed of 3,000 nu-
cleotides, and the whole region of the gene had an open reading frame (i.e., 1,000 deduced amino
acids). In a given round, each strain produced a number of offspring to populate the next round
depending on the fitness of the strain determined by the selection coefficient. Nucleotide mutation
(substitution) occurred at a rate of 0.002 per site per round; the substitution rates among four nucleo-
tides were the same (i.e., Jukes-Cantor model). Five evolutionary models for simulations to change fit-
ness according to mutation at a designated site were included: neutral evolution, diversifying selection,
purifying selection, polyphyletic convergent evolution, and monophyletic selective sweep.

In the neutral evolution model, every strain has the same fitness regardless of mutations. In the diversi-
fying selection model, strains increase the fitness when any nonsynonymous mutations occur at a desig-
nated position. In the purifying selection model, strains decrease the fitness when any nonsynonymous
mutations occur at a designated position. In the polyphyletic convergent evolution model, strains increase
the fitness when a designated nonsynonymous mutation occurs at a designated position. In the monophy-
letic selective sweep model, strains exhibit high fitness throughout generations as long as they possess a
designated genetic signature at a designated position. The degree to increase fitness (selection coefficient)
by the designated mutation was subject to change to investigate the sensitivity of DMAMS, ranging
between 1.044 and 2.0. For example, when the selection coefficient is 2.0, strains with the designated
genetic signature are twice as likely to produce offspring in the next round than strains without the genetic
signature. Simulations were run 100 times for each setting and stopped at 2,000 to 4,000 rounds of genera-
tion for neutral evolution, diversifying selection, and purifying selection models. Simulations were stopped
when the proportion of strains with a designated beneficial genetic signature exceeded 30% of the entire
population for the polyphyletic convergent evolution and monophyletic selective sweep models.

In addition, simulations that are more realistic in reproducing viral evolution were run. We acquired
parameters for viral evolution using data of the HA gene of human influenza A (H3N2) virus between
2009 and 2018, assuming a GTR nucleotide substitution model plus gamma distribution for evolutionary
rates among sites. Also, in the simulation, we assumed that nonsynonymous mutations decrease fitness
except for a designated beneficial mutation. The all-evolutionary simulations were implemented in a
script we developed, which is available at https://github.com/yukifuruse1217/DMAMS.

Tests for evolutionary selection using simulated data. Genetic sequences of strains at the final
round of simulation were sampled along with the original sequence before introducing any muta-
tion to root the phylogenetic tree. Phylogenetic trees were constructed using a maximum-likelihood
method with the Jukes-Cantor model or the GTR plus gamma distribution model using MEGA7 (61).
The sequence data and phylogenetic tree were used to test diversifying selection by SLAC (27),
FUBAR (62), and MEME (63), to test purifying selection by SLAC and FUBAR, to test convergent evolu-
tion by DEPS (18), and to test selective sweep by SweeD3.0 (25), OmegaPlus (24), and DMAMS.

Viral genetic data. Genetic sequences of the whole genome of ebolavirus collected in West Africa
between 2014 and 2015 and the NA gene of human H1N1 influenza A virus from the Northern
Hemisphere in the 2007-2008 season were obtained from GenBank via Virus Variation Resource
(https://www.ncbi.nlm.nih.gov/genome/viruses). All genetic sequences of the whole genome of
SARS-CoV-2 were obtained from GenBank via SARS-CoV-2 Resources (https://www.ncbi.nlm.nih.gov/
sars-cov-2/), accessed on 6 July 2020.
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Genetic sequences of the NA gene for quasispecies of human H3N2 influenza A virus in a single
patient were obtained from SRA (accession no. PRJNA253584) (42). Reads generated by PacBio were
mapped to a reference genome [A(H3N2)/California/7/2004], and mapped reads were trimmed to
include genetic signatures of interest (amino acid position 222) so that the final data have the maxi-
mized number of sequences.

Sequence data including ambiguous nucleotides were removed for further analyses. Strains with
identical nucleotide sequences in the same data set were also excluded for two reasons. (i) Tajima’s D is
a statistic to indicate change in population size and/or existence of selection. Having identical sequences
in a data set will not give any additional information on them. (ii) Because DMAMS calculates Tajima’s D
values at internal nodes of the phylogenetic tree, it will be impossible to compute the values when a
node contains a cluster composed only of identical sequences.

Phylogenetic trees were constructed using a maximum-likelihood method based on a GTR substitu-
tion model using MEGA7 (61) for influenza virus and RAxML (64) for ebolavirus and SARS-CoV-2. The
trees were rooted using an old strain of the same virus. Sequence data, along with the phylogenetic
tree, were tested using SLAC, DEPS, and DMAMS to detect sites under evolutionary selection.

Data availability. All genetic data analyzed in the study were acquired from public databases,
GenBank and SRA, as described above. The source code for DMAMS and evolutionary simulations devel-
oped in the present study can be found at GitHub (https://github.com/yukifuruse1217/DMAMS).
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