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Abstract
A boundary optimal control problem arising in time-space SIR epidemic models is treated. In this work we aim with the
control of the flux of infected individuals crossing part of boundary. On the other side of the domain, we suppose a nonlinear
boundary condition of third kind: nonlinear Robin boundary condition, this condition models immersing individual crossing
this part of the boundary of the domain of study.We give the existence and uniqueness of the solution of both state and optimal
control problem ending some numerical tests throughout a simple example.
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1 Introduction and problem setting

1.1 Introduction

Mathematical modelling have been extensively employed
for obtaining interesting quantitative and qualitative infor-
mation in different fields especially in the healthcare sector.
These informations are the basic criterion to provide useful
guidelines to outbreakmanagement and policy development.
Epidemiology is one of essential population biology disci-
plines that is concerned with public health. Epidemiological
models provide important powerful means for predicting
the spread of a disease and then controlling and under-
standing the dynamics which effect its transmission and
diffusion through a given population. A famous example
of such model based on the compartmental analysis is the
Susceptible-Infected-Recovered (SIR) model and its vari-
ants, for epidemic [1–3], the Lotka–Volterra model for
predator-prey dynamics [1,4] and demographic and migra-
tion models established in sociology and demography [5,6].

The majority of models confronted in such literature are
based on compartmental analysis and consisting of systems
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of ordinary differential equations (ODEs). In spite that these
models are simple in their formulation, analysis, and simple
to solvemathematically and numerically, they are inadequate
to describe diffusion and dynamic in both space and time.
A common way to deal with introduce spatial variation into
such ODEmodels is by considering meta-population models
(models describing a population consisting of n subpopula-
tions which are connected by immigration or emigration)
[7,8], in other words by defining regional compartments
corresponding to different areas in physical space, with cou-
pling terms added to the model equations to account for
the movement of species among the different regions [8–
11]. This approach was lately developed in [12,13] to model
and describe the spread of the recent pandemic produced
by COVID-19 virus among the different regions in Italy.
Despite that this approach may be adequate for some appli-
cation and description of complex spatial dynamics within
compartments is difficult and possibly even non-feasible in
this framework. Moreover, Some existing work consider an
optimal control of SIR model by introducing density of vac-
cination in the model which is treated as control function
[14–17] and then minimize a given cost function. This pro-
cedure can be considered as introducing a new compartment
of vaccination and look for a density that decrease the number
of infected and susceptible individuals in considered popu-
lation.

In this paper we consider a compartmental SIR-model
based on partial differential equations (PDEs) which include
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spatial information more naturally [18–23]. Generally, PDE
models take into consideration a space continuous descrip-
tion of the suitable dynamics, enabling the description of
dynamics in both time and space beyond all scales. This
furnishes a significant interest over ODE models, whose
capacity to describe spatial information is limited by the num-
ber of spatial compartments that the model includes. Our
contribution consists in a boundary optimal control prob-
lem [24–27] subject to an SIR-diffusion model describing a
time–space spread of a disease. The constraint is a system
of three PDEs with Dirichlet and Neumann boundary condi-
tion concerning the S and R unknown. Concerning the third
unknown, we adopt a non linear Robin boundary condition
(boundary condition of third kind), this is motivated by the
fact that the Robin boundary conditions describe when part
of the infected individuals I is “immersed” at the prescribed
part of the boundary. This is the case where infected indi-
viduals can travel between different region and we interested
in the influence of this hypothesis on the population of the
specific region � subject to our study. On the second part of
the boundary, we control the flux of individual constituting
the population.

The present paper is Briefly outlined as follows. In the
next section we introduce the time splitting method in order
to handle the non linearity and we state the existence and
uniqueness of the solution. In Sect. 3 we study the optimal
control problem and provide a necessary optimality condi-
tion. Section 4 is devoted to the numerical illustrations by
mean of simple example.

1.2 Problem setting

We start this subsection with some useful notations. Let �

be an open bounded polyhedral domain subset of Rd(d =
1, 2, 3) with a boundary � = ∂�. We define the norm
‖ · ‖L2(�) for the Sobolev space L2(�). We shall denote by
(
H1(�)

)′
the dual space of the Sobolev space H1(�), and

similarly
(
H

1
2 (�)

)′
.

Let the boundary � consist of three disjoint parts � =
�1 ∪ �2 ∪ �3, with �1 and �2 being the union of some (d −
1)-dimensional polyhedral domains. To consider a spatially-
temporally dependent problem,wedefine the spatial-temporal
domains Q and �i , for i = 1, 2, 3, respectively, by

Q = (0, T ) × � and �i = (0, T ) × �i

The thermal conductivity q(x) ∈C(�̄) satisfies 0 < q0 ≤
q ≤ q1 < ∞ for some positive constants q0 and q1. In the
following sections, we shall frequently use the notation C to
denote a generic constant,whichmaydiffer at every situation.
When no confusion can occur, we shall ignore the symbols
dx, ds and dt in the integrals for notational simplicity.

Now we are in position to state our reaction-diffusion SIR
model,whichwill be the direct problemwith nonlinearRobin
problem as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u − ∇ · (q∇u) = fβ,γ (u), in Q

q ∂u
∂n + g(u) = 0, on �1

q ∂u
∂n = σ, on �2

u = 0, on �3

u(x, 0) = u0(x),

(1.1)

where u =
⎡

⎣
S
I
R

⎤

⎦, fβ,γ (u) =
⎡

⎣
−βSI

βSI − γ I
γ I

⎤

⎦, g =
⎡

⎣
g1

g2(I )
g3

⎤

⎦, q =
⎡

⎣
q1
q2
q3

⎤

⎦, σ =
⎡

⎣
0
σ2
0

⎤

⎦.

In order to afford the existence and uniqueness, we sup-
pose that the map g2(·, ·) satisfies the following properties

g2(x, 0) = 0 a.e. in �1

g2(·, ξ) is measurable a.e. in R

g2(x, ·) is strictly increasing a.e. in �1

g2(x, ·) is continuous a.e. in �1

lim
ξ→∞ g(x, ξ) = ∞ a.e. in �1

(1.2)

After all g(x, ·) is strictly increasing for a.e. x ∈ �1, then
it has an inverse which we express as g̃(x, ·). Let G, G̃ :
�1 × R → [0,∞) be defined by

G(x, u) :=
∫ u

0
g(x, η) and G̃(x, u) :=

∫ u

0
g̃(x, η)

It follows that for a.e. x ∈ �1,G(x, ·) and G̃(x, ·) are contin-
uous, strictly increasing, convex andG(x, 0) = G̃(x, 0) = 0.

Definition 1.1 [28] The functions G(x, ·) and G̃(x, ·) are
called complementary N -functions.

Definition 1.2 1. (
2)-condition:We say thatG and G̃ sat-
isfy the (
2)-condition, if there exist constants 0 <

c1, c2 ≤ 1 such that

(
2)

{
c1ξg(x, ξ) ≤ G(x, ξ) ≤ ξg(x, ξ),

c2ξ g̃(x, ξ) ≤ G̃(x, ξ) ≤ ξ g̃(x, ξ)

for all ξ ∈ R and a.e. x ∈ �1.
2. The condition (G): We say that g satisfies the condition

(G) if

(G)

{
there is a constant c ∈ (0, 1] such that
c|g(x, ξ − η)| ≤ |g(x, ξ) − g(x, η)|
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for all ξ, η ∈ R and a.e. x ∈ �1.

Let γ u be the trace of u on �1 and let g : �1 × R → R

satisfy (1.2) and G, G̃ : �1 × R → [0,∞) satisfy the (
2)-
condition. We denote by LG(�1) the following Musielak-
Orlicz space

LG(�1) :=
{
u ∈ M(�1) : G(·, u) ∈ L1(�1)

}

where we denote by M(�1) is the space of all measurable
functions on�1. SinceG and G̃ satisfy the (
2)-condition, it
follows from [28] thatLG(�1) endowed with the Luxemburg
norm

‖u‖G,�1 := inf
{
k > 0 : ‖G(·, u/k)‖L1(�1)

≤ 1
}

is a reflexive Banach space. In addition, by [28] one has the
following generalized version of Hölder’s inequality:

∣∣∣∣

∫

�1

uv

∣∣∣∣ ≤ 2‖u‖G,�1‖v‖G̃,�1
(1.3)

Now we introduce the state vector space V given by

V :=
{
u ∈ H1(�) : γ u ∈ LG(�1) and u = 0 on �3

}

endowed with the norm

‖u‖V := ‖u‖H1(�) + ‖u‖G,�1 .

2 Time splitting and existence of solution

The system of Eq. (1.1) are split into two systems of sub
equations as follows, the nonlinear reaction equations

{
1
2∂t u = fβ,γ , (u) in Q

u(x, 0) = u0(x),
(2.1)

which are used for the first half of the time step, and the linear
diffusion equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2
∂t u − ∇ · (q∇u) = 0, in Q

q� ∂u

∂n
+ g(u) = 0, on �1

q� ∂u

∂n
= σ, on �2

u = 0, on �3

(2.2)

which are used for the second half of the time step. The
numerical method used to solve the equations is the forward
Euler scheme.

The above equations transform to

un+ 1
2 = un + 2δt f nβ,γ , in � (2.3)

where f nβ,γ =
⎡

⎣
−βSn I n

βSn I n − γ I n

γ I n

⎤

⎦, Sn, I n and Rn indicate

the approximate values of S, I and R at position x and time

nδt, n = 0, 1, . . . andwhere Sn+ 1
2 , I n+ 1

2 , and Rn+ 1
2 indicate

the representative values at the half-time step.
Similarly, for the second half time step

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+1 − 2δt∇ · (q∇un+1) = un+ 1
2 , in �

q� ∂un+1

∂n
+ g(un+1) = 0, on �1

q
∂un+1

∂n
= σ, on �2

un+1 = 0, on �3

(2.4)

where g(un+1) =
⎡

⎣
g1

g2(I n+1)

g3

⎤

⎦ .

Below our analysis will be reserved to the nonlinear ellip-
tic boundary value problem given by (2.4). For the sake of
simplicity we shall omit the exponent n+1 since the interval
time is discretised we omit the dependence in time for the
maps g, g̃, G and G̃.

The weak formulation of (2.4) is give as follows
∫

�

uv + 2δt
∫

�

q∇u∇v + 2δt
∫

�1

g(u)v

=
∫

�

un+ 1
2 v + 2δt

∫

�2

σv (2.5)

Now, let us define the following nonlinear form

a(u, v) =
∫

�

uv + 2δt
∫

�

q∇u∇v + 2δt
∫

�1

g(u)v (2.6)

and we have the following result

Lemma 2.1 Assume that g satisfies all assertions in (1.2)
and that G and G̃ satisfy the (
2)-condition. Then the
bilinear form a(·, ·) is monotone and hemicontinuous and
a(u, ·) ∈ V ′ for all u ∈ V . Furthermore a(·, ·) is coercive,
i.e.

a(u, u)

‖u‖V → ∞ as ‖u‖V → ∞.

Proof Since g(·) is strictly increasing we have a(u, u−v)−
a(v, u − u) ≥ 0 for u, v ∈ V , that is a(·, ·) is monotone. by
the continuity argument of g(·) for a.e. x ∈ �1, we obtain
that for all u, v, w ∈ V ,

a(u + sv,w) −→ a(u, w) as s ↘ 0.

therefore a(·, ·) is hemicontinuous.
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Let us show that a(u, ·) ∈ V ′ ∀u ∈ V . It is clear that
a(u, ·) is linear. Let u, v ∈ V . Using (1.3) we obtain that

|a(u, v)| ≤ ‖u‖L2‖v‖L2 + ‖∇u‖L2‖∇v‖L2 +
∣∣
∣∣

∫

�1

g(u)vd�

∣∣
∣∣

≤ C‖u‖V ‖v‖V
+ 2max

{
1,

∫

�1

G̃(x, g(u))d�

}
‖v‖G,�1

≤
(
C‖u‖V + 2max

{
1,

∫

�1

G̃(x, g(u))d�

})
‖v‖V

Using the fact that 0 ≤ G̃(x, g(ξ)) ≤ (1/c1)G(x, ξ),we get
that a(u, ·) ∈ V ′ for every u ∈ V . Finally, because of both
G and G̃ satisfy the (
2)-condition, it follows that

∫

�1

g(u)udσ

‖u‖G,�1

−→ +∞ as ‖u‖G,�1 → +∞

we get immediately

lim‖u‖V →+∞
a(u, u)

‖u‖V = +∞

as consequence a(·, ·) is coercive. ��
The existence and uniqueness of the solution of the prob-

lem (2.4) is stated in the following

Theorem 2.2 Assume that g satisfies (1.2) and that G and G̃
satisfy the (
2) -condition. Let f ∈ L p(�) then the prob-
lem (2.4) has a unique weak solution. Moreover we have the
following majoration

‖u‖H1 ≤ C(‖ fβ,α‖L p + ‖σ‖L2(�2)
) (2.7)

In the remainder part of this paper we restrict ourself to
the N -functions where g(u) given by

G(u) = eu − u − 1 (2.8)

Then the function g(·) obtained from G(·) have some inter-
esting properties:

(1) For a nonnegative integer k, g(·) is k-differentiable;
(2) For u ∈ H1(�), g(u) ∈ L2(�);
(3) For u ∈ H1(�), g(|u|) ∈ L1(�) and there exists a posi-

tive constant κ such that
∫

�

g(|u|) ≤ 1 + meas(�)

+meas(�)eκ2‖u‖2V + ‖u‖2V < ∞, (2.9)

where meas(�) is the measure of �.

In fact (see [29]), letu begiven in H1(�). Thenu ∈ H1/2(�).
Using embedding results forOrlicz-Sobolev spaces (see [28])
since � ⊂ R

2, we have H1/2(�) ⊂⊂ LG where the N -
function G(u) = eu

2 − 1. Thus there exists a constant κ > 0
such that

‖u‖LG ≡ inf

{
λ;

∫

�

e
|u|2
λ2 − 1 ≤ 1

}
≤ κ‖u‖V < ∞

Hence for a small (enough) ε > 0 and for r = ‖u‖LG + ε

we obtain

∫

�

[
e

|u|2
r2 − 1

]
≤ 1

so that

∫

�

e
|u|2
r2 ≤ 1 + meas(�)

Let us set M = r2. An elementary calculation gives

ex < ex
2 ∀|x | > M

Setting K = eM , i.e., K = er
2

< ∞, we obtain

∫

�

e|u| =
∫

{x∈�:|u(x)|≥M}
e|u| +

∫

{x∈�:|u(x)|<M}
e|u|

≤
∫

�

e|u|2d� + Kmeas(�)

≤ 1 + meas(�) + meas(�)e
(‖u‖LA+ε

)2

≤ 1 + meas(�) + meas(�)e(κ‖u‖V +ε)2 < ∞.

making ε → 0 achieves the argument.
Next our contribution is concerned in the formulation of

optimal control problem. The classic way to do this is as
follows: Given a measurement or observation data uob of
u, find an optimal control σ such that the desired profile is
reached.

The regularized problems of optimal control problem then
given as the following minimization problems:

min
(σ,u)∈C×K

J (σ, u) := 1

2

∫

�

|u(σ ) − uob|2 + εR(σ ) (2.10)

subject to the parabolic equation (2.4), where C is a subset
of L2(�) defined by

C =
{
σ ∈ L2(�2); / σ ≤ σ ≤ σ

}
,

ε > 0 is a regularisation parameter.
We have the following result due to [29]:
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Lemma 2.3 Suppose that {uk} ⊂ L2 (�1) is a sequence such
that uk → u a.e. on �1, g satisfies (1.2) and

∫

�1

g (uk) ukd� ≤ C ∀k (2.11)

where C > 0 is a constant independent of k. Then

∫

�1

g(u)ud� ≤ lim inf
k→∞

∫

�1

g (uk) ukd�

and

lim
k→∞

∫

�1

|g (uk) − g(u)| d� = 0

Proof By (1.2), g is continuous and uk → u a.e. on �1, we
deduce that g (uk) → g(u) a.e. on �1. Since g is strictly
increasing map we have g(u)u ≥ 0 on �1 so that we may
use Fatou’s result to get

∫

�1

g(u)ud� ≤ lim inf
k→∞

∫

�1

g (uk) ukd� ≤ C

Hence g(u)u ∈ L1(�1). Put S = sup|x |≤1 |g(x)|, from the
identity

|g(t)| = |x |−1g(x)x ∀x �= 0 (2.12)

we conclude that

|g(x)| ≤ g(x)x + S ∀x ∈ R

Thus

|g(u)| ≤ |g(u)||u| + S on �1

i.e., g(u) ∈ L1 (�1). Employing again the identity (2.12) we
obtain, for each δ > 0 and for a.e. x ∈ �1, either

|uk | ≤ δ−1

or

|g(u)| ≤ δg (uk) uk

so that

|g(u)| ≤ Cδ + δg (uk) uk on �1

where Cδ = sup|x |≤δ−1 |g(x)|. For every measurable subset
�s ⊂ �1 we have

∫

�1

|g (uk)| d� ≤ Cδmeas(�s) + δ

∫

�1

g (uk) ukd�

It is straightforward that

∫

�s

g (uk) ukd� ≤ C

for k greater than some given integer N > 0. Thus

∫

�s

|g (uk)| d� ≤ Cδmeas(�s) + δC ∀n > N

wheremeas(�s) is themeasure of�s . Hence, the sequence of
functions {g (uk)} has equi-absolutely continuous integrals.
By Vitali’s Convergence Theorem,

lim
k→∞

∫

�1

|g (uk) − g(u)| d� = 0.

��
We are now prepared to prove the existence of an optimal

solution.

Theorem 2.4 Assume that g(u) ∈ L2(�1) for u ∈ H1(�).
Then there exists an element (û, σ̂ ) ∈ C × K that minimizes
(2.10) subject to (2.4).

Proof Theorem2.2 implies an element (u, σ ) exists such that
J (u, σ ) < ∞. Thus we may choose a minimizing sequence
{(uk, σk)} such that

lim
k→∞ J (uk, σk) = inf

(u,σ )∈C×K
J (u, σ )

and
∫

�

ukv + 2δt
∫

�

q∇uk∇v + 2δt
∫

�1

g (uk) v

=
∫

�

un+ 1
2 v + 2δt

∫

�2

σkv, ∀v ∈ H1(�) (2.13)

We deduce that {σk} is bounded in L2 (�2) and
{‖uk‖H1

}

is bounded. Hence we can extract a subsequence {(uk, σk)}
such that

uk⇀û in H1(�)

and

σk⇀σ̂ in L2 (�2) .

Furthermore, trace theorems and compact embedding results
imply uk → u in L2 (�1) ; this in turn implies uk → u
pointwise a.e. on �1 after extracting subsequence. By setting
v = uk in (2.13) we obtain

∫

�

|uk |2 + 2δt
∫

�

q |∇uk |2 + 2δt
∫

�1

g (uk) uk
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≤ 2δt ‖σk‖0,�2
‖uk‖0,�1 ≤ C ‖σk‖0,�2

‖uk‖H1

Hence we deduce
∫

�1

g (uk) uk ≤ M

where M is a constant independent of k. By Lemma 2.3 ,

∫

�1

g(û)ûd� ≤ lim inf
k→∞

∫

�1

g (uk) ukd�

and

lim
k→∞

∫

�1

∣
∣g (uk) − g(û)

∣
∣ = 0 (2.14)

For each v ∈ C∞(�), (2.14) allows us to pass to the limit
in (2.13) to obtain

∫

�

ûv + 2δt
∫

�

q∇û∇v + 2δt
∫

�1

g(û)v =
∫

�

un+ 1
2 v

+2δt
∫

�2

σ̂ v ∀v ∈ C∞(�̄)

Then using the denseness of C∞(�) in H1(�) and the fact
that g(û) ∈ L2 (�1), we obtain

∫

�

ûv + 2δt
∫

�

q∇û∇v + 2δt
∫

�1

g(û)v =
∫

�

un+ 1
2 v

+2δt
∫

�2

σ̂ v ∀ψ ∈ H1(�).

Thus (û, σ̂ ) ∈ C × K . Finally using the weak lower semi-
continuity of J (·, ·), we conclude that (û, σ̂ ) is indeed an
optimal solution, i.e.

J (û, σ̂ ) = inf
(u,σ )∈C×K

J (u, σ )

��

3 A necessary condition of optimality

In this section we will derive a necessary condition that an
optimal solution must satisfy. The existence of an optimal
solution has been established in the above section. In Sect. 2
we have shown that for each σ ∈ L2 (�2) , there exists a
unique u satisfying (2.5). Thus the state u is a well-defined
function of σ and will be denoted by u = u(σ ).

Our aim is to state the necessary condition rigorously and
express it in a more practical form. To this end we shall use
the following theorem (see [30, Lemma 3.11, p. 1127] and
[24])

Theorem 3.1 LetB be a Banach space X and Y two reflexive
Banach spaces. Let also be two C1 functions

F : B × X −→ Y , L : B × X −→ R.

We suppose that, for all σ ∈ B,

1. There exists a unique u(σ ) such that F(σ, u(σ )) = 0,
2. ∂2F(σ, u(σ )) is an isomorphism from X onto Y ,

Then, J (σ ) = L(σ, u(σ )) is differentiable and, for every
ζ ∈ B,

d J

dσ
(σ)ζ = ∂1L(σ, u(σ ))ζ − 〈p(σ ), ∂1F(σ, u(σ ))ζ 〉Y ′,Y

(3.1)

where p(σ ) ∈ Y ′ is the adjoint state, unique solution to

[∂2F(σ, u(σ ))]∗ p(σ ) = ∂2L(σ, u(σ )) in X ′. (3.2)

In order to apply this result we shall need the following
preparations. By Riesz’s representation theorem we define

〈y(σ ), v〉L2(�2)
= 2δt

∫

�2

σv

〈G(u), v〉L2(�1)
= 2δt

∫

�1

g(u)v

〈Au, v〉 =
∫

�

uv + 2δtq∇u∇v

〈un+ 1
2 , v〉 =

∫

�

un+ 1
2 v,

then we put

F(σ, u) = Au + G(u) − y(σ ) − un+ 1
2 (3.3)

Thus

∂1F(σ, u)ξ = −y(ξ) (3.4)

and

∂2F(σ, u)w = Aw + G′(u)w (3.5)

where

〈G′(u)w, v〉L2(�1)
= 2δt

∫

�1

g′(u)wv.

Theorem 3.2 The first order necessary optimality condition
reads: any optimal control σ satisfies

σ = − 1

β
p, on �2. (3.6)
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where p is the unique solution of

〈u − uob, w〉 = 〈p, Aw + G′(u)w〉 (3.7)

Proof Let us put B = L2(�2), X = V and Y = X ′.
The first assertion is straightforward. The second assertion

of Theorem 3.1 is fulfilled since the operator A in ∂2F is
coercive. Then, J (σ ) = L(σ, u(σ )) is differentiable and, for
every ζ ∈ B,

d J

dσ
(σ)ζ = ∂1L(σ, u(σ ))ζ − 〈p, ∂1F(σ, u(σ ))ζ 〉Y ′,Y (3.8)

where p(σ ) ∈ Y ′ is the adjoint state, unique solution to

[∂2F(σ, u(σ ))]∗ p = ∂2L(σ, u(σ )) in X ′. (3.9)

which is equivalent to

〈[∂2F(σ, u(σ ))]∗ p, w〉 = 〈∂2L(σ, u(σ )), w〉.

thus

〈p, ∂2F(σ, u(σ ))w〉 = 〈∂2L(σ, u(σ )), w〉.

and this is exactly (3.7).
Now the necessary condition is given by

d J

dσ
(σ)ζ = 0, for all ξ

and we have

d J

dσ
(σ)ζ = ∂1L(σ, u(σ ))ζ − 〈p, ∂1F(σ, u(σ ))ζ 〉Y ′,Y

= β〈σ, ξ 〉 − 〈p, y(ξ)〉,
d J

dσ
(σ)ζ = 0, for all ξ

is then equivalent to

β〈σ, ξ 〉L2(�2)
− 〈p, y(ξ)〉L2(�2)

= 0, for all ξ

which gives the condition (3.6). ��

4 Finite element approximation and
numerical example

We start by introducing the optimality system formed by
state variational equation, adjoint variational equation and
optimality condition (3.6) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∫
�
uv + 2δt

∫
�
q∇u∇v + 2δt

∫
�1

g(u)v = − 2δt
β

∫
�2

pv + ∫
�
un+ 1

2 v, ∀v ∈ V∫
�
pω + 2δt

∫
�
q∇ p∇ω + 2δt

∫
�1

g′(u)pω = 2δt
∫
� (u − uob) ω, ∀ω ∈ V

σ = − 1

β
p, on �2

(4.1)

A finite element discretization of the optimality system
(4.1) is defined in the usual approach. We assume � is a
convex polygonal domain and we choose families of finite
dimensional subspaces V h ⊂ H1(�) satisfying the approx-
imation property: there exists a constant C and an integer k
such that

‖u − uh‖H1 ≤ Chm‖u‖Hm+1 , ∀v ∈ Hm+1(�), 1 ≤ m ≤ k

(4.2)

where uh is the finite approximation of u and h is the size of
the approximation. In the rest of this paper we consider V h

like a finite dimensional space with piecewise continuous
functions vh ∈ C(�̄) such that for every K ∈ T h , vh/K ∈
P1(K ), where T h is a family of element K forming � and
P1(K ) is the vectorial space of polynomial of degree less
or equal 1. The family {V h} is a finite approximation of V
defined above since if vh/K ∈ P1(K ) the trace Tr(vh) of vh

is a scalar function which belongs to LG(�).
Now we provide a finite dimensional formulation of the

optimality system (4.1) as follows: Find uh and ph such that

⎧
⎪⎪⎨

⎪⎪⎩

∫
�
uhvh + 2δt

∫
�
q∇uh∇vh + 2δt

∫
�1

g(uh)vh = − 2δt
β

∫
�2

phvh + ∫
�
un+ 1

2 vh,∫
�
phωh + 2δt

∫
�
q∇ ph∇ωh + 2δt

∫
�1

g′(uh)phωh = 2δt
∫
�

(
uh − uhob

)
ωh,

σ h = − 1

β
ph, on �2

(4.3)

The state problem (4.3) is nonlinear, Newton Raphson
numerical method is employed the compute the numeri-
cal state solution to this problem which is assembled in
GNU Octave-6.1.0 using the usual piecewise finite element
approximation. To compute the adjoint state ph in the sec-
ond equation in the (4.3) LU decomposition is employed to
inverse the resulting matrix system. In Figs. 1, 2, 3, 4, 5 and
6 we visualize the solutions of the direct problem (1.1) for
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Fig. 1 The diffusion of susceptible individuals S at the second iteration

Fig. 2 The diffusion of Infected individuals Iat the second iteration

g =
⎡

⎣
0

β1eγ1 I − γ1 I − 1
0

⎤

⎦, I (0) = 1, R(0) = 0, a popu-

lation of N = 1000 individuals and the parameter’s choice
γ = 0.7, β = 0.3, β1 = 0.9 and γ1 = 0.4. Concerning
the time discretisation, we take T = 1 and δt = 0.01 for
both problems (2.4)–(2.4). Let � be the unit square defined
by � = (0, 1) × (0, 1) with boundaries �1 = [0, 1] × {0},
�2 = [0, 1] × {1} and �3 = � \ (�1 ∪ �2).

4.1 Example 1

On the boundary part�2 we define the control σob as follows:

σob = 3 sin(x), x ∈ �2.

In Figs. 1, 2, 3, 4, 5 and 6 we illustrate the solution
(S, I , R) with the above choice of parameters γ, β, β1

and γ1 at each time-step t2 and t50, respectively. At each

Fig. 3 The diffusion of recovered individuals R at the second iteration

Fig. 4 The diffusion of susceptible individuals S at the iteration 50.
We observe that the number of susceptible diminished regarding the
number in the second iteration

time step, the obtained solution presents our observation i.e.
uob = (S, Iob, R). Figures 7 and 8 show the observation Iob
compared with the recovered I at the final time step T and in
Fig. 9 we illustrate the given parameter σob compared with
the computed one. Figure 10 shows the observed Iob and the
computed I in the zone of the control and we remark that
the computed control (optimal control) realises perfectly the
desired profile.

4.2 Example 2

On the boundary part�2 we define the control σob as follows:

σob = 3 cos(x), x ∈ �2.

In Figs. 11 and 12 we illustrate the computed I and the
observed I for this example. In Fig. 13 we visualize the opti-
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Fig. 5 The diffusion of infected individuals I at the iteration 50

Fig. 6 The diffusion of recovered individuals R at the iteration 50.
Compared with the second iteration, the number of recovered individ-
uals is in augmentation

mal control and the given σob for the observation. Finally in
Fig. 14 we compare the results on the boundary of control.

5 Conclusion

In this paper we study a boundary optimal control problem
subject to SIR model with nonlinear Robin boundary condi-
tion. The existence of the solution of the constraint problem

Fig. 7 The computed I at the final time T corresponding to the example
1

Fig. 8 The observed I at final time T corresponding to the example 1

is obtained in Orlicz space for a specified class of functions
defined the part of boundary where the Robin boundary con-
dition is supposed. We provide an optimality condition and a
numerical example illustration de solutions. Further-coming
workswill handle the error estimates corresponding the prob-
lem and a possible generalisation to a problem with general
nonlinear Robin boundary condition, e.g. nonlinear bound-
ary condition with general function g on the corresponding
boundary.
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Fig. 9 The exact parameter σob (in orange x) and the computed optimal
control (in blue *). Since we impose the Dirichlet boundary condition
in the model we observe that the optimal control vanishes at boundaries
{0} and {1}

Fig. 10 The exact and the computed I on the boundary of control. We
remark that the desired profile is perfectly reached

Fig. 11 In this figure, the computed I is visualized at the final time T

Fig. 12 In this figure we show the exact I at the finel time T

Fig. 13 The exact parameterσob (in orangex) and the computedoptimal
control (in blue *) on the boundary �2. Since we impose the Dirichlet
boundary condition in the model we observe that the optimal control
vanishes at boundaries {0} and {1}
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Fig. 14 The exact I (in blue *) and the computed I (in orange x) on
the boundary of control �2. We remark that the desired profile (number
of infected at �2) is perfectly reached

Acknowledgements This is supported by CNRST Morocco. The
authors of this work would like to express their gratitude to Editors
and anonymous Referees for their prolific remarks and valuable sug-
gestions to improve the quality of the paper.

Author Contributions E.-H. Essou and A. Zafrar.

Funding There was no funding.

Data Availability Not applicable.

Code Availability Not applicable.

Declarations

Conflict of interest I declare that there is no conflict of interest in the
publication of this article, and that there is no conflict of interest with
any other author or institution for the publication of this article.

Ethical statements I hereby declare that this manuscript is the result
of my independent creation under the reviewers’ comments. Except
for the quoted contents, this manuscript does not contain any research
achievements that have been published orwritten by other individuals or
groups. I am the only author of this manuscript. The legal responsibility
of this statement shall be borne by me.

References

1. Brauer F, Castillo-ChavezC,Castillo-ChavezC (2012)Mathemati-
calmodels in population biology and epidemiology, vol 2. Springer,
Berlin

2. Hethcote HW (2000) The mathematics of infectious diseases.
SIAM Rev 42(4):599–653

3. Kermack WO, McKendrick AG (1927) A contribution to the
mathematical theory of epidemics. Proc R Soc Lond Ser A
115(772):700–721

4. Murray JD (2007) Mathematical biology: I—an introduction, vol
17. Springer, Berlin

5. BrownC (2007)Differential equations: amodeling approach. Sage,
Thousand Oaks

6. Keyfitz N (2005) Applied mathematical demography. Springer,
Berlin

7. Asano E, Gross LJ, Lenhart S, Real LA (2008) Optimal control of
vaccine distribution in a rabies metapopulationmodel.Math Biosci
Eng 5(2):219

8. Lloyd AL, Jansen VAA (2004) Spatiotemporal dynamics of epi-
demics: synchrony in metapopulation models. Math Biosci 188(1–
2):1–16

9. Keeling MJ, Eames KTD (2005) Networks and epidemic models.
J R Soc Interface 2(4):295–307

10. Matis JH, Wehrly TE (1994) 17 Compartmental models of ecolog-
ical and environmental systems. Handb Stat 12:583–613

11. Zakary O, Rachik M, Elmouki I (2017) On the analysis of a multi-
regions discrete sir epidemic model: an optimal control approach.
Int J Dyn Control 5(3):917–930

12. Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R,
RinaldoA (2020) Spread and dynamics of the covid-19 epidemic in
Italy: effects of emergency containment measures. Proc Natl Acad
Sci 117(19):10484–10491

13. Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di
Matteo A, Colaneri M (2020) Modelling the covid-19 epidemic
and implementation of population-wide interventions in Italy. Nat
Med 26(6):855–860

14. Hansen E, Day T (2011) Optimal control of epidemics with limited
resources. J Math Biol 62(3):423–451

15. Laaroussi AE-A, Rachik M, Elhia M (2018) An optimal control
problem for a spatiotemporal sirmodel. Int JDynControl 6(1):384–
397

16. Yusuf TT, Benyah F (2012) Optimal control of vaccination and
treatment for an sir epidemiological model. World J Model Simul
8(3):194–204

17. Ledzewicz U, Aghaee M, Schättler H (2016) Optimal control for a
sir epidemiological model with time-varying populations. In: 2016
IEEE conference on control applications (CCA), IEEE, pp 1268–
1273

18. Cantrell RS, Cosner C (1991) The effects of spatial heterogeneity
in population dynamics. J Math Biol 29(4):315–338

19. Cantrell RS, Cosner C (2004) Spatial ecology via reaction–
diffusion equations. Wiley, New York

20. Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial dif-
ferential equations in ecology: spatial interactions and population
dynamics. Ecology 75(1):17–29

21. Keller JP, Gerardo-Giorda L, Veneziani A (2013) Numerical simu-
lation of a susceptible-exposed-infectious space-continuous model
for the spread of rabies in raccoons across a realistic landscape. J
Biol Dyn 7(sup1):31–46

22. Murray J (2003) Spatial models and biomedical applications.
Springer, Berlin

23. Wang Q (2019) Qualitative analysis of a Lotka–Volterra predator–
prey system with migration. J Math Anal Appl 472(1):421–431

24. Lions JL (1968) Contrôle optimal de systemes gouvernés par des
équations aux dérivées partielles. Dunod, Paris

25. Gong W, Yan N (2011) Mixed finite element method for Dirich-
let boundary control problem governed by elliptic PDES. SIAM J
Control Optim 49(3):984–1014

26. Apel T, Pfefferer J, Rösch A (2015) Finite element error estimates
on the boundary with application to optimal control. Math Comput
84(291):33–70

27. Axelsson O, Béreš M, Blaheta R (2021) Computational methods
for boundary optimal control and identification problems. Math
Comput Simul 189:276–290

123



1290 E.-H. Essoufi, A. Zafrar

28. Adams RA, Fournier JJF (2003) Sobolev spaces. Elsevier, Ams-
terdam

29. Hou LS, Turner JC (1995) Analysis and finite element approxima-
tion of an optimal control problem in electrochemistry with current
density controls. Numer Math 71(3):289–315

30. Amassad A, Chenais D, Fabre C (2002) Optimal control of an
elastic contact problem involving tresca friction law. Nonlinear
Anal 48(8):1107–1135

123


	Boundary optimal control of time–space SIR model with nonlinear Robin boundary condition
	Abstract
	1 Introduction and problem setting
	1.1 Introduction
	1.2 Problem setting

	2 Time splitting and existence of solution 
	3  A necessary condition of optimality
	4 Finite element approximation and numerical example
	4.1 Example 1
	4.2 Example 2

	5 Conclusion
	Acknowledgements
	References




