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ABSTRACT: Simulations of first-passage folding of the antiparallel β-sheet miniprotein
beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-
workers, show that the kinetics and dynamics are significantly different from those for
equilibrium folding. Because the folding of a protein in a living system generally corresponds
to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is
of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare
because they contain unfavorable parallel β-strand arrangements, which are difficult to form
dynamically due to the distant N- and C-terminal strands. At the same time, the formation of
helical conformations becomes much easier (particularly in the early stage of folding) due to
short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed
that while the equilibrium flow field presented a collection of local vortices with closed
”streamlines”, the first-passage folding is characterized by a pronounced overall flow from the
unfolded states to the native state. The flows through the locally stable structures Cs-or and
Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these
structures and the native state. Although there are significant differences in the general picture of the folding process from the
equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the
clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between
the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage
segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations.

1. INTRODUCTION

In computer simulation studies of protein folding, the folding
reaction is most often considered under equilibrium conditions;
i.e., one chooses a temperature at which both the unfolded and
folded (native) states of the protein are populated (Shea and
Brooks1). Under these conditions, provided that the simulated
trajectory is sufficiently long, the protein experiences many
folding/unfolding events. The results of the equilibrium
simulations are typically organized in the form of a free energy
surface, disconnectivity graph (Becker and Karplus2) or
equilibrium kinetic network (Rao and Caflisch3), which
describe the populations of the characteristic states of the
system and the rates of transitions between them in the course
of repeating folding and unfolding. To calculate the time
evolution of the system through the network, the Markov
process approximation is often employed (Krivov et al.,4 Noe ́
and Fischer,5 and Lane et al.6).
Under the usual physiological conditions in the organism, the

native state is stable and unfolding events are improbable.
Then, the folding reaction corresponds essentially to “first-
passage folding” (FPF), which can be studied with an ensemble
of the trajectories that are initiated in the unfolded state of the
protein (e.g., as the polypeptide comes of the ribosome) and
are terminated when the native state is reached (Chekmarev et

al.,7,8 Palyanov et al.,9 and Kalgin et al.10,11). This raises the
question as to how the equilibrium folding/unfolding results
are related to FPF. In such a comparison, it should be noted
that often the environment conditions used will be different;
e.g. equilibrium folding (EF) requires a higher temperature
than the FPF, though of course, as we do here, it is possible to
investigate FPF at the same temperature as the EF. So far, the
FPF simulations have been limited to coarse-grained protein
models. In an early 125-residue lattice protein model study
(Dinner and Karplus12), the low-temperature folding pathways
resembled the high-temperature unfolding pathways, but for
the same temperature the pathways were different. A number of
nonequilibrium folding experiments have been made, in which
a reagent (e.g., GdmCl) stabilizing the unfolded state is rapidly
diluted and folding (collapse) is observed by FRET (Lipman et
al.13).
There have been a large number of studies of unfolding on

the assumption that it is the inverse of folding.14−16 Because
unfolding is fast at the high temperature usually used, all-atom
models in explicit solvent can be employed. Unfolding
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simulations have been found to be most meaningful for
proteins with two-state kinetics when the unfolded states and
the native state are separated by a single free energy barrier,14

though two-state kinetics can be observed even when there are
multiple barriers.17 If the folding kinetics are more complex,
e.g., when a range of reaction channels are involved, unfolding
is not necessarily the reverse of folding.12

To inquire into the relation between the FPF and the EF at a
given (elevated) temperature, we examine the antiparallel β-
sheet miniprotein (called beta3s, Figure 1), one of the few

systems for which the folding reaction under equilibrium
conditions has been studied in detail with an all-atom
representation. The published studies are based on a set
trajectories of total length of 20 μs, during which the protein
experiences on the order of one hundred folding/unfolding
events.19−24 The simulations were performed using the
CHARMM program25 with an implicit solvent model. To
have the denatured and native state of the protein both
significantly populated, the temperature for the simulations was
typically chosen to be T = 330 K, which is slightly above the
melting temperature (Cavalli et al.26). The equilibrium folding
of this system has been analyzed in many ways, which we do
not review here; see ref 24 for a listing of some of the studies.
In what follows we describe the first passage folding and
compare it with the EF results obtained in our previous work.24

Section 2 contains a brief survey of the methods we used to
perform simulations and analyze the results. Section 3 describes
the results and section 4 contains a concluding discussion.

2. METHODS
The method used to simulate and analyze folding of the beta3s
miniprotein under first-passage folding (FPF) conditions is
similar to that employed previously for the EF (Kalgin et al.24).

Below, we give a brief survey of the method. The system used is
the one studied by Caflisch and various co-workers.18−23

System and Molecular Dynamics Simulations. The
designed three-stranded antiparallel 20-residue peptide (Thr1-
Trp2-Ile3-Gln4-Asn5-Gly6-Ser7-Thr8-Lys9-Trp10 -Tyr11-
Gln12-Asn13-Gly14-Ser15-Thr16-Lys17-Ile18-Tyr19-Thr20
with charged termini27), shown in Figure 1, was modeled with
the CHARMM program.25 All heavy atoms and the hydrogen
atoms bound to nitrogen or oxygen atoms were considered
explicitly; PARAM19 force field (Neria et al.28) and a default
cutoff of 7.5 Å for the nonbonding interactions were used. A
mean field approximation based on the solvent-accessible
surface (SAS) was employed to describe the main effects of the
aqueous solvent (Ferrara et al.29). The simulations were
performed with a time step of 2 fs using the Berendsen
thermostat (coupling constant of 5 ps) at T = 330 K. For the
present protein model, this temperature is slightly above the
melting temperature.26 Two hundred MD trajectories started in
unfolded states of the protein and terminated upon reaching
the native-like state were generated. The atomic coordinates
(“frames”) were saved every 20 ps.
The definition of the initial and final states deserves

additional comments. It is expected that small proteins up to
size of 10−15 kDa do not fold until they have left the ribosome
(Fersht and Daggett14), because, as has been shown for barnase
fragments and chymotrypsin inhibitor 2 (Neira and Fersht30),
the last residues at the C terminus of the protein have to be free
to allow folding. Consequently, the initial stage of folding is
likely to be independent of interactions with the ribosome or
with chaperones for many proteins. This circumstance is used
to justify in vitro experimental studies of protein folding, where
the initial states of the protein are prepared by thermal
(temperature-jump experiments) or chemical (stopped-flow
experiments) denaturation of the native state of a protein.31−33

In the present study, we used the standard CHARMM25

protocol to prepare initial conformations. More specifically, an
extended conformation of the protein was first minimized (200
steps of the steepest descent followed by 300 steps of the
conjugate gradient algorithm) and then heated to T = 330 K
and equilibrated for 5 × 103 time steps. As will be shown below
(section 3), the initial conformations thus obtained are similar
to the most unfolded conformations found under equilibrium
folding conditions starting with the native state at the
temperature of interest (T = 330 K).
The final state where the FPF trajectory was terminated is

the native state of the protein. Beta3s has a number of native-
like conformations that differ not only by the hydrogen bond

Figure 1. Native structure of beta3s. The lower part of the protein
corresponds to the N-terminal hairpin, and the upper part to the C-
terminal hairpin. The dashed lines indicate hydrogen bonds.

Figure 2. Contact maps for two different distances between the geometrical centers of the side chains dnat that were used to determine native
contacts. Panels a and b are for dnat < 6.5 Å and dnat < 7.5 Å, respectively.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp412729r | J. Phys. Chem. B 2014, 118, 4287−42994288



distances, which are used below to characterize the protein
conformations, but also by orientation of the side chains.
Though the hydrogen bond distances could be used to define
the native contacts, we employed the side-chain distances.
Specifically, two criteria were tested: one assumed that a native
contact was formed if the distance between the geometrical
centers of the side chains of two residues dnat was less than 6.5
Å, and the other that dnat < 7.5 Å. Excluding nearest neighbors
(i.e., the pairs of residues for which |j − i| = 1 with i and j the
residue numbers), the numbers of native contacts are Nnat = 18
at dnat < 6.5 Å and Nnat = 23 at dnat < 7.5 Å (Figure 2). In the
latter case, five additional contacts appear, which are (1,12),
(4,9), (5,10), (13,18), and (18,20) contacts. Among them, four
contacts, i.e., (1,12), (4,9), (13,18), and (18,20), were listed in
ref 18 as native contacts. Therefore, we considered dnat < 7.5 Å
to be the more suitable criterion, though the effect of the
difference between the two is not large. With this definition of
the final state to terminate the trajectory, the fraction of the
hydrogen bonds in the final states was equal to 0.76 on average,
i.e., approximately 6 hydrogen bonds among the bonds
indicated in Figure 1 were present.
Conformation Space and Collective Variables. To

characterize protein conformations, the hydrogen bond PCA
(HB PCA) method24 was used. In this method, the original
conformation space of the protein in the form of the hydrogen
bond distances is reduced to a three-dimensional space of
collective variables g = (g1, g2, g3) space with a specialized
principal component analysis (PCA).34 A distinctive feature of
this method is that only the formed bonds are taken into
account to make the folded states more pronounced. The first
three modes corresponding to the largest eigenvalues were
chosen as the variables g1, g2, and g3. They account for 24% of
the data variation (Figure 3). Because the collective variables

are linear combinations of the original variables, they are
measured in the same units as the bond distances, i.e., in
angstroms. Figure 3 also makes clear that the variables g1, g2,
and g3 are different from those for the equilibrium folding. This
difference is due to the fact that the set of representative points
from which they are calculated in the FPF is different from that
for the EF.
Clustering the Conformations. To divide the representa-

tive points of the protein states in the g = (g1, g2, g3) space into
clusters, the MCLUST method by Fraley and Raftery35 was
used. In this method, the collection of points is approximated
by a set of multidimensional (in our case 3D) Gaussian
functions with generally different covariance matrices and
different weights.

Secondary Structure Analysis. As in the previous
studies,3,20,21,24 protein conformations were discriminated
according to the secondary structure strings (SSSs) encoded
with the DSSP alphabet;36 i.e., the letters H, G, I, E, B, T, S, and
“-” stand for α-helix, 310-helix, π-helix, extended, isolated β-
bridge, hydrogen bonded turn, bend, and unstructured
segments, respectively. With this coding, the native state
(Figure 1) is represented by the string ”-EEEETTEEEEEET-
TEEEE-”.3 The program WORDOM37 was used to perform the
analysis.

”Hydrodynamic” Description of the Folding Process.
Using the first passage folding trajectories, the local probability
flows (fluxes) of the transitions j(g) in the space of collective
variables g = (g1, g2, g3) are determined. They are calculated as
the 2-fold (time and ensemble) averages of the local transitions.
On the basis of these fluxes, the folding process is viewed as a
steady flow of a folding “fluid” from the unfolded states to the
native state, with the density of the fluid being proportional to
the probability for the system to be found at the current point
of the g space.8,11 Having the fluxes j(g), the “streamlines” of
the folding flows can be constructed, which are tangent to the
local directions of the j(g) vectors.38 In the case of two
dimensions, e.g., for the projection of the folding flow onto the
(g1, g2) plane, the streamlines can be calculated as the lines
corresponding to constant values of the stream function,8,24 and
in the case of the three-dimensional space they are visualized
with passive tracers (weightless point particles).11,24

3. COMPARISON OF FIRST PASSAGE FOLDING (FPF)
AND EQUILIBRIUM FOLDING (EQ)

To study the first passage folding (FPF) of beta3s, two hundred
folding trajectories were initiated at an extended state of the
protein and terminated upon reaching a native-like state.
Because of some looseness in determining the native contacts
(section 2), the native-like state was considered to be reached if
the number of native contacts was not less than 23, i.e., Nnat −
1. Specifically, the criterion dnat < 7.5 Å was used to determine a
native contact. The change of this criterion to a more “stiff” one
(dnat < 6.5 Å), which decreased the number of native contacts
from 23 to 18, was found to have no significant effect. In
particular, the first passage time distributions for the two
criteria agree not only between themselves but also with the
corresponding distribution obtained by Krivov et al.21 (Figure
4). The temperature at which these simulations were performed
was the same as in the equilibrium simulations, i.e., T = 330 K.
The representative points were taken from these trajectories at
20 ps intervals, which resulted in the total number of points
≈1.2 × 106; i.e., the number of points is approximately equal to
that for the EF studies (1 × 106).
Figure 5a presents the distribution of the representative

points in the 3D space of the collective variables g = (g1, g2, g3)
obtained with the HB PCA method for EF, and Figure 5b
shows the corresponding results for the FPF. The points are
colored according to the clusters of characteristic conforma-
tions to which they belong. They are numbered in accord with
Tables 1 and 2, respectively; the orange points without a
number correspond to other clusters. The variables g1, g2, and
g3 in Figure 5a,b, as well as in similar figures below, are
measured in angstroms. We note that these variables are
different for the EF and FPF calculations because they are
calculated from different collections of representative points. As
in the EF,24 if two points (1 and 2) in the g space are
sufficiently distant, so that the protein conformations do not

Figure 3. Spectrum of the largest eigenvalues. Triangles and crosses
correspond to the equilibrium and first-passage folding, respectively.
The eigenvalues are normalized so that their sum is equal to 1.
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overlap in the hydrogen bond space, the distance between them
g = [∑i=1

i=3(gi
(2) − gi

(1))2]1/2 is proportional to the all-atom RMSD
between the corresponding protein conformations (Figure 6);
this holds at approximately for g > 3.6 Å. Due to this relation,
the distribution of the spatially separated clusters in the g space
can be viewed as a distribution in the RMSD space. It should be
noted that because the variables g1, g2, and g3 are different for
the EF and FPF (Figure 3), the scaling is different: in the
former case one unit in the g space corresponds to
approximately 0.14 Å in the RMSD space, and in the latter
to approximately 0.07 Å.
Tables 1 and 2 show the clustering of the points obtained

with the MCLUST program35 for EF and FPF, respectively. In
each table, the first column is the cluster number, and the
second column is the relative number of points in the cluster

(in percentage of the total number of 106 and 1.2 × 106 points,
respectively). Also, these tables contain information about the
protein secondary structures characteristic of each cluster. The
third column presents the number of conformations that have
different SSSs, the fourth column shows the SSSs of the two
most populated secondary structures, and the fifth column the
weight of these structures in the cluster. Finally, the last column
indicates the type of representative protein conformation with
which the cluster is associated according to the SSSs. The
representative conformations are labeled as in the previous
studies of folding of beta3s;3,20−24 i.e., “native” stands for
native-like structures, “Ns-or” for conformations in which the
C-terminal hairpin is formed and the N-terminal hairpin is
unstructured (“or” means “out of register”), “Cs-or” for
conformations with the N-terminal hairpin formed and the
C-terminal unstructured, “Ch-curl” for conformations that have
a curl-like structure with the C-terminal hairpin formed, and
“helical” for conformations that contain a helical region. Based
on the similarity of the SSSs, the clusters for the structured
conformations are grouped into five “consolidated” clusters,
which represented locally stable characteristic conformations.
For the EF, they consist of clusters 1 and 2 (native), cluster 3
(Cs-or), clusters 5 and 6 (Ns-or), clusters 8 and 9 (helical), and
clusters 10 and 11 (Ch-curl). Also, two intermediate clusters, 4
and 7, are observed that present mixtures of the native-like
conformations with the Cs-or and Ns-or conformations and are
positioned between the native cluster and the Cs-or cluster and
the Ns-or cluster, respectively. With these intermediate clusters
joined to the native cluster, the residence probabilities of the
system in the consolidated clusters is in good agreement with
the results of the previous studies.21,22 The clusters which
present unstructured conformations form a pool of con-
formations (an “entropic” basin21) that connect the clusters of
the structured conformations.
The main difference between FPF and EF is that in the

former the Ch-curl conformations become so rare that they do
not form a cluster, whereas the weight of the helical
conformations drastically increases (Tables 1 and 2 and Figure
5a,b). This effect appears to be due to the fact that the
ensemble of initial structures in the FPF consists of
conformations that readily form helical conformations. Figure
7a shows the points in the g space at which the trajectories were
started. It is seen that they lie on the boundary of the
conformation space visited by the system, or more specifically,
on the part of it that is close to the helical conformations, but
they do not contain the hydrogen bonds between i and i + 4
residues that are characteristic of helices. Figure 8 gives typical
examples of the corresponding conformations. The “secondary
structure” of these conformations (i.e., a hairpin-like form with
distant strands and the presence of local chain bends) suggests
that because they involve short-range contacts, the formation of
helical conformations is dynamically much more likely than the
formation of Ch-curl conformations, because the latter require
the N- and C-terminal strands to come into contact that are
distant along the chain. According to the criterion we used to
define the native contacts, dnat < 7.5 Å (section 2), the average
number of native contacts in the initial conformations is equal
to 8, i.e., approximately 27% of the total number of native
contacts (Nnat = 23). In addition, a comparable number of non-
native contacts (on average, 11 contacts) is present in these
conformations. The 200 conformations, which make up the
initial states, are 200/(1.2 × 106) ≈ 0.017% of the total number
of the recorded conformations. For comparison, the number of

Figure 4. Survival probability distributions of the first passage time
F(t) = ∫ t

∞p(t) dt, where p(t) is the distribution of the first passage
times. Empty and solid triangles are, respectively, for dnat < 6.5 Å and
dnat < 7.5 Å in the present work, and the crosses present the
distribution of ref 21. The number of trajectories for dnat < 6.5 Å (the
empty triangles) was 4 times smaller than for dnat < 7.5 Å (the solid
triangles). The circles show the distribution corresponding to the first-
passage folding segments of the EF trajectory of ref 24.

Figure 5. Stereoviews of the distribution of the representative points
of beta3s in the 3D spaces of collective variables g = (g1, g2, g3). Panel a
is for the equilibrium folding (reproduced with permission from ref
24), and panel b is for the first-passage folding. In both cases, the g1, g2,
and g3 variables are in angstroms.
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corresponding conformations along the 20 μs equilibrium
trajectory24 (i.e., the conformations that have the numbers of
contacts not exceeding 8 native and 11 non-native contacts) is
equal to 543, which is ≈0.05% of the total number of the
conformations that were included in the analysis. This suggests
that the conformations from which the FPF trajectories were
started approximate the most unfolded conformations that
occurred in EF.24

A closer examination of the FPF shows that the Ch-curl
conformations that constitute a considerable fraction of the
conformations observed in the course of EF are found only in
20 of the 200 trajectories, with the total fraction of them (1.2 ×
106 × 0.054 × 0.014 ≈ 900, cluster 14 in Table 2) being ≈6.8
times smaller than for the EF (1 × 106 × [0.033 × (0.056 +
0.045)+0.044 × (0.033 + 0.032)] ≈ 6200, clusters 10 and 11 in
Table 1). At the same time, the weight of the helical
conformations increases, from ≈12.8% to ≈21.8%, which is
comparable with the total weight of the Cs-or, Ns-or, and
helical clusters in the EF (Tables 1 and 2). It is of interest that if
the representative points for the FPF are projected onto the
collective variables g1, g2, and g3 for the EF, a cluster for Ch-curl
conformations emerges and has a weight 2.2%. The weights of

the other clusters also change but not greatly, staying within the
variations of the weights of these clusters that are obtained with
different methods (Table 2 of ref 24); for the native, Cs-or, and
helical clusters they decrease by 20−30%, and for the Ns-or
cluster it increases by 35%. These changes, and particular the
appearance of the Ch-curl cluster, indicate that the principal
coordinates obtained with the HB PCA method are specific to
the manifold of the representative points to which the method
is applied, and thus to the process that produces this manifold.
We note also that the cluster of native-like conformations at
which the trajectories were terminated in the FPF simulations is
as significant as for the EF simulations. This is true mainly
because a variety of conformations corresponding to the
condition Nnat − 1 used to terminate the trajectory exists that
have different coordinates in the g space.
The increased contribution of helical conformations also

affects the hydrogen bond composition of the collective
variables (Figure 9). The variables g1 and g2 in the FPF have
the largest projections onto the same eight bonds as they had in
the case of the EF, and they thus play a similar role as in the
EF; i.e., g1 serves as a good reaction coordinate for the overall
description of the folding process, and g2 discriminates between

Table 1. Clusters of Protein Conformations

clustera Wclst
b Nstr

c most populated structured Wstr
e cluster typef

1 21.5 523 -EEEETTEEEEEETTEEEE- 38.6 native
-EEEETTEEEEEETTEEE-- 37.0

2 3.9 939 -EEEETTEEEEEETTEEEE- 16.2
-EEEETTEEEEEETTEE--- 14.1

3 2.6 2337 -EEEETTEEEEEEEEEEE-- 12.3 Cs-or
-EEEETTEEEEEEEEEEEE- 9.8

4 3.1 1173 -EEEETTEEEEE-SS-EEE- 7.2 Cs-or + native
-EEEETTEEEEE-SS-EE-- 5.6

5 3.0 773 -EEE-SSS-EEEETTEEEE- 46.1 Ns-or
-EEEESSSEEEEETTEEEE- 5.5

6 2.5 631 -EEE-SSS-EEEETTEEEE- 22.3
-EEEESSSEEEEETTEEEE- 19.8

7 5.0 1005 -EEEETTEEEEEETTEEE-- 8.4 Ns-or + native
-EE--SSS-EEEETTEEEE- 6.6

8 7.6 48567 --HHHHHHHHHHHT------ 0.4 helical 1
---HHHHHHHHHHT------ 0.2

9 5.1 33302 --SS--HHHHTTT------- 0.3 helical 2
--SS--HHHHHHHSS----- 0.3

10 3.3 2347 -B-SSSSS--EEETTEE-B- 5.6 Ch-curl 1
-B--SSS---EEETTEE-B- 4.5

11 4.4 5758 -B-SSSSS-EEEETTTEEE- 3.3 Ch-curl 2
-B-SSSS--EEEETTTEEE- 3.2

12 4.6 13206 -EEEETTEEEE--SS----- 1.5 others
-EEEETTEEEE-SSS----- 1.3

13 3.2 3799 -EEEETTEEEEEETTEEEE- 7.1
----BTTEEEEEETTEEEE- 3.0

14 8.4 15590 -----SS--EEEETTEEEE- 1.5
----SSS--EEEETTEEEE- 1.3

15 8.7 47727 -EE-SSS-EE---SS---B- 0.7
-EEE-SSS-EEEEEEEEE-- 0.4

16 3.4 17009 -EEEETTEEE---SS----- 0.6
-B---SSS-----SSS--B- 0.5

17 9.7 63733 -EEETTTEEEETTTEEEE-- 0.3
----SSS-----SSS----- 0.2

aCluster number. bCluster weight equal to the number of representative points in the cluster relative to the total number of the points (in %). cThe
number of conformations that have different secondary structure strings. dThe secondary structure strings of the most populated conformations.
eWeight of the given conformation in the cluster (in %). fCorresponds to Figure 4.
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Table 2. Clusters of Protein Conformations: The First-Passage Folding

clustera Wclst
b Nstr

c most populated structured Wstr
e cluster typef

1 10.9 554 -EEEETTEEEEEETTEEEE- 36.6 native
-EEEETTEEEEEETTEEE-- 28.8

2 3.5 6093 -EEEETTEEEE-SSS----- 3.5 Cs-or
--EEETTEEEEETTTEEEE- 2.7

3 4.6 1095 -EEEETTEEEEEEEEEEE-- 13.0
-EEEETTEEEEEEEEEEEE- 11.8

4 2.1 4027 --EEETTEEEEE-SSS-EE- 3.9 Cs-or + native
-EEEETTEEEE--SSS---- 3.1

5 2.7 1402 -EEEESSSEEEEETTEEEE- 19.8 Ns-or
-EEE-SSS-EEEETTEEEE- 16.1

6 6.8 3838 -EEE-SSS-EEEETTEEEE- 10.2 Ns-or + native
-EEEETTEEEEEETTEEEE- 8.4

7 7.3 29 644 ---HHHHHHHHHHS------ 0.8 helical 1
--HHHHHHHHHHHT------ 0.7

8 9.0 63 876 --HHHHHHHHHHHT------ 0.1
---HHHHHHHHHHSS----- 0.1

9 5.4 45 686 ----SSS-HHHHHT------ 0.1 helical 2
-----SSS-HHHHT------ 0.1

10 6.2 28 656 -----SSS-EE-SSS--EE- 0.6 others
-----SS--EE-SSS--EE- 0.5

11 7.1 59 800 -----SS-SSB-SS-B---- 0.1
-----SS-----BTTTB--- 0.1

12 5.8 40 779 ----BTTB----SSS----- 0.3
-EEEETTEEE--SSS----- 0.3

13 4.4 28 806 -----SSS-EEEETTEEEE- 0.6
--EE--BTTEEEESSS-EE- 0.4

14 5.4 30 721 -B-SSSS--EEEETTTEEE- 0.7
-B-SSSSS-EEEETTTEEE- 0.7

15 3.9 9065 ----SSS--EEEETTEEEE- 1.7
-----SS--EEEETTEEEE- 1.6

16 5.5 16 541 -----SS--EEEETTEEEE- 1.1
----SSS--EEEETTEEEE- 0.8

17 4.0 14 991 ---EETTEE---SSS----- 1.2
-EEEETTEEEE--SS----- 1.1

18 1.1 6406 -----SSS-SSEETTEE--- 0.7
---SB-SSTTTEETTEE--- 0.7

19 4.3 22 988 -EEEETTEEEEETTTEEEE- 0.6
-EEEETTEEEEEEEEEEEE- 0.5

aCluster number. bCluster weight equal to the number of the representative points in the cluster relative to the total number of the points (in %).
cThe number of conformations that have different secondary structure strings. dThe secondary structure strings of the most populated
conformations. eWeight of the given conformation in the cluster (in %). fCorresponds to Figure 5b.

Figure 6. All-atom RMSD as a function of the distance in the g space.
The solid and empty triangles correspond to the equilibrium and first-
passage folding, respectively. The solid and dashed lines show the best
fits to the data with the slopes of the lines ≈0.14 and ≈0.07,
respectively.

Figure 7. First-passage folding. Panel a depicts the starting points
superposed on the distribution of the representative points of Figure
5b. The clusters of the representative points are colored according to
this figure and, to make the starting points visible, are shown as
semitransparent objects. Panel b reproduces Figure 5b in the same
orientation as for (a).
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the Ns-or and Cs-or conformations.24 However, the role of the
g3 variable is essentially different: athough in the EF g3 cannot
be associated with any secondary structure element,24 in the
case of the FPF, it has the largest projections on the bonds
characteristic of helical conformations, i.e., the hydrogen bonds
between i and i + 4 residues. The most important bonds among
them are at the N-terminal end, in agreement with their SSSs in
Table 2.
Panels a and b of Figure 10 present spatial kinetic networks

for the EF and FPF, which show how the clusters of protein
conformations are connected in these cases. The ball volumes
are proportional to the number of intracluster transitions, and

the tube cross sections to the number of intercluster transitions
(the latter were calculated as one-half of the total number of the
forward and backward transitions between two clusters). More
clearly, the difference between the cluster interconnection is
seen from the paths of passive tracers (Figure 11a,b) and a
directed kinetic network for the FPF (Figure 12). In Figure
11a,b the paths were initiated, respectively, at the representative
points of Figure 5a,b with the largest fluxes j(g) and continued
for some time (for details, see ref 24); the number of the points
is equal to 900 for the EF and to 766 for the FPF. It is seen that
in the FPF, in contrast to the EF, there are many tracer paths
between the clusters for unstructured conformations and the
native cluster, whereas the direct paths between the Ns-or (5)
and Cs-or (2 and 3) clusters and the native cluster (1) are
absent. Because the intensity of a tracer path is proportional to
the (average) flux j(g),24 the absence of the path can be a result
of either the lack of the transitions or the presence of detailed
balance. As is seen from Figure 10b, the numbers of transitions
between the Ns-or and Cr-or clusters and the native cluster
(the cross sections of the tubes) are comparable with those
from the clusters for unstructured conformations to the native
cluster. It follows that detailed balance between the Ns-or and
Cr-or clusters and the native cluster exists. This is confirmed by
the directed kinetic network, depicted in Figure 12, in which
the tubes of the transitions between the clusters are taken to be
proportional to the difference between the upward and
backward transitions (to make the picture more clear, the
tubes with not less than ten transitions, among the total
number of transition ∼106, are not shown). Moreover, direct
counting of the numbers of transitions between the Cr-or and

Figure 8. Examples of the initial conformations for the first-passage
folding simulations.

Figure 9. Fractions of the hydrogen bonds which make a major contribution to the collective variables g1, g2, and g3. Panel a is for the equilibrium
folding (reproduced with permission from ref 24), and panel b is for the first-passage folding. The figures at the top of each bar denote the bond; the
first figure is the number of the residue with the oxygen atom, and the second figure is that with the nitrogen atom. The empty and solid bars are for
the bond contributions to the negative and positive directions of the collective variable, respectively. The numbers in percentage at the top of each
panel are the total contribution of the given bonds to the collective variable.
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Ns-or clusters and the native cluster shows that detailed balance
between them is satisfied exactly. Thus, the overall flow goes
from the unfolded states to the native state directly, not passing
through the structured Cs-or and Ns-or conformations, which
supports the conclusion that beta3s is a barrierless/low-barrier
folder.21 The most probable pathway is illustrated in Figure 13,
which presents a two-dimensional kinetic network correspond-
ing to the directed three-dimensional kinetic network of Figure
12. The red line that connects clusters 7, 8, and 9, besides
which the trajectories were started (Figure 7), with cluster 1 for
native-like conformations shows the shortest pathway, which
was calculated using the Bellman−Ford algorithm.39

Figures 14 and 15 show the FES, two-dimensional
streamlines and tracer paths of folding flows for the EF and
FPF, respectively. For the FPF the stream function is
normalized such that Ψ = 1 corresponds to the total folding
flow from the unfolded states to the native basin, i.e., to 200
folding trajectories. For the EF, where there is no net flow from
the unfolded states to the native state, the normalization of the
stream function was performed by assuming that the total
number of (virtual) trajectories would be less than for the FPF
as the ratio of the numbers of frames in these cases, i.e., by 106/
1.2 × 106 ≈ 0.83 times. Because in the case of FPF every
folding trajectory initiated at an extended state reaches and is
terminated in the native basin, the total folding flow is the same
in each (g2 = constant) cross-section. As in the EF, local
minima corresponding to the clusters of characteristic
conformations are observed; they are the clusters indicated in
Table 2 and Figures 5b, 10b, 11b, and 12. However, the flow

fields are drastically different from those for the EF, in both the
streamlines and tracer paths. Although small vortices are still
present at the minima, similar to the EF, indicating that the
system spends some time in them, there exists a pronounced
overall folding flow from the unfolded states to the native state.
It is represented by streamtubes that originate at the unfolded
states of the protein (large values of g1) and converge at the
native state (g1 ≈ −10). Similarly, tracer paths connecting the
unfolded and native states are present. Such a behavior of the
streamtubes and tracer paths has been previously observed in
the FPF simulations of an α-helical hairpin and SH3 domain
(streamtubes8,10 and tracer paths11). For the EF, in contrast,
neither the streamtubes or tracer paths that have such
properties are present.
Panels a and b of Figure 16 show the dependence of the

transition rate upon the distance between the clusters of
conformations in the g space. Although the scattering of the
data for the FPF is higher than that for the EF, the reduced
standard error of partial slopes is comparableit is equal to
≈9% for the EF, and to ≈11% for the FPF. Therefore, in the
FPF case the average decrease of the rates with the distance
remains roughly exponential and is approximately the same as
for the EF. As has been indicated in ref 24, this dependence is
in accord with the fact that the distance in the g space is
correlated with the change in hydrogen bonding required to go
from one cluster to another. The robustness of this behavior is
of interest; it shows that though the overall folding pictures for
the FPF and EF are drastically different, the elementary rates,

Figure 10. Stereoviews of the spatial kinetic networks. Panel a is for the equilibrium folding (reproduced with permission from ref 24), and panel b is
for the first-passage folding. Clusters are numbered as indicated in the text and colored according to the palette of Figure 5. The units of the g1, g2,
and g3 variables are in angstroms.
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i.e., the rates of transitions between the clusters, remain the
same at the same temperature.
It is of interest to compare the folding time distribution for

the FPF with that obtained from the EF.24 To determine the
latter, we selected all segments of the equilibrium trajectory of
ref 24 between two successive visits of the native state. If the
considered segment contained a conformation with eight of less
native contacts (similar to those we chosen for the initial
conformations to start the trajectories in the FPF simulations,
Figure 7a), the part of this segment from the point with the
lowest number of native contacts to the native state was taken
as a “first-passage trajectory”. There were 130 such trajectory
segments in the equilibrium simulation. The distribution of the
first-passage times is very close to that for the FPF (Figure 4).
Figure 17 also depicts the representative points of the system
that fall into these first-passage trajectories (colored from blue
to red) and the points that are outside the trajectories (black).
Comparison of this figure with Figure 5a shows that the points
within the first-passage trajectories are mostly related to the
conformations that are distant from the native state, including
the helical- and Ch-curl-like conformations and unfolded
conformations. The points that are outside the first-passage
trajectories are related to the conformations close to the native
state, i.e., those within the Cs-or or Ns-or clusters, the
intermediate clusters, and the clusters of native-like con-
formations.
Figure 11b suggests that the folding flows are very far from

uniform. To illustrate this, Figure 18 shows the distribution of
the g1-component of the folding flux j(g) in a g1 = const cross-
section of the g space close to the native state. However,
despite all the heterogeneity of the fluxes (Figure 19), their

Figure 11. Stereoviews of passive tracer paths. Panel a is for the equilibrium folding (reproduced with permission from ref 24), and panel b is for the
first-passage folding. The balls represent the native, Cs-or, Ns-or, Ch-curl, and helical clusters shown in the corresponding panels (a and b) of Figure
10. The radii of the balls are increased for illustrative purpose.

Figure 12. Stereoview of the directed kinetic network of beta3s for the
first-passage folding. Clusters are numbered as in Table 2 are colored
according to the palette of Figure 5. Variables g1, g2, and g3 are in
angstroms.

Figure 13. Two-dimensional kinetic network for the first-passage
folding. The red line shows the most probable (shortest) pathway
calculated with the Bellman−Ford algorithm.39
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distribution possesses a well pronounced property of self-
similarity, similar to what was previously found for folding of
SH3 domain.11 To estimate the degree of the heterogeneity of
the fluxes, we calculated the function G(L) = ⟨|Jg1,L|/jg̅1⟩, where |
Jg1,L| is the absolute value of g1 component of the flow through
the square of linear size L, M is the number of elementary
squares covered by the square of size L, jg̅1 = (∑1

MJg1,i
2 /M)1/2 is

the average flux in g1-direction, and the angular brackets denote
the averaging over the g1-cross sections of the g = (g1, g2, g3)
space. The linear size L is measured in units of the elementary
square linear size l, which was taken to be 1 Å. It is seen that
G(L) ∼ LD, where D ≈ 0.68. Because D is less than 2, i.e., the
Euclidean dimension expected for a homogeneous flow, the
flows are fractal, with the exponent D being the fractal
dimension.40

4. CONCLUDING DISCUSSION

In this paper we compare first-passage folding (FPF) (the
process of going from the unfolded to the folded state) with
folding under equilibrium conditions (EF) (i.e., when there are
many folding and unfolding events). We find that there are
significant differences between the two. A reason why this is of
interest is that generally in living systems, the conditions are
such that after the protein is synthesized on the ribosome, the
folded (native) protein is stable and unfolding is a rare event.

There is considerable uncertainty concerning the initial
conditions from which folding takes place.41 It is possible, for
example, that in some cases, partial folding to form helices takes
place before the polypeptide chain leaves the ribosome.
However, essentially all of the large number of folding
simulations have been in aqueous solution in the absence of
other cellular elements; exceptions are folding/unfolding
studies of the role of GroEL, for example. Given that, it is
reasonable to argue that the first-passage folding simulations
described here are likely to be more realistic than equilibrium
folding simulations.
The initial stage of the FPF occurs from nearly fully unfolded

conformations, which are relatively rare in the EF simulations,
even at temperatures where the folded and denatured states are
both populated. When the trajectory starts to fold from an
extended conformation, it first reaches either a helical
conformation, which is readily formed due to the short-range
contacts involved, or double hairpin Cs-or or Ns-or
conformations, which consist of antiparallel β-strands. For-
mation of a Ch-curl conformation is less probable in FPF than
in EF because it contains a parallel β-strand arrangement; it is,
thus, less stable because the hydrogen bonds are distorted in
comparison to those of the parallel β-strand arrangement,42 and
it is more difficult to form dynamically because it has distant N-
and C-terminal strands. The Ch-curl conformations become so
rare that they do not form a cluster, while the weight of the

Figure 14. Protein folding in two-dimensional (g1, g2) space, the equilibrium folding (reproduced with permission from ref 24). Panel a shows the
streamlines superimposed on the free energy surfaces (in kcal/mol). The blue local minima on the surfaces correspond to the clusters indicated in
Table 1 and Figures 5a, 10a, and 11a. In panel a, the white, gray, and black lines correspond to the stream function values Ψ = −0.01, Ψ = 0, and Ψ =
0.01, respectively. The closed white and black streamlines restrict the vortex regions, in which the rotation of folding flows is, respectively, clockwise
and anticlockwise. Panels b depicts the paths of passive tracers.

Figure 15. Protein folding in two-dimensional (g1, g2) space, the first-passage folding. Panel a shows the streamlines superimposed on the free energy
surfaces (in kcal/mol). The blue local minima on the surfaces correspond to the clusters indicated in Table 2 and Figures 5b, 10b, and 11b. In panel
a, the lower and upper black lines correspond to approximately the lower and upper bounds of the total folding flow, and the white lines to the half
of the flow (the values of the normalized stream function at these lines are Ψ = 0.01, Ψ = 0.5, and Ψ = 0.9, respectively). Panel b depicts the paths of
passive tracers.
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helical conformations drastically increases, from ≈12.8% to
≈21.8%, which is comparable with the total weight of the Cs-or,
Ns-or and helical clusters. The increased contribution of helical
conformations also affects the hydrogen bond structure of the
collective variables, changing the role of the g3 variable:
Although the variables g1 and g2 have the largest projections
onto the same eight bonds as they had in the case of the
equilibrium folding. Thus, they preserve their functions as,
respectively, the principal reaction coordinate and the

coordinate that distinguishes between the Cs-or or Ns-or
conformations, the largest projections of g3, which did not
relate to a specific conformation in EF, correspond in FPF to
the bonds characteristic of helical conformations. In other
words, the variable g3 captures the essential difference between
the first-passage and equilibrium processes. It is of interest that
when the representative points for the first-passage folding are
projected onto the collective variables g1, g2, and g3 for the
equilibrium folding, a cluster for Ch-curl conformations
emerges, though with a low weight (2.2%). This indicates
that the principal coordinates obtained with the HB PCA
method are specific to the manifold of the representative points
to which the method is applied, and thus to the process which
produces this manifold.
Counting the numbers of transitions between the clusters,

the 3D distribution of the representative points has been
represented in the form of spatial kinetic networks, undirected
and directed. These networks have shown that the folding flows
do not go through the Cs-or and Ns-or structures that are
conformationally close to the native state, which is consistent
with the conclusion that beta3s is a barrierless/low-barrier
folder.21 Easy rearrangement of the Cs-or and Ns-or
conformations into the native conformation and back leads to
detailed balance between these structures and thus makes the
flow through them negligible (at least, for the temperature close
to the melting temperature that is used here).
Another essential difference between the first-passage and

equilibrium folding is revealed by the “hydrodynamic”
analysis.8,10,11,24 The projection of the passive tracer paths

Figure 16. Rates of transitions between the clusters of conformations
vs the distances between the centers of the clusters in the g space.
Panel a is for the equilibrium folding (reproduced with permission
from ref 24), and panel b is for the first-passage folding. In both cases
the crosses and circles are for the transitions from smaller and larger
populated clusters, respectively. In panel a the dashed line corresponds
to the best fit for the crosses [r ∼ exp(−0.55dg)], and the solid line to
that for the circles [r ∼ exp(−0.58dg)]. In panel b the corresponding
fits are r ∼ exp(−0.48dg) and r ∼ exp(−0.55dg), respectively.

Figure 17. Stereoviews of the distribution of the representative points
that fall into the first-passage segments of the equilibrium trajectory
(colored from blue to red) and which are outside these trajectories
(colored black).

Figure 18. Distribution of the folding flux component j1 in the cross-
section g1 = −3.0. The first-passage folding. The negative sign of j1
corresponds to the direction toward the native state.

Figure 19. Heterogeneity of folding fluxes, the function G(L) (see the
text). The first-passage folding. The symbols show the function G(L),
and the dashed line the best fit to the function G(L) ∼ LD; D ≈ 0.68.
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representing the “streamlines” of the folding flows onto the
FESs depending on two variables shows that in the case of
equilibrium folding the folding flow field consists of a variety of
small vortices, not only at the minima corresponding to the
clusters of protein conformations (native, Cs-or, Ns-or, Ch-curl,
and helical) but also in flat regions of the PES. This indicates
that the local folding flows do not follow the PES landscape. In
contrast, the streamlines for the first-passage folding are mostly
directed from the denatured to the native state, although they
are complex and do not exactly follow the PES landscape. It is
of interest that despite all the complexity of the folding flows,
their distribution is self-similar and has fractal dimension (D ≈
0.68). A similar property of folding flows has been previously
observed for folding of the SH3 domain,11 although the fractal
dimension was different, varying from D ≈ 1.5 for the initial
(almost “laminar”) stage of folding to D ≈ 1 for the final
(“turbulent”) stage. This suggests that the self-similarity of
folding flows may be an inherent property of protein folding.
Although there are significant differences in the general

picture of the folding process from the equilibrium and first-
passage folding simulations, some aspects of the two are in
agreement. The rate of transitions between the clusters of
characteristic protein conformations in both cases decreases
approximately exponentially with the distance between the
clusters in the hydrogen bond distance space of collective
variables, and the folding time distribution in the first-passage
segments of the equilibrium trajectory is in good agreement
with that for the first-passage folding simulations. Also, the first-
passage segments of the EF trajectory that start at an unfolded
state of the protein and converge to the native state are similar
to the trajectories in the FPF simulations in that they have
similar folding time distributions.
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