G3.:

Genes | Genomes | Genetics

McClintock: An Integrated Pipeline for Detecting

Transposable Element Insertions in Whole-Genome

Shotgun Sequencing Data

Michael G. Nelson, Raquel S. Linheiro," and Casey M. Bergman?
Faculty of Life Sciences, University of Manchester, M13 9PL, United Kingdom

ORCID IDs: 0000-0002-2567-2634 (M.G.N.); 0000-0003-2659-0910 (R.S.L.); 0000-0002-5462-9854 (C.M.B.)

ABSTRACT Transposable element (TE) insertions are among the most challenging types of variants to detect
in genomic data because of their repetitive nature and complex mechanisms of replication . Nevertheless, the
recent availability of large resequencing data sets has spurred the development of many new methods to
detect TE insertions in whole-genome shotgun sequences. Here we report an integrated bioinformatics
pipeline for the detection of TE insertions in whole-genome shotgun data, called McClintock (https://github.
com/bergmanlab/mcclintock), which automatically runs and standardizes output for multiple TE detection
methods. We demonstrate the utility of McClintock by evaluating six TE detection methods using simulated
and real genome data from the model microbial eukaryote, Saccharomyces cerevisiae. We find substantial
variation among McClintock component methods in their ability to detect nonreference TEs in the yeast
genome, but show that nonreference TEs at nearly all biologically realistic locations can be detected in
simulated data by combining multiple methods that use split-read and read-pair evidence. In general, our
results reveal that split-read methods detect fewer nonreference TE insertions than read-pair methods, but
generally have much higher positional accuracy. Analysis of a large sample of real yeast genomes reveals that
most McClintock component methods can recover known aspects of TE biology in yeast such as the trans-
positional activity status of families, target preferences, and target site duplication structure, albeit with
varying levels of accuracy. Our work provides a general framework for integrating and analyzing results
from multiple TE detection methods, as well as useful guidance for researchers studying TEs in yeast
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resequencing data.

The widespread availability of genomic data over the last two decades
has provided unparalleled opportunities to learn about the abun-
dance, diversity, and functional consequences of transposable
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elements (TEs) in modern genomes. However, the computational
analysis of TE sequences in both reference and resequenced genomes
remains a challenging area of bioinformatics research because of the
repetitive nature of these sequences. Development of bioinformatics
tools for the detection and annotation of TEs in reference genomes is
now a relatively mature field (Bergman and Quesneville 2007; Saha
et al. 2008; Lerat 2010), although many open questions remain
about choosing the best tools for specific biological applications
(Hoen et al. 2015). In contrast, detection of reference and nonreference
TE insertions in whole-genome shotgun (WGS) resequencing data are an
active research area (reviewed in Ewing 2015), with a large number of
methods published in recent years (Sackton et al. 2009; Ewing and
Kazazian 2010, 2011; Hormozdiari et al. 2010; Quinlan et al. 2010; Fiston-
Lavier et al. 2011, 2015; Kofler et al. 2012, 2016; Lee et al. 2012; Linheiro
and Bergman 2012; Nellaker et al. 2012; Platzer et al. 2012; Chen et al.
2013, 2017; Cridland et al. 2013; Robb et al. 2013; Gilly et al. 2014;
Nakagome et al. 2014; Thung et al. 2014; Wu et al. 2014; Zhuang et al.
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2014; Hawkey et al. 2015; Hénaff et al. 2015; Jiang et al. 2015; Rahman
et al. 2015; Quadrana et al. 2016).

Because of the wide array of available methods, it remains unclear
which method for detecting TEs in resequenced genomes is best suited
for particular genomic problems, leading to substantial investigator effort
in terms of installation and testing, or the application of suboptimal
bioinformatic approaches. Most papers reporting new methods to detect
reference or nonreference TEs in WGS data provide some measure of
their own performance relative to using simulations, benchmark genomic
data, or PCR-based validation. However, only a handful of papers have
reported new methods that include performance evaluation relative to
other methods (Gilly et al. 2014; Ewing 2015; Hawkey et al. 2015; Hénaff
et al. 2015; Jiang et al. 2015; Rahman et al. 2015; Chen et al. 2017), and
these are often limited in scope to only a single organism or TE family.
In addition to being incomplete, comparative analysis of bioinformatic
systems in papers that report new methods can fall victim to the “self-
assessment trap” (Norel et al. 2011). Moreover, there is no common
format for the annotation of nonreference TE insertions (Bergman 2012;
Rishishwar et al. 2016), making direct comparison of predictions from
different methods more challenging. Recently, Rishishwar et al. (2016)
performed an independent comparative evaluation of seven WGS-based
TE detection methods using human genomic data, which revealed many
method-specific predictions and recommended combining the results of
multiple systems followed by manual curation (see also Ewing 2015).
Rishishwar et al. (2016) also highlighted the challenges users face when
installing and running multiple TE detection methods, and provide
helpful advice for users and developers.

As a step toward a fully automated framework for running and
evaluating multiple methods to detect TEs in WGS resequencing data,
we have developed an integrated pipeline called McClintock (https://
github.com/bergmanlab/mcclintock) that generates standardized out-
put for multiple WGS-based TE detection methods. The primary goal
of the McClintock pipeline is to lower the barrier to installation, use,
and evaluation of multiple WGS-based TE detection methods. Several
key features of the McClintock pipeline are that it automates formatting
of key input files and standardizes output of multiple TE detection
methods to allow easy comparisons of results from different systems,
as recommended by Rishishwar et al. (2016). In the initial version of
McClintock, we incorporate six complementary TE detection methods
that make predictions based on split-read- or read-pair-based evidence
in Illumina WGS data. Here we describe the McClintock system and its
component methods, and perform a comparative evaluation using
simulated and real yeast genome data. Our analysis supports previous
conclusions that no single TE detection method provides a compre-
hensive detection of nonreference TEs (Ewing 2015; Rishishwar et al.
2016), but provides a framework for further testing, development, and
integration to achieve this ultimate aim, as well as useful guidance for
yeast researchers to select appropriate TE detection tools.

MATERIALS AND METHODS

Analysis of simulated WGS data sets with single artificial
TE insertions

To investigate the performance of McClintock component methods on
data containing known, nonreference TE insertions, we created simu-
lated Saccharomyces cerevisiae genomes, each containing a single syn-
thetic nonreference TE insertion from one of the four active TE families
in an otherwise unmodified S. cerevisiae reference genome. Since active
S. cerevisiae TEs (Tyl, Ty2, Ty3, and Ty4) are known to target tRNA
genes (Ji et al. 1993; Chalker and Sandmeyer 1990, 1992; Devine and
Boeke 1996; Kim et al. 1998; Baller et al. 2012; Mularoni et al. 2012; Qi
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et al. 2012), each synthetic insertion was placed upstream of a different
annotated tRNA gene in the reference genome, taking the orientation
of the tRNA gene into consideration. The annotation for 299 tRNAs
was extracted from the SGD genome annotation for sacCer2 (SGD
version R61.1.1). Tyl, Ty2, and Ty4 have been shown to insert pre-
dominantly within the first 200 bp upstream of tRNA genes, and Ty3
appears to target more specifically the region of RNA polymerase III
transcription initiation, 16 or 17 nucleotides from the 5’ ends of tRNA
genes (Ji et al. 1993; Chalker and Sandmeyer 1990, 1992; Devine and
Boeke 1996; Kim et al. 1998; Baller et al. 2012; Mularoni et al. 2012; Qi
et al. 2012). All active S. cerevisiae TEs produce 5-bp target site dupli-
cations (TSDs) on insertion (Gafner and Philippsen 1980; Rinckel and
Garfinkel 1996; Chalker and Sandmeyer 1990; Kim et al. 1998; Zou
et al. 1996). To mimic these insertion preferences in our simulations,
Tyl, Ty2, Ty3, and Ty4 were alternately selected for insertion; a 5-bp
TSD was created (either 200-195 bp upstream of a tRNA gene for TyI,
Ty2, and Ty4; or 17-12 bp upstream of tRNA genes for Ty3); and the
corresponding full-length Ty canonical sequence was inserted in the
reference genome. 299 insertions were produced with the TE sequence
inserted on the positive strand of the genome, and 299 were produced
with the TE sequence reverse complemented to test the effects of TE
orientation on method performance.

We simulated resequencing of single-insertion synthetic genomes
using Wgsim (https://github.com/lh3/wgsim) (Li et al. 2009) with a 1%
base error rate (—e 0.01). Read lengths were chosen to be 101 bases each
with an insert size of 300 bp (42-bp SE) and 100x coverage to mimic the
properties of a large sample of WGS data sets collected by Strope et al.
(2015), which we use in our analysis of real yeast genomes (see below).
To generate an average read depth of 100X across the length of sacCer2
reference genomes with additional single TE insertions, in silico WGS
samples were created with 6,024,220 read pairs for Tyl insertions,
6,024,237 read pairs for Ty2 insertions, 6,023,936 read pairs for Ty3
insertions, and 6,024,369 read pairs for a Ty4 insertion.

McClintock (version €945d20da22dc1186b97960b44b86bc21c96ac27)
was run on each of these simulated data sets using reference TE
annotations and canonical TE sequences from Carr et al. (2012), plus a
manually produced hierarchy file based on the reference TE annotation
in Carr et al. (2012). We used the standard, unmodified reference ge-
nome sequence option of McClintock for these single synthetic insertion
simulations. The mean of the number of nonreference and reference TEs
predicted per sample was calculated across all 299 simulated samples for
each strand. The proportion of correct predictions of nonreference TEs
was calculated at four thresholds of accuracy: (i) requiring the exact TSD
to be annotated correctly, (ii) requiring a prediction to be within a 100-bp
window either side of the TSD, (iii) within a 300-bp window either side
of the TSD (the insert size of the simulated sequencing data set), or (iv)
within a 500-bp window either side of the TSD. BEDtools window
(Quinlan and Hall 2010) was used to calculate correct predictions within
the given windows. A prediction was classified as exactly correct only if
the same TE family was predicted to occur at the exact coordinates of the
TSD of the synthetic TE insertion location. For nonexact overlaps,
BEDtools window allows a permissive definition of a true positive, where
a correct TE prediction is counted when any part of a predicted insertion
falls within the given threshold distance if the correct TE family is pre-
dicted. The orientation of a predicted insertion was not taken into ac-
count for determining a correct prediction because some methods do not
predict orientation.

To visualize the accuracy of nonreference TE predictions, the results
files for the 299-positive strand and 299-negative strand single-insertion
samples were converted into two bigWig files (one for each strand) using
BEDtools and wigToBigWig (Kent et al. 2010). This was performed for
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each TE family and each component method of McClintock. SeqPlots
(Stempor 2014) was then used to produce plots of the genome coverage
of predictions for each TE family, centered around the simulated in-
sertion locations for that family. Visualization of predicted insertions
negative strand simulations were reverse complemented and depicted
on the same plot as positive strand simulations in different colors. Plots
were centered on the 5-bp TSD and extended *10 bp for split-read
methods, and £500 bp for read-pair methods, respectively. Results for
TEMP were partitioned based on whether or not split-read support was
available for a prediction. Prior to visualization, we attempted to filter
out any obvious false-positive predictions using the fact that each syn-
thetic insertion location should only be predicted in one simulated sam-
ple. Thus, any locations where a predicted nonreference insertion was
observed across multiple simulated samples indicated a potential false
positive. This filtering was necessary to prevent a nonreference insertion
that was predicted by RelocaTE in the same location in 149 single syn-
thetic insertion samples from dominating the visualization for this com-
ponent method. False-positive filtering prior to visualization only affected
five other potential insertions for PoPoolationTE, and thus this filtering
procedure does not substantially alter positional accuracy results. To
further investigate the accuracy of TSDs predicted by split-read methods,
the length of the predicted TSD was plotted for each active yeast TE
family. To be consistent with analysis of real yeast genomes (see below)
and to mitigate effects of false-positive predictions found at the same site
in multiple samples, TSD lengths predicted in simulated data were only
plotted for unique insertion sites rather than all insertions.

To investigate the concordance of nonreference TE predictions made
by different McClintock component methods, we first determined
whether or not each method had made a “correct” prediction in each
of the simulated samples with a synthetic TE insertion. Predictions for
ngs_te_mapper, RelocaTE, TEMP (both split read and read pair), and
PoPoolationTE were classified as correct if they overlapped with the true
location of the TSD. Predictions for RetroSeq and TE-locate were clas-
sified as correct if they occurred within a 100- or 500-bp window of the
correct location of the TSD, respectively. The orientation of a prediction
was not taken into account when classifying a prediction as “correct” or
not, because not all methods predict orientation. The overlap of these
correct predictions was then plotted as Venn diagrams using jvenn
(Bardou et al. 2014), comparing split-read methods, read-pair methods,
and finally the total set of correct predictions from all split-read vs. all
read-pair methods.

Analysis of real WGS data sets

To assess the relative performance characteristics of the component
methods on real data, McClintock was run on a large sample of S.
cerevisiae data sets from Strope et al. (2015) that includes 93 S. cerevi-
siae strains from different geographical locations and clinical origins.
The Strope et al. (2015) samples were sequenced on an Illumina HiSeq
2000 with paired-end reads of 101 bases each, an average insert size of
300 bases, and a median coverage of >117x. We used these general
library characteristics in our single synthetic insertion simulations (see
above) to allow more direct comparison with analysis of these real yeast
genomes. The raw fastq files for the 93 sequenced strains were obtained
from the EBI Sequence Read Archive (SRA072302).

McClintock (version 354acec977e37c¢35416f05046940b0dabf09b331)
was run on each of these samples using reference TE annotations and
canonical TE sequences from Carr et al. (2012), and a manually produced
hierarchy file based on the annotation in Carr et al. (2012). The McClintock
version used for the analysis of real yeast data differs slightly from that
used for simulated data in terms of three small improvements that were
required to handle variation in sample names (for ngs_te_mapper)
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and differences in read lengths of paired-end fragments (for PoPoo-
lationTE) which were encountered when analyzing real yeast genome
data. We used the standard, unmodified reference genome sequence
option of McClintock for these analyses. The average number of non-
reference and reference TEs predicted per strain was plotted as box
plots for each method. In addition, the total numbers of nonreference
and reference TE insertions per TE family were summarized across all
strains for each McClintock component method, both genome wide
and in tRNA gene regions.

To biologically validate results of different component methods of
McClintock, we took advantage of the fact that Ty elements are known
to insert in close proximity to tRNA genes in S. cerevisiae (Ji et al. 1993;
Chalker and Sandmeyer 1990, 1992; Devine and Boeke 1996; Kim et al.
1998; Baller et al. 2012; Mularoni et al. 2012; Qi et al. 2012). A pre-
diction was counted as within a tRNA gene region if any part of the
annotation was with 1000 bp upstream or 500 bp downstream of the
transcription start site of one of the 299 annotated tRNA genes, taking
tRNA gene orientation into account. To visualize the patterns of non-
reference TE predictions around tRNA genes, all results for all 93 sam-
ples were converted to a single genome coverage bigWig file for each TE
and each component method. SeqPlots (Stempor 2014) was used to
produce plots of the genome coverage averaged across the 299 tRNA
genes. Plots were centered on the start of the tRNA gene and extended
1000 bp upstream and 500 bp downstream, taking into account the
orientation of each tRNA gene. Results for TEMP were subset into two
groups based on whether split-read support for a prediction was avail-
able or not.

The lengths of TSDs for nonreference TE insertions predicted by the
split-read methods were plotted by TE family. To prevent any non-
reference TE insertions present at the same location in multiple samples
from biasing the results, only unique insertion sites were plotted. If a
method called an insertion at nearly the same location but with a longer
or shorter TSD in different samples, these were classed as unique sites.

Data availability

The McClintock pipeline is available under the FreeBSD license at
https://github.com/bergmanlab/mcclintock. Supplemental Material,
File S1 contains a combined supplement text including: detailed de-
scriptions of McClintock components; an overview of the McClintock
execution process; details of postprocessing of component method
output; methods, results, and discussion for analysis of McClintock
applied to simulated resequencing data created for unmodified S.
cerevisiae reference genomes; and Figures S1-S4 and Tables S1 and
S2. Supporting data sets of McClintock predictions for real yeast
genomes in SRA072302 are available in File S2. Code used to generate
simulated yeast genomes and apply McClintock to simulated and real
yeast genome data are provided in File S3.

RESULTS AND DISCUSSION

McClintock component methods and their dependencies

We initiated our design of McClintock with a literature search for
candidate bioinformatic systems that can detect TE insertions from NGS
data in 2014, which yielded 33 potential systems. Our main project
objective was to develop a system that automatically detects nonrefer-
ence TE insertions in raw WGS data for any species. Thus, we excluded
systems that required any wet-laboratory enrichment from further
consideration. Systems that did not make their code available were also
rejected. This left a list of 12 candidate software systems. After pre-
liminary testing of these 12 methods, six were rejected from further
testing because of difficulties during installation [Tangram (Wu et al.
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Table 1 An overview of the features of the component TE detection methods in the McClintock pipeline

Method ngs_te_mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate

Split read v v v

Read pair v v v v
Nonreference TEs v v v v v v
Reference TEs v v va v v
Orientation v b v ve
TSD v v vd

Detects TE families not in v v v ve v

reference genome

gplit read and read pair refer to what type of evidence is used to make TE-insertion predictions (see main text for details).
TEMP reports whether a reference TE is absent from the resequenced sample rather than providing direct evidence for the presence of a reference TE.
RelocaTE output provides information about the orientation of nonreference TEs, but not for reference TEs. McClintock annotates the orientation of reference TEs in

RelocaTE output using the original reference TE annotation.

TE-locate provides information about the orientation of nonreference TEs where possible, but not for reference TEs. McClintock annotates the orientation of

reference TEs in TE-locate output using the original reference TE annotation.

o EMP only makes TSD predictions for insertions with split-read support.

supplied reference TE annotation which is the default option in McClintock.

2014) and VariationHunter (Hormozdiari et al. 2010)], reliance on data
for a specific organism [TEA (Lee et al. 2012) and VirusSeq (Chen et al.
2013)], inability to detect nonreference insertions [T-lex (Fiston-Lavier
et al. 2011)], or the inability to distinguish general structural variations
from TE insertions [HYDRA (Quinlan et al. 2010)]. Six remaining
methods [ngs_te_mapper (Linheiro and Bergman 2012), TE-locate
(Platzer et al. 2012), PoPoolationTE (Kofler et al. 2012), RetroSeq
(Keane et al. 2013), RelocaTE (Robb et al. 2013), and TEMP
(Zhuang et al. 2014)] had publicly available code that could be installed
reproducibly and met project objectives were selected for incorporation
into the initial McClintock pipeline. Since the original selection of
methods for inclusion in McClintock, a number of additional methods
that meet the initial project requirements [“pecnv teclust” (Cridland
et al. 2013), TIF (Nakagome et al. 2014), TE-Tracker (Gilly et al. 2014),
Mobster (Thung et al. 2014), ITIS (Jiang et al. 2015), Jitterbug (Hénaff
et al. 2015), TIDAL (Rahman et al. 2015), ISmapper (Hawkey et al.
2015), MELT (Sudmant et al. 2015), SPLITREADER (Quadrana et al.
2016), and TEPID (Stuart et al. 2016)] and new versions of some
methods [PoPoolationTE2 (Kofler et al. 2016) and RelocaTE2 (Chen
et al. 2017)] have been released. These methods have not yet been
incorporated into McClintock, but the flexible architecture of our sys-
tem permits their inclusion in the future.

A summary of the main features of the six component methods
included in McClintock is shown in Table 1. A more detailed overview
of the component methods, their original use case, software/data de-
pendencies, and limitations is provided in the “Description of McClintock
Component Methods” section of File S1. While none of the McClintock
component methods were originally designed for detecting TEs in
yeast, using the yeast system as a test bed does not favor any particular
component method and realistically models application of component
systems to a new species. The six component systems each have many
dependencies on other pieces of software, which must all be correctly
installed before the component system will function correctly. These
software dependencies are listed in Table 2. Several of these component
dependencies require end-user licenses, and thus it was not possible to
fully automate installation of all component methods. McClintock
therefore assumes component dependencies are installed system wide,
but automates installation of the component methods themselves. A
passive check is performed during installation of McClintock that re-
ports whether component dependencies are available, though installa-
tion is not halted if they are missing. Because of the large number of
component dependencies and subsequent development of components
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RetroSeq can detect TE families not present in the reference genome when using Exonerate to generate a reference TE annotation, but not when using a user-

themselves, we developed McClintock to use specific versions of com-
ponents and their dependencies. Table 2 also lists the version of each
dependency that was used with McClintock to obtain the results
presented here.

McClintock component methods also have a variety of data de-
pendencies that are required as inputs, which are listed in Table 3. The
component methods incorporated into McClintock together require a
total of 13 different data dependencies to run. However, since many of
these data dependencies can be automatically generated or are format
alterations that can be automatically achieved with simple preprocess-
ing steps, the number of data dependencies can be reduced to three
required inputs for McClintock: a fasta file of the reference genome, a
fasta file of the canonical TE sequences, and fastq files of NGS reads
(paired or single ended).

The McClintock pipeline

An overview of the data flow and processing steps performed by the
McClintock pipeline is shown in Figure 1. A detailed description of how
the McClintock pipeline is executed can be found in the “Overview of
the McClintock process” section of File S1. In the following sections, we
describe the options for running the McClintock pipeline, then describe
how component methods are parsed in the context of the McClintock
pipeline to create standardized output for downstream analysis.

Reference TE annotation options: Several McClintock component
systems rely on information about TEs in the reference genome as part of
their workflow, which can be either supplied by the user or automatically
generated by McClintock. If a preexisting annotation of the TE se-
quences in the reference genome is available, a one-based GFF file of this
data can be used as input for the McClintock pipeline. If such a reference
TE annotation is provided, then the user must also create and supply a
TE “hierarchy” file as another input. The hierarchy file contains two
tab-delimited columns, the first listing the name of each instance in the
reference TE annotation and the second listing the canonical TE family
to which that instance belongs. If no reference TE annotation is pro-
vided, then a reference TE annotation and hierarchy file is created
automatically by running RepeatMasker and postprocessing Repeat-
Masker output files.

Reference genome sequence options: McClintock provides options to

automatically create various different modified reference genomes.
These options were implemented because some component methods

-=.G3:Genes| Genomes | Genetics
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Table 2 Software dependencies required to install and run each component TE detection method in the McClintock pipeline

Software ngs_te_mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate Version Used in this Study
Linux v v v v v v CentOS 6
Perl v v v v v 5.18.1
R (R Core Team 2013) v 3.0.2
BioPerl (Stajich et al. 2002) v v 1.006001
RepeatMasker (Smit et al. 2013) v 4.0.2
BEDTools (Quinlan and Hall 2010) v v 2.17.0
SAMTools (Li et al. 2009) v Ve v v 0.1.19-44428cd
BCFTools (Li et al. 2009) v 0.1.19-44428cd
twoBitToFa (Kuhn et al. 2013) v 294
BLAT (Kent 2002) v 35x 1
Exonerate (Slater and Birney 2005) v 2.2.0
Bowtie (Langmead et al. 2009) v 1.0.0
BWA (Li 2013) v v v v v 0.7.4-r385P

aOnIy compatible with SAMTools 0.1.19 or earlier (Rishishwar et al. 2016).

his specific version of BWA is needed to ensure compatibility between PoPoolationTE, which uses BWA-ALN, and other component methods which use BWA-

MEM.

(RetroSeq and TE-locate) require an instance of a TE to exist in the
reference genome for nonreference instances of that family to be detected
in a resequenced sample. This is important because, in some cases, like
the Drosophila melanogaster P-element (Kaminker et al. 2002), the
reference genome does not include any copies of a TE family that occurs
in natural populations. This situation may also occur when a TE family
has been introduced experimentally into a strain lacking that TE to study
its transposition. To allow for these cases, McClintock has an option to
generate modified reference genomes that include additional “chromo-
somes” comprised of canonical TE sequences or TE sequences extracted
from the reference genome. An annotation of TEs in the additional
“chromosomes” is then appended to the reference TE annotation file.
PoPoolationTE requires a modified reference genome with canonical TE
sequences and reference TE sequences added as additional “chromo-
somes.” Thus these reference genome modifications are always made
specifically for PoPoolationTE, regardless of whether user-supplied op-
tions to modify the reference genome are provided globally for other
component methods.

Run options: McClintock offers additional options to customize the way
the pipeline is run. Itis possible to specify which component methods are
executed, allowing tailored output and shorter run times. McClintock
and its component methods produce short-read alignment files and
other intermediate files that can be very large, and thus an option is
provided to remove unwanted intermediate files. BAM files output by
McClintock may be useful for other purposes, so an option is provided to
eliminate all intermediate files other than BAM files. The location of all
output files can be changed to any absolute path that the user requests.
Within the specified location, all output files will be produced in a
directory named after the reference genome sequence with results for
each sample stored in subdirectories named after the fastq files for that
sample, allowing multiple samples for the same reference genome to
reuse common index files.

Postprocessing and standardization of output format: The compo-
nent methods within McClintock produce their output in different file
formats and annotation frameworks (see Bergman 2012 for discussion).
Therefore, McClintock performs a number of postprocessing steps to
standardize outputs from different methods into a common annotation
framework. Details of the native annotation framework for component
methods and the postprocessing steps made by McClintock can be
found in the “Postprocessing and Standardization of Component
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Method Output” section of File S1. Before performing these steps, the
original (unedited) results for each method are saved in the output
directory for that sample. If TE predictions are made by any compo-
nent method in the additional “chromosomes” added in modified
reference genomes (see above), these results are removed from the
standard results files and retained in a subdirectory within the results
directory called “non-ref_chromosome_results.”

The output file format chosen to standardize results for all
component methods is a zero-based BED6 format because it allows
easy integration with the BEDTools and UCSC genome browser. The
BED format provides a fourth column to contain a name for the
annotated feature. All records in these BED files contain the name of
the TE family predicted at that location and whether the prediction is of a
nonreference or reference TE. The name column also reports the sample
ID from the fastq input file and the name of the component method that
made the prediction. The type of evidence used for the prediction is also
listed, either “sr” representing a prediction made from split-read evi-
dence, “rp” representing a prediction made from read-pair evidence, or
“nonab” for TEMP reference TE predictions that rely on no evidence for
the absence of the TE in the sample. In addition, filtering and redun-
dancy removal was performed within the result file for each component
method. No redundancy filtering is performed by McClintock across
component methods, allowing users to more directly compare output
from different methods. To facilitate viewing of results on the UCSC
genome browser, a header is included in each BED file. This header is
read by the UCSC browser and lists the sample name and McClintock
component system that produced the results as the track name and
description, allowing multiple result files for the same sample to be
merged and visualized simultaneously.

Application of McClintock to simulated S. cerevisiae
genomes with single synthetic TE insertions

To test McClintock and its component methods, we used simulated
WGS data sets based on the genome of the model eukaryote, S. cerevisiae.
We chose S. cerevisiae for testing McClintock because its reference
genome is relatively small and has been completely determined
(Goffeau et al. 1996), it has large samples of publicly available rese-
quenced genomes (Liti et al. 2009; Almeida et al. 2015; Strope et al.
2015), and the genome biology of its TEs is relatively simple and well
characterized (Kim et al. 1998; Carr et al. 2012). Briefly, the 12-Mb
S. cerevisiae reference genome contains 483 annotated TEs from six
long terminal repeat (LTR) retrotransposon families (Ty1, Ty2, Ty3,
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Table 3 Data dependencies required to successfully run each component of the McClintock pipeline

ngs_te_mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate
Reference genome (fasta) v v v v v v
Canonical TE sequences (fasta) v e v vb v
Annotation of reference TEs (GFF) v v
Annotation of reference TEs (BED) v Ve
Annotation of reference TEs (custom format) v
Unaligned reads (single-end fastq) v v
Unaligned reads (paired-end fastq) v
Aligned reads (BAM) v v
Aligned reads (lexically sorted SAM) v
TE hierarchy (custom format) v v
@Must include an entry in the format “TSD=..." for each TE in the file on the same line as the header, where “..." is the TSD sequence if known, or a string of periods

with equal to the TSD length if the TSD sequence is unknown. If neither length nor the sequence of the TSD is known, “TSD=UNK" can be supplied.
Must be formatted as one fasta file per TE family and a file of files listing their locations.
“Must be one BED file for each entry in the reference TE annotation and a file of files listing their locations.

Ty3_Ip, Ty4, and Ty5) (Carr et al. 2012), a type of TE that can be
processed effectively by all six McClintock component methods. TyI
and Ty2 share a nearly identical LTR sequence but differ in their internal
regions (Kim et al. 1998), while Ty3 and Ty3_Ip have 82% nucleotide
identity over their entire length (Fingerman et al. 2003). Most TEs in S.
cerevisiae are solo LTRs or otherwise truncated copies, with only ~50
full-length elements from four active families in the reference genome
(Tyl, Ty2, Ty3, and Ty4) (Kim et al. 1998; Carr et al. 2012). TyI and Ty2
have the most full-length copies in the S. cerevisiae reference genome,
with very few full-length copies being observed for Ty3 and Ty4 (Kim
et al. 1998; Carr et al. 2012). The active TE families in S. cerevisiae are
known to target tRNA genes (Ji et al. 1993; Chalker and Sandmeyer
1990, 1992; Devine and Boeke 1996; Kim et al. 1998; Baller et al. 2012;
Mularoni et al. 2012; Qi et al. 2012) and create a 5-bp TSD on insertion
(Gafner and Philippsen 1980; Rinckel and Garfinkel 1996; Chalker and
Sandmeyer 1990; Kim et al. 1998; Zou et al. 1996).

We first performed control analyses by simulating WGS resequenc-
ing of unmodified S. cerevisiae reference genome samples and applying
McClintock to these data sets (see “Simulating Resequencing of the .
cerevisiae Reference Genome” in File S1). While not the major focus of
this study, these reference genome simulations allowed us to evaluate
how often McClintock component methods detected reference TEs
and, more importantly, how often component methods detected
false-positive nonreference TEs (in the absence of any true, nonrefer-
ence TE insertions). An example of reference TE predictions for all six
component methods is shown in Figure S1A in File SI. In general,
analysis of unmodified simulated reference genomes showed that
McClintock component methods cannot detect all reference TEs (Table
S1 in File S1), but also typically have low false-positive rates for pre-
dicting nonreference TE insertions when they are truly absent (Table S2
in File S1). Additionally, these simulations showed that McClintock
had better performance at 100X vs. 10X coverage, and that neither
the choice of reference TE annotation nor reference genome options
substantially affected the detection of reference or nonreference TEs for
most McClintock component methods.

Next, we simulated WGS samples for reference genomes that include
a single synthetic TE insertion from one of the four active TE families
(placed at biologically realistic locations upstream of tRNA genes) to
evaluate the ability of McClintock component methods to detect true
positive nonreference TE insertions. To do this, WGS reads were
simulated for 598 samples, each with a different synthetic TE insertion
placed upstream of one of the 299 tRNA genes in the yeast genome.
299 samples were created for single synthetic insertions in the positive
orientation upstream of tRNA genes, and 299 samples for single
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synthetic insertions in the negative orientation. Genomes with synthetic
insertions were created by alternately selecting one of the four active TE
families and creating a 5-bp sequence 12-17 bp upstream of a tRNA
start site for Ty3 or 195-200 bp upstream of a tRNA start site for TyI,
Ty2, and Ty4. This 5-bp sequence formed the basis of a synthetic TSD
and became the location into which a full-length Ty canonical sequence
was inserted in the sacCer2 reference genome. All single-insertion sam-
ples were simulated at 100X coverage since the ability of component
methods to detect reference TEs improved with increasing coverage
and to better match properties of the real yeast genomes analyzed
below. An illustration of nonreference TE predictions for all six
component methods in a genomic segment containing a synthetic
TE insertion is shown in Figure S1B in File S1. In the following
sections, we detail the analysis of these single synthetic insertion
simulated samples in terms of overall numbers of reference and
nonreference TE predictions and positional accuracy of nonrefer-
ence TE predictions.

Numbers of reference and nonreference TE predictions: Table 4
shows the mean number of reference and nonreference TE insertions
predicted across all 299 simulated single-insertion samples on the pos-
itive and negative strands, respectively. The proportion of correct pre-
dictions of nonreference TEs was calculated at four thresholds of
accuracy: (i) requiring the exact TSD to be annotated correctly, (ii)
requiring a prediction to be within a 100-bp window either side of
the TSD, (iii) within a 300-bp window either side of the TSD (the insert
size of the simulated sequencing libraries), or (iv) within a 500-bp
window either side of the TSD. If all single TE insertion samples were
predicted correctly for a method, it would lead to an average value of
exactly one nonreference TE predicted per sample. Comparing row one
of Table 4 (single-insertion simulation) with row nine of Table SI in
File S1 (unmodified reference simulation), we can infer that the in-
clusion of single synthetic insertions into the yeast genome does not
substantially alter the ability of any McClintock component method to
predict reference TEs. As expected, comparing row two of Table 4
(single-insertion simulation) with row nine of Table S2 in File S1 (un-
modified reference simulation), we see gains in the numbers of non-
reference TE insertions predicted for all methods; demonstrating that
McClintock components can detect true positives above false-positive
baselines in our simulation framework.

Forngs_te_mapper, the average number of nonreference predictions
shows this method systematically underpredicts nonreference TE in-
sertions. However, the average number of predictions made overall per
sample is only slightly higher than the average number of exact
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output
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Align reads to reference
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| Convert to BAM ‘
Genome alignment (BAM)
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i l« v \l! v

Convert results to BED |
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Remove redundant predictions |
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Reference and non-reference TE predictions (BED)

Figure 1 Overview of the McClintock pipeline. In the flowchart, important processes are shown as boxes, decision points as diamonds, and data
at important steps as parallelograms. Note that the last three steps of the pipeline are applied independently to each method. Final results from
each component method are output independently by McClintock, allowing the user to easily merge output or assess for overlap among

methods.

predictions. Consistent with unmodified reference genome simula-
tions (see row nine of Table S2 in File S1), this result indicates that only
a small number of nonreference predictions made by ngs_te_mapper
are false positives. Moreover, whenever ngs_te_mapper makes a pre-
diction of a nonreference TE (that is within 500 bp of the true in-
sertion site), the prediction was always at the exact TSD, suggesting
high accuracy in terms of position and TSD structure for this method
(see below). We also observed that ngs_te_mapper detected fewer
insertions when the synthetic insertion is on the negative strand
relative to the tRNA gene, suggesting there can be strand bias in
the detection of nonreference TEs. This bias could be due to yeast
genome organization, our simulation framework, the ngs_te_mapper
algorithm, or a combination of these factors.
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RelocaTE produced, on average, slightly more than one nonreference
TE prediction per sample. At face value, this result suggests that
RelocaTE may detect essentially every synthetic insertion, but also makes
occasional false-positive predictions. In fact, the average excess number
of predictions made by RelocaTE in single-insertion simulated genomes
is very close to the false-positive rates observed in simulations of
unmodified reference genomes (see row nine of Table S2 in File S1).
However, only ~50% of the total RelocaTE predictions are made within
500 bp of the true insertion. Thus, it appears that the inclusion of single
synthetic insertions increases the rate of false-positive nonreference TE
predictions by RelocaTE relative to unmodified reference genomes.
Nevertheless, RelocaTE produces more correct predictions within
100 bp of the true insertion site than ngs_te_mapper, the other purely
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Table 4 Average numbers of predictions and correct predictions, by method, for simulated yeast WGS samples with a single synthetic

TE insertion upstream of tRNA genes

ngs_te_mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate

Insertion strand + — + — — + - + — + —
Reference TEs mean 41.26 41.26 130.42 130.42 48298 48298 N.A. NA. 16350 16350 27132 271.32
Nonreference TEs mean 0.42 0.32 1.12 1.1 0.90 090 0.87 0.86 1.18 1.14 0.98 0.92
Exact 0.40 0.29 0.30 0.24 0.36 0.36 0.00 0.00 0.00 0.00 0.00 0.00
Within 100 bp 0.40 0.29 0.63 0.61 0.90 0.90 0.68 0.66 0.16 0.16 0.07 0.06
Within 300 bp 0.40 0.29 0.63 0.61 0.90 0.90 0.69 0.67 0.16 0.16 0.70 0.54
Within 500 bp 0.40 0.29 0.63 0.61 0.90 0.90 0.69 0.67 0.16 0.16 0.82 0.78

Simulated WGS samples had 100x coverage, and McClintock was run using the reference TE annotation from Carr et al. (2012) and the unmodified reference genome
option. The first two rows show the mean number of reference and nonreference predictions per sample, averaged across all simulated samples for that strand. Rows
three to six show the average number of nonreference predictions of the correct TE family across samples that fell within the given distance of the known synthetic TE
insertion site. For each method, the first column corresponds to insertions on the positive strand and the second column corresponds to insertions on the negative
strand. For a prediction to be considered “exact,” the location of the TSD had to be predicted correctly. Numbers for TEMP combine predictions with split-read and

read-pair support.

split-read method, despite producing fewer exact predictions than
ngs_te_mapper. Thus many of the nonexact RelocaTE predictions
within 100 bp of the true location are likely to be accurately positioned,
but simply not have the correct TSD structure (see below). Like
ngs_te_mapper, RelocaTE also appears to have a slightly higher true-
positive rate for positive strand insertions, with the difference in the
number of correct predictions on the positive strand being greater in
the exact prediction category.

The average total number of nonreference TE predictions for TEMP
is nearly one (0.90), confirming results from unmodified reference
genome simulations (see row nine in Table S2 in File S1) that TEMP
makes very few false-positive nonreference predictions. Moreover, the
total number of nonreference TE predictions for TEMP is the same as
the average number that are accurate within 100 bp of the true insertion
site. These results suggest TEMP is correctly predicting most simulated
insertions, but not to base pair accuracy (see below). Some positional
inaccuracy is expected for TEMP since not all predictions for this
method are supported by split-read evidence. For TEMP, there appears
to be no difference in detection ability for TE insertions on the positive
or negative strand.

RetroSeq predicted nearly as high an average number of nonrefer-
ence TE predictions per sample as TEMP, but the proportion predicted
correctly was lower than TEMP for all length thresholds. The fact that
not all RetroSeq predictions are within 500 bp of the true insertion
suggests that RetroSeq can produce some false-positive predictions of
nonreference TE insertions when the sample is not identical to the
reference genome, unlike what was observed for simulations of un-
modified reference genomes (see row nine of Table S2 in File SI).
Because RetroSeq does not use split-read information, no predictions
from this method were exact, however most predictions were generally
within 100 bp of the true location. For RetroSeq there is a only slight
reduction in ability to detect nonreference TE insertions on the negative
strand compared with the positive strand at all length thresholds.

PoPoolationTE produces an average of slightly more than one
nonreference TE prediction per sample, but this method shows the
lowest proportion of true-positive predictions at the most permissive
length thresholds, suggesting most predictions are false positives. This
result supports those obtained from unmodified reference genomes that
PoPoolationTE makes approximately one false-positive prediction per
genome in the absence of any synthetic nonreference TE insertions (see
row nine of Table S2 in File S1). Because PoPoolationTE does not use
split-read information and the span predicted by this method is often
large (see Figure S1B in File S1), no predictions made by PoPoolationTE
were exact. For PoPoolationTE there appears to be no difference in
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ability to detect nonreference TE insertions correctly on the positive
or negative strand.

TE-locate produced an average of nearly one nonreference TE
prediction per sample. However, these include some false-positive
predictions or at least predictions that are >500 bp from the actual
insertion location. The proportion of correct nonreference TE inser-
tions predicted by TE-locate drops steadily from 500 to 100 bp, with
TE-locate predicting the lowest number of correct insertions for any
method at the 100-bp scale. As with the other read-pair methods, no
predictions could be considered exact because TE-locate does not pre-
dicta TSD. These numbers indicate that, though the ability of TE-locate
to detect the presence of a TE in the general vicinity of its true location
is good, the annotation will not be as positionally accurate as other
read-pair methods like TEMP or RetroSeq. For TE-locate there appears
to be a reduction in detection ability at all thresholds for TE insertions
on the negative strand compared with the positive strand.

Positional accuracy of nonreference TE predictions: To visualize
more clearly the positional accuracy of McClintock component meth-
ods, predicted nonreference insertions were plotted around the known
location of synthetic insertions (Figure 2 and Figure 3). Plots were
produced for each TE family and method to determine if the family
of the synthetic TE insertion affected results for a particular method.
Table 4 showed that for split-read methods, there was no increase in the
accuracy at thresholds of ~100 bp and many predictions were exactly
correct. For read-pair methods, it appeared predictions could be several
hundred base pairs from the correct location. As such, split-read (Fig-
ure 2) and read-pair (Figure 3) results were plotted on different spatial
scales. Since TEMP could use both split-read and read-pair evidence,
results for this method were partitioned into two categories for visual-
ization. For a small number of cases, RelocaTE (one location) and
PoPoolationTE (five locations) predicted nonreference TE insertions
at the same genomic location in multiple samples. These predictions
must include false positives based on the fact that each synthetic ge-
nome had only a single insertions at different genomic locations. In-
clusion of these high-frequency, false-positive predictions dominated
the visualization of results for these two methods, and thus predictions
for these six cases were filtered prior generating Figure 2 and Figure 3
(see Materials and Methods for details).

Figure 2 shows that when ngs_te_mapper makes a prediction, it
produces the TSD at the correct location, apparently with no TSDs
called too long or too short. Direct analysis of TSD length distributions
supports this conclusion: for simulated data, ngs_te_mapper always
predicts the correct TSD length for nonreference insertions (Figure
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S2 in File S1). For Tyl, Ty2, and Ty4, ngs_te_mapper detected inser-
tions on the positive or negative strand with similar accuracy. Thus, the
main difference in detection rates on the positive and negative strands
for ngs_te_mapper observed in Table 4 appears to be for Ty3 insertions,
where many fewer insertions were detected correctly on the negative
strand. For RelocaTE, the predicted TSDs of nonreference insertions are
in approximately the correct locations but with coordinate ranges that
are frequently too short (see also Figure S2 in File S1). As with
ngs_te_mapper, RelocaTE shows the biggest difference in ability to detect
Ty3 insertions on the negative strand relative to the positive strand. TEMP
split-read predictions for TyI, Ty3, and Ty4 are often predicted correctly
but with the TSD often annotated to be longer than its true length (see
also Figure S2 in File S1). Surprisingly, TEMP made no predictions for
nonreference Ty2 insertions using split-read evidence, perhaps because of
the ambiguous signal arising from the similarity of TyI and Ty2 LTR
sequences. For TEMP, there is no difference in detection ability for in-
sertions on the positive or negative strand for any family.

Results of the positional accuracy for read-pair methods are shown in
Figure 3. For Tyl, Ty3, and Ty4 there were very few insertions (only
three per family) that TEMP did not have split-read supporting evi-
dence for, and thus few insertions for these families are plotted in Figure
3.1In contrast, all Ty2 predictions made by TEMP in the single-insertion
simulations had read-pair evidence. For all families, when only read-
pair evidence is used, TEMP generally predicts an insertion at the
correct site, but with some slight inaccuracy on either side. The majority
of RetroSeq predictions appear to be clustered close to the true insertion
locations, but there appears to be a slight bias for RetroSeq to predict
insertions 3’ of where the true TE is located on reference genome
coordinates. This bias is potentially introduced by the breakpoint de-
termination step of RetroSeq, which always scans in the 5’ to 3’
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direction (see section “Description of McClintock Component Methods”
in File S1). PoPoolationTE produced the highest number false-positive
predictions (Table 4). When these false-positive nonreference predic-
tions are filtered from the results, all predictions for Tyl and Ty2 in the
windows around simulated insertions are eliminated. The effect of re-
moving false positives is probably most pronounced for TyI because it is
the most common TE family in S. cerevisiae, and thus would be the most
likely family to have a reference insertion with sequence similarity to the
synthetic insertion in the vicinity of tRNA genes. PoPoolationTE makes
no predictions for Ty2, even including false positives. For Ty3 and Ty4,
PoPoolationTE has the capability of producing relatively accurate pre-
dictions, albeit with low resolution (nearly 100 bp around the true in-
sertion site). For TE-locate, many predictions are made within 500 bp of
the true insertion, but they are clearly spread further from the true in-
sertion location than other methods. TE-locate also appears to have a
slight bias to predict insertions 5’ of the true insertion location on
reference genome coordinates.

Overlap between methods: To understand the concordance of predic-
tions made by the McClintock components, we investigated the overlap
among methods for predictions that were made correctly at the sites of
synthetic insertions. As shown in Figure 2 and Figure 3, different meth-
ods have different positional accuracy, and thus we used different win-
dows to classify if a method made a “correct” prediction for a known
insertion or not. Predictions for ngs_te_mapper, RelocaTE, TEMP (both
split read and read pair), and PoPoolationTE were classified as correct
if they had any overlap with the true location of the TSD; while predic-
tions for RetroSeq and TE-locate were classified as correct if they
occurred within a 100- or 500-bp window, respectively, of the correct
location of the TSD. Neither the orientation nor the TE family was taken
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Figure 3 Positional accuracy of nonreference TE insertions made by methods using read-pair evidence on single-insertion synthetic genomes.
Data for TEMP are for predictions that do not have split-read evidence but do have read-pair evidence. Note that the y-axes of plots are scaled
differently for each method. The location of the synthetic TSD is from position 0-5 bp on each plot. The darker line for each method indicates
predictions averaged across simulated genomes with insertions on the positive strand; the lighter line indicates predictions averaged across
simulated genomes with insertions on the negative strand. A value of one would indicate a perfect prediction in all samples since there is one

synthetic insertion per genome.

into account when classifying a prediction as correct or not. The overlap
of correctly detected insertions are shown in Figure 4, A and B, for split-
read and read-pair insertions, respectively. The overlap of correct pre-
dictions made by all split-read methods vs. all read-pair methods is
shown in Figure 4C.

Figure 4A shows that the majority of split-read predictions are
supported by at least two methods (n = 340, 57%) but that each method
made many correct TE predictions that were not made by any other
method. RelocaTE and TEMP made a greater number of correct over-
lapping predictions with each other than either of these method did
with ngs_te_mapper. Figure 4A also shows that 16% (n = 94) of syn-
thetic insertions were not predicted by any split-read method at the
threshold of positional accuracy used here. Figure 4B shows that the
vast majority of synthetic TE insertions (n = 428, 72%) are predicted by
at least two of the read-pair methods, but that only 24% (n = 143) of
insertions are supported by three or more methods. RetroSeq and
TE-locate make the highest number of unique correct predictions.
~10% (n = 58) of synthetic insertion samples were not predicted by
any read-pair method at the threshold of positional accuracy used here.
Finally, Figure 4C shows that, while the overwhelming majority of
insertions are predicted by at least one split-read and one read-pair
method (n = 470, 79%), there are many insertions that are only pre-
dicted using one type of evidence or the other (n = 104, 17%) given the
thresholds of positional accuracy used here. Nevertheless, use of all six
methods recovers nearly 96% of synthetic insertions, demonstrating the
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utility of integrating multiple TE-identification methods enabled by
McClintock.

Application of McClintock to 93 yeast genomes

The previous sections presented results on the accuracy of McClintock
component methods on simulated resequencing data. Simulations are
useful for testing methods under controlled settings, but do not capture all
aspects of how methods perform when applied to real data. Since much is
known about the expected insertion preferences of TEs in S. cerevisiae
(Gafner and Philippsen 1980; Ji et al. 1993; Chalker and Sandmeyer
1990, 1992; Devine and Boeke 1996; Rinckel and Garfinkel 1996; Zou
et al. 1996; Kim et al. 1998; Baller et al. 2012; Mularoni et al. 2012; Qi
et al. 2012), analysis of real WGS data sets can be used as an alternative
approach to evaluate if McClintock component methods can recapitulate
the known genome biology of yeast TEs. To do this, we analyzed 93 high-
coverage S. cerevisite WGS data sets from Strope et al. (2015) using
McClintock to generate TE predictions for all six component methods.
Figure 3 and Figure S3 in File S1 show how many of the nonreference
and reference TEs per strain, respectively, are detected by the different
McClintock component methods across all 93 samples. In general, split-
read methods predict between 5 and 20 nonreference TE insertions per
strain, whereas read-pair methods predict ~40-100 nonreference TE
insertions per strain (Figure 3). Numbers of reference TEs predicted
per strain in real data (Figure 5) are generally lower than in simulated
genomes (Table 4 and Table S1 in File S1). The exceptions to this pattern
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Figure 4 Concordance of correctly predicted nonreference insertions
among McClintock component methods. (A) The concordance of
nonreference predictions by methods that use split-read evidence that
overlap with the true location of a synthetic insertion. (B) The
concordance of nonreference predictions made by methods that use
read-pair evidence that either overlap (TEMP, PoPoolationTE), or are
within 100 bp (RetroSeq), or 500 bp (TE-locate) of the true location of a
synthetic insertion. (C) The concordance of correctly predicted
synthetic nonreference TEs with split-read or read-pair evidence.
Predictions for TEMP were partitioned based on whether they had
split-read evidence (split-read) or not (read-pair). Counts in all
diagrams total 598, the number of simulated samples with single
synthetic insertions.

are TEMP and PoPoolationTE, which show similar or higher numbers of
reference TE predictions per strain in real data relative to simulations.
We note that for a few strains in the Strope et al. (2015) data set,
TE-locate predicted several hundred nonreference insertions; these
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Figure 5 Numbers of nonreference TE insertions per strain predicted
by McClintock component methods in real yeast genomes. Predictions
for TEMP were partitioned based on whether they had split-read
evidence (split-read) or not (read-pair). Data are from 93 yeast strains
taken from Strope et al. (2015). Methods are classified based on
whether they use split-read or read-pair evidence to make a nonrefer-
ence TE prediction. The box plot is shown on a log;, scale. The thick
line indicates the median, the colored box is the interquartile range,
the whiskers mark the most extreme data point which is no more than
1.5 times the interquartile range from the box, and the O’s are outliers.
Note that for TE-locate, several outlier samples generated hundreds of
predicted nonreference TE insertions.

strains did not appear to be outliers in terms of their nonreference TE
content based on other methods (results not shown).

We evaluated the quality of nonreference TE predictions made by
McClintock component methods on the Strope et al. (2015) data set
using three aspects of the known biology of TEs in S. cerevisiae: (i)
activity of families, (ii) tRNA targeting, and (iii) TSD length. Our
expectations based on prior knowledge of yeast TE biology are that
methods that make high quality nonreference TE predictions should (i)
show few nonreference predictions for inactive TE families (Ty3_Ip
and Ty5), (ii) show a high proportion of nonreference predictions in the
vicinity of tRNA genes, and (iii) show characteristic 5-bp TSDs for
nonreference predictions made by split-read methods.

Prediction of active and inactive families: Table 5 shows numbers of
nonreference TE predictions made by McClintock component meth-
ods across all strains in the Strope et al. (2015) data set. As expected, all
methods predicted multiple nonreference insertions for TE families
that are known to be active in this species. Additionally, ngs_te_mapper
and TEMP make no nonreference TE predictions for both inactive
families in S. cerevisiae, supporting simulation results above that show
these methods have low false-positive rates. RelocaTE makes nonrefer-
ence TE predictions for Ty3_Ip but not Ty5, PoPoolationTE makes
nonreference TE predictions for Ty5 but not Ty3_Ip, and both Retro-
Seq and TE-locate predict nonreference insertions for Ty3_Ip and Ty5.
RelocaTE is the only split-read method that predicts nonreference
insertions for an inactive family, suggesting that split-read methods
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Table 5 Number and location of nonreference TEs predicted by McClintock component methods in 93 yeast genomes

Carr ngs_te_mapper RelocaTE TEMP RetroSeq PoPoolationTE TE-locate
Tyl 218/313(70%)  93/101(92%)  15/18(83%)  827/1093 (76%) 1854/2835 (65%)  139/194 (72%) 2082/16388 (13%)
Ty2 30/46 (65%) 58/77 (75%) 303/425 (71%)  1343/1853 (72%)  839/1169 (72%) 27/36 (75%)  1110/8132 (14%)
Ty3 43/45 (96%) 378/387 (98%) 670/678 (99%)  991/1008 (98%) 1299/1445 (90%) 1006/1013 (99%)  1748/3813 (46%)
Ty3_1p  12/15 (80%) 0/0 (N.A)  23/23 (100%) (N.A) 12/16 (75%) 0/0 (N.A) 83/86 (97%)
Ty4 29/49 (59%)  95/118(81%)  143/190(75%) 259/310(84%)  238/292(82%) 15/20(75%)  324/1083(30%)
Ty5 0/15 (0%) 0/0 (N.A) 0/0 (N.A) 0/0 (N.A) 3/74 (4%) 0/12 (0%) 0/887 (0%)

Each cell shows the number of nonreference TEs predicted in tRNA regions followed by the total number of nonreference TEs predicted genome wide. Data are for
numbers of insertions, not numbers of nonredundant insertion sites, so TE insertion alleles present in more than one sample are counted independently. A prediction
is counted in a tRNA region if any portion of the annotation is within 1000 bp upstream and 500 bp downstream of the tRNA start site, taking into account the
orientation of the tRNA gene. The first column applies the same analysis to the reference TE annotations from Carr et al. (2012). N.A. indicates that no nonreference

TE insertions were predicted by a method for that TE family.

generally have a higher ability to discriminate active from inactive TE
families. Compared to the total numbers predicted for other active TE
families, the three pure read-pair methods predicted fewer nonrefer-
ence insertions for both Ty3_Ip and Ty5, suggesting false-positive rates
for these methods are not so high as to overwhelm true signal. The one
exception is for TE-locate, which predicted relatively high numbers of
Ty5 insertions, which is likely related to the outlier samples noted above
where TE-locate predicts hundreds of presumably false-positive non-
reference insertions.

Predicted insertions in tRNA regions: Active TE families in S. cere-
visiae are known to target tRNA genes (Ji et al. 1993; Chalker and
Sandmeyer 1990, 1992; Devine and Boeke 1996; Kim et al. 1998;
Baller et al. 2012; Mularoni et al. 2012; Qi et al. 2012). The highest
density of Tyl and Ty2 insertions are in the 200 bp upstream of the
tRNA transcription start site (Ji et al. 1993; Devine and Boeke 1996;
Kim et al. 1998; Baller et al. 2012; Mularoni ef al. 2012). Ty3 targets a
specific location just upstream of tRNA gene transcription start sites
(Chalker and Sandmeyer 1990, 1992; Kim et al. 1998; Qi et al. 2012).

Patterns of Ty4 insertions have not been experimentally determined,
although the locations of insertions in the reference genome suggest a
similar pattern to that of TyI and Ty2 (Kim et al. 1998).

To evaluate if nonreference TE insertions predicted by McClintock
component methods show expected hallmarks of tRNA targeting, we
plotted locations of nonreference TE insertions identified in the Strope
et al. (2015) strains using split-read evidence and read-pair evidence in
Figure 6 and Figure 7, respectively. The expected profiles of insertion
into tRNA gene regions is observed for all Ty families for ngs_te_mapper,
RelocaTE, TEMP, and RetroSeq, albeit with the different levels of
resolution that are characteristic of each method. Consistent with sim-
ulation data (Figure 2), TEMP appears to have difficulty predicting Ty2
using split-read data in real yeast genomes, and this effect also appears
to impact prediction of TyI insertions using split-read data in real data
(Figure 6). PoPoolationTE can predict meaningful profiles of insertion
for Ty3 and Ty4 (Figure 7), as expected based on simulation data
(Figure 3). However, in contrast to simulation data where only putative
false positives are predicted (Figure 3), PoPoolationTE also predicts
nonreference insertions for Tyl and T2 in real data (Figure 7). Since
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Figure 7 Locations of nonreference TE predictions relative to tRNA genes made by methods using read-pair evidence on real yeast genomes.
Data for TEMP are for predictions that do not have split-read evidence but do have read-pair evidence. The transcription start site of each tRNA
gene is aligned at zero on the plots, taking into account orientation, for a window extending 1 kb upstream and 500 bp downstream. The
frequency of a prediction at each base is counted across all 93 strains in the Strope et al. (2015) data set, then averaged across the 299 tRNA
genes, and plotted as a line for each method and TE family. These plots show all predictions and therefore include allelic predictions present in
more than one strain. Also, any given strain may have more than one insertion at the same relative location in a tRNA gene, and thus the scale for

these plots can go above one.

PoPoolationTE predicts reference and nonreference insertions in the
same way, and since many TyI and T2 insertions exist in the reference
genome upstream regions of tRNA genes, it is possible that these TyI
and Ty2 insertions predicted in the Strope et al. (2015) data set are
actually reference insertions that are mislabeled by PoPoolationTE as
nonreference insertions. Finally, nonreference insertions predicted by
TE-locate are only weakly enriched in tRNA regions for all families, and
the positional profiles produced by TE-locate are shifted relative to
expectations and predictions made by other methods.

To quantify the proportion of nonreference TEs that were predicted
in tRNA regions, we counted predictions 1000 bp upstream and 500 bp
downstream of a tRNA gene, taking into account the orientation of the
tRNA gene but not the orientation of the TE insertion. The expected
percentage of TEs located in these regions if they were inserted ran-
domly in the genome would be 0.037% [(299 tRNA genes X 1500 bp
window)/12,162,995 bp genome]. Previous analyses of tRNA targeting
of TEs in the S. cerevisiae reference genome (Kim et al. 1998) assessed
whether TEs were within 750 bp of a tRNA gene or other RNA poly-
merase III gene (excluding other intervening TE sequences). Here we
use extended regions for tRNA targeting based on the inaccuracy in
nonreference predictions observed for some methods in the simula-
tions above. For comparison with previous results, we first applied our
definition of tRNA targeting to the reference TE annotation from Carr
et al. (2012) (Table 5). Estimated proportions of Ty elements in tRNA
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regions for the Carr et al. (2012) reference annotation are lower than
those reported by Kim et al. (1998), however, they still show highly
biased targeting toward tRNA regions.

Nonreference TE predictions of all four active Ty elements show the
expected enrichment in tRNA regions for each McClintock component
method (Table 5). For all methods, Ty3 is the active TE family most
strongly associated with tRNA regions, consistent with experimental
data and observations based on the reference genome (Chalker and
Sandmeyer 1990, 1992; Kim et al. 1998; Qi et al. 2012). Split-read
methods predict a higher proportion of nonreference TEs in tRNA
regions relative to expectations based on TEs in the reference genome.
For read-pair methods, at least one TE family showed a lower pro-
portion of nonreference TEs in tRNA regions relative to reference TEs.
We interpret this observation to be due to the lower positional accuracy
of read-pair methods. TE-locate consistently predicted the lowest num-
ber of TEs in tRNA regions for active Ty families, though predicted
insertions for this method still showed an enrichment in tRNA regions
relative to random expectation. We interpret the low tRNA enrichment
for TE-locate to be a consequence of the low positional accuracy of
read-pair methods combined with the presence of outlier samples for
this method which have very high numbers of nonreference predictions.

As discussed above, nonreference predictions were made by
RelocaTE, RetroSeq, and TE-locate for the inactive Ty3_Ip family. Despite
most likely being false positives, these predictions were predominantly
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in tRNA regions, suggesting they could either be nonreference Ty3
insertions that are miscalled as nonreference Ty3_Ip, or reference
Ty3_Ip insertions called as nonreference Ty3_1p insertions. Nonre-
ference predictions were also made by RetroSeq, PoPoolationTE, and
TE-locate for the inactive Ty5 family. The majority of these predic-
tions are made outside of the tRNA regions, as is expected based on
the known location of Ty5 insertions in the reference genome prior
knowledge about Ty5 target preferences (Zou et al. 1996; Kim et al.
1998; Baller et al. 2011). These nonreference TE predictions may be
false positives (possibly caused by mapping inconsistencies in hetero-
chromatic regions where Ty5 elements typically insert) or real non-
reference “insertions” that arose by recombination events rather than
transposition events (Zou et al. 1995).

Prediction of TSDs by split-read methods: Finally, we evaluated the
performance of split-read methods to predict the known TSD lengths of
active yeast Ty families in real WGS data. All available experimental and
genomic data indicates that active yeast Ty families create 5 bp TSDs on
insertion (Gafner and Philippsen 1980; Rinckel and Garfinkel 1996;
Chalker and Sandmeyer 1990; Kim et al. 1998; Zou et al. 1996). TSD
length distributions of unique insertion sites for McClintock predic-
tions in real yeast genomes are shown for Tyl, Ty2, Ty3, and Ty4 in
Figure S4 in File S1. As observed in simulated data (Figure 2 and Figure
S2 in File S1), ngs_te_mapper predictions had the highest proportion of
correct TSD lengths predicted per family. However, in contrast to
simulated data, ngs_te_mapper can infrequently make incorrect
TSD-length predictions in real data. Confirming simulation results,
RelocaTE generally underpredicts the length of TSDs, and TEMP con-
sistently overpredicts the lengths of TSDs for all families in real data.
For all split-read methods, the modal value of the TSD-length distri-
bution reflects the true TSD length for all families. Thus, the modal
TSD length provided by each of the split-read methods yields biolog-
ically meaningful inferences about TSD structure.

CONCLUSIONS AND FUTURE DIRECTIONS

Here we describe McClintock, an integrated pipeline for detecting TE
insertions in WGS resequencing data. McClintock offers many advan-
tages relative to running multiple TE detection methods in isolation.
Specific versions of compatible software dependencies required to run
each method are fully documented, allowing users to easily set up their
environment. The number of input files required to run all methods is
reduced and complex processing of input files to create the correct
custom formats and file relationships is automated. In addition, the
pipeline is structured to allow parallel computations for multiple
samples, so population data sets can be analyzed more quickly. Finally,
results from individual methods are standardized to facilitate compar-
isons across methods and easy visualization in the UCSC genome
browser. Overall, McClintock greatly lowers the barriers to running
multiple TE detection methods, allowing users to gain more insight into
how various methods work for their samples. McClintock does not
currently include all published TE detection methods, although addi-
tional methods can be easily incorporated into the pipeline due to the
flexible architecture and open-source nature of the project.

In addition, we have applied McClintock to simulated and real yeast
WGS samples to evaluate the performance of McClintock component
methods. Simulations on the unmodified S. cerevisiae reference ge-
nomes reveal that sequencing coverage influences detection of refer-
ence TEs, but that recovery of reference TE insertions and false-positive
rates for nonreference TE insertions are generally low even at high
sequencing coverage. Simulations on S. cerevisiae reference genomes
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including a single nonreference insertion showed that pure split-read
methods may detect fewer TE insertions than read-pair methods, but
they have much higher positional accuracy. Single-insertion simula-
tions also revealed that the TE family affects the ability of methods to
detect nonreference TE insertions. We find substantial difference in the
ability of McClintock component methods to detect subsets of non-
reference insertions in the yeast genome, but that by combining mul-
tiple methods that use split-read and read-pair data, nonreference TEs
at nearly all biologically realistic locations can be detected in simulated
data. Finally, application of McClintock to a large sample of real yeast
genomes reveals that most but not all McClintock component methods
can recover known aspects of TE biology in yeast such as family activity
status, tRNA gene targeting, and TSD structure. Together, our results
suggest that even in the context of a simplified model eukaryotic ge-
nome like S. cerevisiae, current TE detection methods using short-read
data do not provide comprehensive recovery of all TE insertions in
WGS resequencing samples. Further performance studies in other ge-
nomic contexts, including newer methods not currently included in
McClintock, are needed to generalize the results presented here, and to
provide a road map for developing more advanced systems for the
detection of TEs in unassembled short-read genomic data.
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