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Abstract

Assessments of the effectiveness of marine protected areas (MPAs) usually assume that

fishing patterns change exclusively due to the implementation of an MPA. This assumption

increases the risk of erroneous conclusions in assessing marine zoning, and consequently

counter-productive management actions. Accordingly, it is important to understand how

fishers respond to a combination of the implementation of no-take zones, and various cli-

matic and human drivers of change. Those adaptive responses could influence the interpre-

tation of assessment of no-take zone effectiveness, yet few studies have examined these

aspects. Indeed, such analysis is often unfeasible in developing countries, due to the domi-

nance of data-poor fisheries, which precludes full examination of the social-ecological out-

comes of MPAs. In the Galapagos Marine Reserve (Ecuador), however, the availability of

long-term spatially explicit fishery monitoring data (1997–2011) for the spiny lobster fishery

allows such an analysis. Accordingly, we evaluated how the spatiotemporal allocation of

fishing effort in this multiple-use MPA was affected by the interaction of diverse climatic and

human drivers, before and after implementation of no-take zones. Geographic information

system modelling techniques were used in combination with boosted regression models to

identify how these drivers influenced fishers’ behavior. Our results show that the boom-and-

bust exploitation of the sea cucumber fishery and the global financial crisis 2007–09, rather

than no-take zone implementation, were the most important drivers affecting the distribution

of fishing effort across the archipelago. Both drivers triggered substantial macro-scale

changes in fishing effort dynamics, which in turn altered the micro-scale dynamics of fishing

patterns. Fishers’ adaptive responses were identified, and their management implications

analyzed. This leads to recommendations for more effective marine and fishery manage-

ment in the Galapagos, based on improved assessment of the effectiveness of no-take

zones.
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Introduction

There is a growing recognition worldwide that marine protected areas (MPAs), in combina-

tion with co-management regimes and the allocation of spatially-exclusive fishing rights to

local fishing communities, can be an effective solution for rebuilding depleted marine popula-

tions and conserving key biodiversity areas [1–4]. This trend has encouraged an increasing

number of governments to adopt this spatially-explicit management tool to promote the recov-

ery of small-scale fisheries and conserve marine biodiversity [5,6]. Unfortunately, typically

very limited or no human and economic resources are allocated to monitor the performance

of MPAs, notably in developing countries [7]. Consequently, in some regions, such as Latin

America and the Caribbean, there are few empirical examples that demonstrate the long-term

socio-ecological outcomes generated by the adoption of MPAs [7,8], particularly those

designed for multiple use (i.e., those MPAs that allow extractive use in a regulated way, gener-

ally under marine zoning schemes, which may include no-take zones). On the other hand,

even in those cases in which an assessment of the performance of MPAs can be carried out,

research is usually biased to the bio-ecological aspects of the coastal social-ecological systems,

leading to poor understanding of human (social, economic, cultural and institutional) dimen-

sions that influence the effectiveness of MPAs to accomplish conservation and fishery manage-

ment objectives [9–11].

Major areas of analysis about human dimensions of MPAs include how fishers deal with

their displacement from traditional fishing grounds as a result of MPA implementation, and

the management implications associated with adaptation of their fishing patterns (i.e., varia-

tions in selection of fishing grounds, fishing methods, target species, organizational and mar-

keting processes) [12–14]. There are also analyses of how, in many cases, fishing effort tends to

aggregate around MPA boundaries, an effect known as “fishing the line”, indicating that MPA

location is of interest to fishers either because they have traditionally fished around those areas

or because a spillover of adults, or larval export, to nearby fished areas has occurred [15,16].

While the need to understand the implications of MPAs for fisheries is clear [17,18], it is

important to recognize that other factors affect fishing patterns in addition to MPAs. Recent

studies suggest that spatiotemporal allocation of fishing effort is not only influenced by the

location of MPAs, but also by factors such as distance of fishing grounds to the nearest port,

weather and oceanographic conditions, habitat features, fishing method employed, travel

costs, product price and expected revenues [14,19,20]. Nevertheless, to our knowledge, no

study has yet examined, in a quantitative way, how fishers respond to those situations in which

they have to cope simultaneously with implementation of a multiple-use MPA and with

diverse climatic and human drivers of change–usually ignored or neglected in MPA manage-

ment effectiveness assessments–such as extreme climatic events (e.g., El Niño), the globaliza-

tion of markets, and the boom-and-bust exploitation of alternative fisheries.

Each driver of change can produce “cascade effects” on the socioeconomic dynamics of

fishing communities, whether through changes in the availability and accessibility of target

species or variations in environmental and market conditions. This leads fishers to adapt their

fishing patterns to prevent or mitigate the damage to their livelihoods [12]. If the main reasons

behind these adaptations are not well understood, a bias in the interpretation of the observed

patterns could be produced, leading to errors in planning, implementing and assessing MPAs.

This is relevant for fisheries management, particularly in those cases in which the main

assumption in assessing the effectiveness of an MPA is that any adaptation in fishing patterns

was caused exclusively by the MPA, rather than by the combined impact of different human

and climatic drivers of change.
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The Galapagos Marine Reserve (GMR) represents a unique biodiversity and climate change

hotspot in Latin America and the Caribbean, which provides an excellent case study to illus-

trate how the interaction of various large-scale human and climatic drivers around a network

of no-take zones influences fishing patterns. In this multiple-use MPA, marine zoning was

implemented between 2000 and 2006, in combination with a co-management regime and the

allocation of exclusive fishing rights to local small-scale fishers, to mitigate the impacts of

human activities on sensitive ecological areas and to ensure the sustainability of Galapagos

small-scale fisheries [21,22]. However, decisions to locate no-take zones in areas of low abun-

dance of the most lucrative fishery resources, in combination with a lack of effective enforce-

ment and a high rate of non-compliance [23], severely limited the effectiveness of Galapagos

marine zoning for shellfish fisheries management purposes [2]. Despite these shortcomings,

spiny lobster (Panulirus penicillatus and P. gracilis) stocks showed an unexpected and remark-

able recovery after a period of overexploitation [24]. Previous studies suggest that the Galapa-

gos spiny lobster fishery recovery was caused by the combined effect of market forces and

favorable environmental conditions, rather than no-take zone implementation [2,25]. How-

ever, this hypothesis has not been tested yet by a long-term impact assessment of the effective-

ness of no-take zones. This type of assessment could be influenced by fishers’ adaptive

responses, so a proper assessment can only be made given a better understanding of how local

fishing communities coped with the interactions of human and climatic drivers, before and

after marine zoning implementation.

Using geographic information system (GIS) modelling techniques, in combination with

boosted regression models, this paper evaluates how the spatiotemporal allocation of fishing

effort in the Galapagos spiny lobster fishery was affected by the interactions of human and cli-

matic drivers over a 15-year period (1997–2011). Based on the analysis of changes in fishing

patterns, we build an understanding of the main drivers and factors influencing fishers’ adap-

tive responses to drivers of change, before and after implementation of marine zoning, includ-

ing their links to the geographic and socioeconomic features of fishing communities, and their

implications for fisheries management. We integrated this knowledge to provide a series of

recommendations to improve the design and effectiveness of Galapagos marine zoning to rec-

oncile conservation and fishery management objectives.

Materials and methods

Study area

The Galapagos Islands is comprised of approximately 234 islands, islets and rocks with a total

land area and coastline of ca. 7 985 km2 and 1667 km, respectively [26]. According to Edgar

et al. [27], this volcanic archipelago is divided into five marine biogeographical regions, named

as far-Northern, Northern, South-Eastern, Western and Elizabeth (Fig 1). Each one shows par-

ticular assemblages of fish and macro-invertebrate species, whose abundance and distribution

are strongly affected by the El Niño Southern Oscillation [25,28].

Only 4% of the total land area is inhabited by ca. 25,144 residents (Table 1) distributed on

five islands (Santa Cruz, Baltra, San Cristobal, Isabela, and Floreana). The remaining land area

is protected as a national park. There are three main fishing ports (Baquerizo Moreno, Puerto

Ayora and Villamil; Fig 1) that display specific geographic and socioeconomic features, partic-

ularly in terms of population density, number of fishers, composition of the fishing fleet, and

available land-based tourism infrastructure (Table 1). There are 1084 license holders and 416

vessels registered in Galapagos, although only 37% of them remain active in the spiny lobster

fishery (Table 1). Each fishing license provides its owner the right to fish any type of shellfish

and finfish species commercially permitted. Approximately 97% of active vessels are smaller
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than 9.6 m long (fiber glass or wooden made) and equipped with outboard engines (15–200

HP). Only 13% consist of large wooden boats (8 to 18 m long) equipped with inboards engines

(30–210 HP). These “mother boats” are used as storage, resting and towing units for up to four

small vessels [29]. Most harvesting activities usually last one or two days, although mother

boats are able to operate for a maximum of 12 days.

The most valuable shellfish species in Galapagos are the red and green spiny lobsters (P.

penicillatus and P. gracilis), and the sea cucumber Isostichopus fuscus, harvested exclusively by

artisanal hookah and skin divers mostly in sub-tidal rocky habitats. The fishing season since

1999 for sea cucumbers usually lasts from June to August (two months) and for spiny lobsters

from September to December (four months), although slight variations have occurred through

the years. The number of landing sites along the coast is quite limited (Table 1), facilitating the

systematic and reliable collection of fishery-related data at each port since 1997.

Fig 1. Marine biogeographical regions of the Galapagos Islands. Red circles indicate the location of the three main fishing ports: Puerto Villamil

(PV), Puerto Ayora (PA) and Baquerizo Moreno (BM). Black areas indicate the location of no-take zones.

https://doi.org/10.1371/journal.pone.0228094.g001
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In March 1998, the Galapagos archipelago and its surrounding open ocean were enclosed

in a multiple-use MPA of nearly 138,000 km2, the GMR, through the enacting of the Galapagos

Special Law [22,33]. This law decreed an institutional shift from a hierarchical (top-down) to a

co-governance mode, and from an open access to a common property regime. Since then,

large-scale fishing was prohibited inside the reserve and fishing licenses and permits were

exclusively allocated to local small-scale fishers.

The Galapagos’ marine zoning was created and implemented between 2000 and 2006 [22].

It comprised 76 no-take zones distributed across the archipelago, covering 17% of the coastline

(Fig 1). The dimensions of the zones range from small offshore islets to 22.8 km of coastline

[34]. The total area per management zone is unknown, as the offshore boundaries were not

legally established [22]. Fishing and tourist activities, such as snorkelling and scuba diving, are

prohibited inside 14 no-take zones, known as “conservation zones”. In the remaining 62 no-

Table 1. General features of the three main fishing ports of the Galapagos Islands, including a summary of the fishery information analyzed in this study, for each

sampling method used.

San Cristobal Santa Cruz Isabela Total

Fishing port Baquerizo Moreno Ayora Villamil 3

Main landing sites 1 2 1 4

Population1 7495 15393 2256 25144

Coastline (km)2 ~ 156 ~ 170 ~ 617 ~ 944

Hotel capacity (beds)3 449 990 193 1632

Restaurants and bars3 35 61 18 114

License holders (active/registered)4 174/552 136/293 100/239 410/1084

Small vessels (active/registered)4 59/163 44/87 48/107 151/357

Mother boats (active/registered)4 2/32 1/19 1/8 4/59

Cooperatives 2 1 1 4

Interview based data5

(1997–2011)

4387 4246 6727 15360

Fishery observer based data5

(2000–2006)

1058 719 586 2363

1 Galapagos census 2010 conducted by INEC.
2 PNG [30].
3 Epler [31].
4 Reyes and Ramı́rez [32].
5 Participatory Programme of Fisheries Monitoring and Research; no data were collected in 2007.

https://doi.org/10.1371/journal.pone.0228094.t001

Table 2. Main climatic and human drivers that potentially affected the spiny lobster fishery from the Galapagos

Islands between 1997 and 2011.

Category Drivers of change Temporal scale

Climate and environment El Niño 1997/1998 April 1997-June 1998

(~14 months)

Governance Co-governance and common property period March 1998-onwards

International trade and

globalization of markets

Boom and bust exploitation of the sea cucumber

fishery by roving bandits

April 1999-

(decades)

Governance Marine zoning April 2000-onwards

(decades)

International trade and

globalization of markets

Global financial crisis December 2007- June

2009

(~18 months)

https://doi.org/10.1371/journal.pone.0228094.t002
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take zones, known as “tourism zones”, only tourist activities are permitted. No buffer zones

were established. Therefore, in some regions, conservation and tourism zones are contiguous,

constituting “no-take networks” (i.e., interconnected groups of individual no-take zones). The

largest ones are distributed in Fernandina, Santiago, Santa Cruz and Floreana islands (Fig 1).

Before and after creation of the marine zoning, the spiny lobster fishery was impacted by

diverse climatic and anthropogenic drivers of change, most of which acted simultaneously on

various spatio-temporal scales. The most relevant are indicated in Table 2, which shows the

category of the driver, according to the classification defined by Hall [35], the specific form of

the change, and the corresponding time scale.

Fishing effort data

Fishing effort data for the period 1997–2011 were gathered from the Participatory Programme

of Fisheries Monitoring and Research (PIMPP, in Spanish). Before this period, there are no

spatially-explicit fishing effort data available for analysis. Only annual aggregated fishing effort

data (in fishing days) per island for the period 1974–1979, published by Reck [36], remain for

comparative purposes.

Fishery-related data were collected from 17,764 fishing trips, equivalent to 20,203 fishing

effort records per fishing ground, either by interviewers (1997–2011) or observers onboard

(2000–2006), at the three main ports of Galapagos (Puerto Ayora, Baquerizo Moreno, and Vil-

lamil) on a daily basis over each fishing season (Table 1 and S1 Table). Geographical position-

ing systems were usually used by observers to collect spatially-explicit data onboard fishing

vessels, including position of fishing grounds, fishing method, effective fishing hours, number

of divers, vessel type and name, departure and landing port, departure and arrival date, and

catch per spiny lobster species.

The same types of data were collected by interviewers using semi-structured questionnaires.

However, in this case, fishing grounds’ names visited per fishing trip were obtained instead of

the exact geographical location where fishing activity took place. To make this subset of data

spatially explicit, we added the geographic coordinates published by Chasiluisa and Banks

[37], who defined reference positions (latitude and longitude) for 320 fishing grounds identi-

fied and distributed across the archipelago.

The PIMPP dataset was extensively reviewed, standardized and cleaned before being fil-

tered. Data collected by interviewers and observers onboard were included in this study. How-

ever, analyses were restricted to those spiny lobster fishing trips conducted in small vessels

(fiber glass and wooden made) by one or two hooka divers, where the number of effective fish-

ing days, at a single fishing ground, ranged from one to seven. The final dataset accounts for

17,723 fishing effort data units (Table 1), representing 88% of the original dataset. Approxi-

mately 78% of these data are georeferenced, i.e., they include the exact, or reference, position

of each fishing ground visited per fishing trip. The remaining 22% of the data simply specify

the islands in which fishing activity took place.

To determine the representativeness of the data selected, for each sampling method used,

we estimated the sampling effort of small fishing vessels and fishing effort, measured in diver-

hours, registered by the PIMPP between 1997 and 2011 (S1 Table). According to our results,

sampling effort by interviews was on average 67% and 37% for small fishing vessels and fishing

effort, respectively. In contrast, sampling effort by observers on board was 19% and 5% for

small fishing vessels and fishing effort, respectively (S1 Table). These results suggest that inter-

view-based data are more representative of the spatiotemporal dynamics of the fishing fleet

than data collected by observers onboard. However, they could also be less reliable, if fishers

provided inaccurate information about the locations of their fishing grounds. To account for
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this type of uncertainty, both data sources were analyzed in most cases separately to compare

the fishing patterns identified.

Data analysis

Fishing effort data were grouped into a suitable number of time periods to evaluate how the

spatio-temporal dynamics of fishing patterns in the spiny lobster fishery were affected by the

potential drivers of change described in Table 2. However, as the temporal scale of each driver

is different, and most of them occurred simultaneously, it was not feasible to divide the data

available evenly between periods. Accordingly, we defined six time periods (Table 3), based on

the following logic:

• We subdivided the boom-and-bust exploitation period of the sea cucumber fishery into four

phases (re-opening, expansion, overexploitation and collapse) to evaluate their specific

impact on the spatial allocation of fishing effort in the spiny lobster fishery. The sea cucum-

ber overexploitation phase and the marine zoning implementation were grouped together

because both occurred simultaneously. In this case, we assumed that marine zoning was

implemented after a transition period of three years (2000–2003) once the moratorium on

the entry of new fishers was put in place, fishing regulations were decreed, enforcement

capacity increased, and fishers were aware of zoning boundaries and legal framework.

• We grouped the sea cucumber collapse phase and the global financial crisis 2007–09 together

because both drivers affected the profitability of fishing activity [2,38], allowing us to evalu-

ate their combined impact on fisher’s behaviour. Data from 2009 and 2010 were excluded

from this period due to a lack of georeferenced data.

• The unexpected and remarkable recovery of the spiny lobster fishery was considered an

additional period. Such an event does not represent a driver itself, at least not in the short

term, but a social-ecological impact potentially caused by climatic and human drivers that

occurred in earlier periods.

Interaction between sea cucumber and spiny lobster fisheries. We performed a Pear-

son’s correlation analysis to evaluate how the fishing effort capacity in the spiny lobster fishery

was affected by the different phases (re-opening, expansion, overexploitation and collapse) of

the boom-and-bust exploitation of the sea cucumber fishery, using as variables the number of

active fishers, small-vessels and mother boats in both fisheries between 1997 and 2011. The

information was obtained from PIMPP, Galapagos National Park Service fishing registry,

Moreno et al. [39] and Reyes and Ramı́rez [32]. The correlation analysis was conducted in the

R statistical programming language, version 3.1.2 (R Development Core Team 2014).

Table 3. Periods defined to evaluate the spatio-temporal dynamic of fishing patterns in the spiny lobster fishery, based on the most relevant climatic and human

drivers occurring between 1997 and 2011.

Period Acronym Temporal scale

1. Co-governance and El Niño CoM-EN June 1997-December 1998

2. Sea cucumber re-opening phase RovBan1 September 1999- December 2000

3. Sea cucumber expansion phase RovBan2 September 2001- December-2002

4. Sea cucumber overexploitation phase and marine zoning MarZon September 2003-December 2005

5. Sea cucumber collapse phase and global financial crisis Crisis September-December 2006 and September-December 2008

6. Spiny lobster recovery Recovery September-December 2011

https://doi.org/10.1371/journal.pone.0228094.t003
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Spatiotemporal analysis of fishing patterns. The spatiotemporal allocation of fishing

effort across the archipelago was evaluated using GIS modelling techniques with ArcGIS 10.2.2

(ESRI) software. We calculated standard deviation ellipses (SDE) polygons by point pattern

statistics [40] to determine the core areas and distribution ranges of the fishing fleets based in

the three ports (Baquerizo Moreno, Puerto Ayora and Villamil) during the six periods defined.

In this study, SDE represent graphical summaries of the central tendency, dispersion and

directional trends of fishing fleets. Core areas and distribution ranges refer to those areas cov-

ering 68% (1 SDE) and 95% (2 SDE) of the full spatial extent of fishing fleet distribution,

respectively. Furthermore, to determine if the same areas have been reused by fishers from dif-

ferent ports at different periods, we estimate an index of reuse (IOR), following the procedure

described by Morrisey and Gruber [41] and Horta e Costa et al. [42]. Small vessels core areas

and distribution ranges were used to estimate IOR, by the following formula [41]:

IOR ¼
OVðA1 þ A2Þ

A1 þ A2

where [OV (A1+A2)] refers to the overlapping area between two core areas (or distribution

ranges), and (A1+A2) to the total area of both core areas (or distribution ranges). IOR values

range from 0 (both areas do not overlap) to 1 (both areas overlap completely). One and two-

way ANOVAs were employed to test the null hypothesis of absence of differences in core

areas, distribution range and IOR between different periods, and between ports and sampling

methods (interviews vs fishery observers). A Bartlett’s test was performed prior to all analyses

to test the assumption of homogeneity of variances among treatments. When data were hetero-

scedastic, or did not fulfill the normality assumption, transformations were conducted.

We also performed a hotspot analysis using area pattern statistics [40] to evaluate if the

areas where most fishing effort is concentrated (i.e., hotspots) have varied across each period

and to determine if the fishing patterns identified vary according to the sampling method

employed. Based on this analysis, we determined the spatial distribution of hotspots before

and after marine zoning implementation, allowing us to evaluate if fishers were displaced from

their traditional fishing grounds and if fishing effort concentrates around no-take zones, pro-

ducing a “fishing the line” effect.

We aggregated fishing effort data per period and sampling method and performed a single

hotspot analysis for each possible combination (nine in total). The following procedure was

applied to each combination:

1. A grid with a 2.25 km2 cell size was superimposed over the entire archipelago. Such resolu-

tion was selected considering the size of the study area, as well as the precision and resolu-

tion required to evaluate the fine-scale distribution of fishing fleets;

2. a buffer of 2.5 km was delimited around the coastline of each island, islet and rock, defined

based on the dispersion of data and a maximum bathymetry of 40 m, so as to contain the

area where the spiny lobster fishery takes place. Grid cells located outside this buffer,

including the land area, were removed; then, we proceeded to eliminate those resulting grid

cells smaller than 3% of the original grid cell size;

3. total fishing effort (diver-hours) per grid cell was summarized and a measure of effort den-

sity (diver-hours km-2) was calculated by dividing the total sum of fishing effort per cell by

the original grid cell size (2.25 km2);

4. a spatial weights matrix was generated using the k-nearest neighbors (k = 8) as the concep-

tualization of the spatial relationship among data (i.e., small-vessels). The latter method was
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selected considering the extensive and uneven spatial distribution of our data across the

study area and the skewed distribution of fishing effort values;

5. finally, a hotspot analysis was performed, using effort density as the input field. Such analy-

sis identified statistically significant spatial clusters of high effort density values (hot spots)

and low effort density values (cold spots) across the archipelago, based on the Getis/Ord

Gi� statistic [43], producing a Z-score and p-values as measures of statistical significance.

The null hypothesis in this case is that the spatial allocation of fishing effort is the result of

random spatial processes, which is rejected if the Z-score� 1.96 and p< 0.05 with a 95% con-

fidence level. A high Z-score and small p-value indicates a hotspot, while a low negative z-

score and small p-value indicates a cold spot. The higher (or lower) the Z-score, the more

intense the clustering, while a Z-score near zero indicates no apparent spatial clustering [44].

Climatic and human drivers affecting spatial fishing effort allocation. We defined, for

the set of fishing georeferenced data, a diverse suite of explanatory variables potentially having

an influence on the spatial allocation of fishing effort, measured in diver-hours. Geographic,

oceanographic and socioeconomic variables were selected based on the human and climatic

drivers identified as relevant for this study. Each was categorized as either temporally static or

temporally dynamic, based on whether it changes over time [19].

The first category includes latitude, longitude, bioregion, homeport, distance to home port

(DistHP), and distance to the nearest no-take zone (NearNTZ). Here, we defined homeport as

the port from which a vessel primarily operates, regardless of its registry. To calculate the

shortest effective distance between each fishing record and the corresponding vessel’s home

port, we conducted a cost-distance analysis using the spatial analyst extension in ArcGIS

10.2.2. The same analysis was used to calculate the shortest effective distance between each

fishing record and the nearest no-take zone.

The second category includes historic period (Period), month, average ex-vessel price per

year (ExVesPrice), lobster catch obtained in previous fishing trips (PrevCatch), average sea

cucumber revenues obtained the fishing season before the beginning of lobster season (SeaCu-

cRev), vessel type, and the Oceanic Niño Index (ONI). The ONI represents the month moving

average of ERSST.v3b SST anomalies in the Niño 3.4 region (i.e., west of the GMR 5˚N– 5˚S,

120˚-170˚W), based on centered 30-year base periods updated every 5 years. ONI is the main

indicator used by NOAA for monitoring El Niño and La Niña, which are opposite phases of

the climate pattern called the El Niño-Southern Oscillation. Data were obtained from the

NOAA Climate Prediction Centre at www.cpc.ncep.noaa.gov/products/analysis_monitoring/

ensostuff/detrend.nino34.ascii.txt

Analysis of fishing effort hotspots and fishing fleet distribution ranges and core areas were

used to evaluate how spatiotemporal distribution changes in relation to the external drivers

analyzed in this study. Then, boosted regression trees (BRTs) were used to identify the factors

that explain such spatiotemporal patterns. The goal was to predict fishing effort, measured in

diver-hours per port and period, as a function of geographic, oceanographic and socioeco-

nomic variables described above.

BRT models can be defined as flexible additive regression models in which individual terms

are simple trees, created by recursive binary splits constructed from predictor variables and

combined to optimize predictive performance, which are fitted in a forward, stagewise fashion

[45,46]. Unlike general linear models and general additive models, BRT models accommodate

missing values in continuous or categorical predictors, are able to handle outliers, collinear

variables, interactions between variables, and nonlinear relationships between predictor and

response variables, showing additionally similar, or even stronger, predictive performance

[19,46,47].
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BRT model fitting requires the definition of three parameters: (1) learning rate (lr), also

known as the shrinking parameter, which determines the contribution of each tree to the

growing model (i.e., controlling the rate at which the model converges on a solution); (2) tree
complexity (tc), which refers to the number of nodes (or splits) in a tree (i.e., the ability of

model interactions); and (3) the two previous parameters are used to estimate the optimal
number of trees (nt) required to increase performance prediction. In addition, to improve

accuracy and reduce overfitting, we introduced stochasticity to the BRT model through a “bag

fraction”, which specifies the proportion of data to be selected at each step [46]. The BRT

model was fit to allow interactions using a tree complexity of 2 and a learning rate of 0.005 and

a bag fraction of 0.6. Ten-fold, cross-validation of training data was used to determine the opti-

mal number of trees necessary to minimize deviance and maximize predictive performance to

independent test data. Model performance was assessed based on predictions made using the

independent testing set that was withheld during cross-validation.

Deviance explained and Pearson’s correlation coefficient (r) were used to assess the predic-

tive performance of BRT models. Furthermore, variable importance (VI) was estimated by

averaging the number of times a variable is selected for splitting and the squared improvement

resulting from these splits [48,49]. VI scores provide a measure of the relative influence of pre-

dictor variables used to build the model [19]. Values are scaled so that the sum adds to 100,

with higher numbers indicating a stronger influence on the response variable. Following Soy-

kan et al. [19], a random number (RN) between 1 and 100 was added to identify useful vari-

ables for modeling a response. Useful variables in predicting fishing effort were those that had

higher VI scores than RN. Finally, for interpreting BRT models results, we generated a partial

dependence plot for each predictor variable. Such graphs show the effect of a variable on the

response after accounting for the average effects of all other variables in the model, including

the RN [19]. BRT model fitting was conducted in the R statistical programming language, ver-

sion 3.1.2 (R Development Core Team 2014) using the “gbm” and “dismo” libraries comple-

mented with the brt.functions code developed by Elith et al. [46].

Results

Interaction between sea cucumber and spiny lobster fisheries

The analysis of active fishing capacity from 1999 to 2011 showed that large-scale changes in

fishing effort dynamics for the spiny lobster fishery occurred during the boom-and-bust

exploitation of the sea cucumber fishery and the global financial crisis 2007–09. The active

number of fishers, small-vessels and mother boats increased in the spiny lobster fishery, reach-

ing a maximum value during the re-opening and expansion phase of the sea cucumber fishery,

corresponding to the RovBan1 and RovBan2 periods (Fig 2A–2C). A similar pattern was

observed in the sea cucumber fishery, although in this case the number of fishers and small-

vessels reached a maximum during the overexploitation phase of the sea cucumber fishery and

marine zoning implementation, corresponding to the MarZon period (Fig 2A–2C). During

this period the active fishing capacity in both fisheries showed a strong positive linear trend in

Puerto Ayora, Baquerizo Moreno and Puerto Villamil (Fig 2D–2F).

The active fishing capacity in the spiny lobster fishery decreased gradually since 2000 (Rov-

Ban1). This trend intensified after the total closure of the sea cucumber fishery occurred in

2006 and during the global financial crisis 2007–09 (Fig 2A–2C). Between 2000 and 2010, the

number of fishers decreased 80.3%, from 1183 to 233, while the number of small vessels and

mother boats decreased 55.3%, from 286 to 128 (Fig 2A and 2B). However, the most remark-

able decrease was observed in the number of mother boats, which decreased 88.0%, from 42 to

5 during the same period (Fig 2C). A similar decreasing trend in active fishing capacity was
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observed in the sea cucumber fishery, which was reopened in three occasions after 2006 (Fig

2A–2C). The total number of fishers and small vessels in both fisheries increased slightly dur-

ing the recovery period of the spiny lobster fishery (Fig 2A and 2B), while the number of

Fig 2. Long-term variation in fishing capacity in the spiny lobster and sea cucumber fishery from the Galapagos Marine Reserve.

a) active fishers per year; b) active small-scale vessels per year; c) active mother boats per year; d) relationship between active lobster

and sea cucumber fishers per port; e) relationship between active lobster and sea cucumber small-vessels per port; and f) relationship

between active lobster and sea cucumber mother boats per port. BM: Baquerizo Moreno; PA: Puerto Ayora; PV: Puerto Villamil;

CoM-EN: Co-governance and El Niño; RovBan1: Sea cucumber re-opening phase; RovBan2: Sea cucumber expansion phase;

MarZon: Sea cucumber overexploitation phase and marine zoning; Crisis: Sea cucumber collapse phase and global financial crisis;

Recovery: Spiny lobster recovery.The sea cucumber fishery was closed five years. In 2001, there was an unsuccessful attempt to

implement an individual quota system in the sea cucumber fishery, which led to a temporal reduction in fishing effort [50,51].

https://doi.org/10.1371/journal.pone.0228094.g002
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mother boats remained at very low numbers (Fig 2C). These results suggest that a significant

number of fishers from Puerto Ayora, Baquerizo Moreno and Puerto Villamil responded to

the economic perturbations caused by the collapse of the sea cucumber fishery and the global

financial crisis 2007–09, by abandoning the spiny lobster and the sea cucumber fisheries. This

macro-scale change in fishing capacity influenced the micro-scale spatiotemporal dynamic of

fishing patterns in the spiny lobster fishery, as described in the next section.

Spatiotemporal analysis of fishing patterns

The spatiotemporal allocation of fishing effort showed different patterns between ports and

periods. These did not vary, in most analyses, according to the sampling method used (Figs 3

and 4). According to port-based interviews, Puerto Ayora and Baquerizo Moreno’s fishing

fleets showed larger core areas and distribution ranges than Puerto Villamil (S2 Table; Fig 3).

However, such differences were not significant between ports (core areas: H = 2.667; d.f. = 2;

p = 0.264; distribution ranges: H = 1.906; d.f. = 2; p = 0.385). Similar results were shown by

observer onboard data (core areas: H = 5.955; d.f. = 2; p = 0.051; distribution ranges:

H = 5.067; d.f. = 2; p = 0.079, although in this case Baquerizo Moreno’s fishing fleet showed

larger core areas and distribution ranges than Puerto Ayora (S2 Table; Fig 4).

Both sampling methods showed that Galapagos fishing fleets had, on average, low degrees

of overlap in their fishing activity spaces, particularly in relation to their core areas, as it was

denoted by IOR values close to zero, meaning that fishing spaces between fishing fleets do not

overlap (S3 Table). Puerto Ayora and Baquerizo Moreno’s fishing fleets had the highest simi-

larity of core areas and distribution ranges in comparison with any other combination of ports

(S3 Table, Figs 3 and 4). In contrast, Baquerizo Moreno and Puerto Villamil’s fishing fleets

showed the lowest degree of overlapping of their core areas and distribution ranges (S3 Table,

Figs 3 and 4). Nevertheless, both sampling methods showed that the central tendency, disper-

sion and directional trends of the Baquerizo Moreno, Puerto Ayora and Puerto Villamil fishing

fleets’ core areas and distribution ranges showed large variations among periods, changing

from no overlap to large overlap (Figs 3 and 4).

According to port-based interviews, Baquerizo Moreno fishing fleet’s core area and distri-

bution range were located exclusively around San Cristobal Island from 1997 to 2005, corre-

sponding to CoM-EN, RovBan1, RovBan2 and MarZon periods (Fig 3). However, the core

area expanded towards Santa Fe, western and southern parts of Santa Cruz and Santiago

Islands during the Crisis and Recovery periods, overlapping with Puerto Ayora’s fishing fleet

core area and distribution range (Fig 3). Baquerizo Moreno’s fishing fleet distribution range

showed a similar but larger expansion pattern toward Española and the eastern part of Isabela

Island, reaching the western part of Floreana during the recovery of the spiny lobster fishery

(Fig 3). Observer onboard data showed a similar pattern, although in this case Baquerizo

Moreno fishing fleet’s core area and distribution range showed a larger expansion during the

RovBan2 period (Fig 4). However, both sampling methods showed that spiny lobster fishing

grounds located along San Cristobal Island are used exclusively by fishers from Baquerizo

Moreno, although Puerto Ayora’s fishing fleet did expand temporally part of its distribution

range toward San Cristobal during RovBan1 and RovBan2 periods (Fig 3).

Puerto Ayora fishing fleet registered also a large variation in its spatiotemporal distribution

between 1997 and 2011 (Figs 3 and 4). According to port-based interviews, the core area and

distribution range of this fishing fleet covered exclusively Santa Cruz and Santa Fe Islands dur-

ing the CoM-EN period, showing no overlapping positions with Puerto Villamil and Baquer-

izo Moreno (Fig 3). However, Puerto Ayora’s core area expanded to Santiago and the west and

eastern parts of Isabela Island, while the distribution range extended practically to the entire
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Fig 3. Core areas (filled ellipses) and distribution ranges (unfilled ellipses) of the fishing fleets from Puerto Ayora,

Baquerizo Moreno and Puerto Villamil in the Galapagos Marine Reserve between 1997 and 2011, based on port interview

data, for each of the six time periods. Co-governance and El Niño (CoM-EN); Sea cucumber re-opening phase (RovBan1); Sea

cucumber expansion phase (RovBan2); Sea cucumber overexploitation phase and marine zoning (MarZon); Sea cucumber

collapse phase and global financial crisis (Crisis); and Spiny lobster recovery (Recovery).

https://doi.org/10.1371/journal.pone.0228094.g003
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archipelago during the RovBan1 and RovBan2 periods (Fig 3). A similar pattern was shown by

observer onboard data, although in this case the core area extended until the far-northern

islands of Darwin and Wolf during the RovBan2 period (Fig 4). In contrast, the core area and

distribution range contracted remarkably during MarZon and Crisis periods, until reaching

similar dimensions to those observed during the CoM-EN period (Figs 3 and 4). However,

core area and distribution range re-expanded again during the Recovery period, until reaching

dimensions similar to those observed during the MarZon period (Fig 3).

Unlike Puerto Ayora and Baquerizo Moreno, Puerto Villamil´s fishing fleet showed mini-

mum variations of its core area and distribution range through the years, denoting a remark-

able fidelity of Puerto Villamil’s fishers to their traditional fishing grounds (Figs 3 and 4). Our

results showed that spiny lobster fishing grounds located in the southern and western part of

Isabela Island were used exclusively by fishers from Puerto Villamil. The only exception

occurred during the reopening phase of the sea cucumber fishery (RovBan1), when Puerto Vil-

lamil and Puerto Ayora fishing fleets’ core areas slightly overlapped (Figs 3 and 4). Puerto Vil-

lamil fishing fleet’s distribution range showed a consecutive expansion and contraction

pattern, similar to that described for Puerto Ayora during the same periods. However, unlike

Puerto Ayora’s fishers, who expanded their distribution range beyond Santa Cruz Island,

Puerto Villamil’s fishers remained fishing exclusively along the coastline of their home island,

Isabela (Figs 3 and 4).

Hotspot analysis revealed the existence of significant fishing clusters across the archipelago

and throughout the six periods analyzed (Figs 5 and 6). One of the the most relevant patterns

identified by this analysis was that aggregation of fishing effort was not detected around the

boundaries of no-take zones (Figs 5 and 6). Hotspots of fishing effort did not show large varia-

tions before and after the implementation of no-take zones (MarZon), suggesting that fishers

were not displaced from their traditional fishing grounds nor attracted to no-take zone bound-

aries by a “fishing the line” effect.

According to port-based interviews, fishing effort showed high densities exclusively in the

southern part of Isabela and San Cristobal Islands, near Baquerizo Moreno and Puerto Ayora,

during CoM-En period (Fig 5). However, new hotspots appeared along the western and east-

ern parts of Santa Cruz Island, the western and southwestern parts of Isabela Island, the east-

ern part of San Cristobal Island and the southeastern part of Genovesa Island during RvBan1

and RVBan2 periods (Fig 5). Since then hotspot location patterns have shown few variations.

Some hotspots disappeared sporadically during and after the sea cucumber overexploitation

and marine zoning implementation phase, particularly those located in the western and south-

western part of Isabela Island (Fig 5). However, most hotspots have remained in the same loca-

tions through the years, particularly those located near fishing ports. Only during the spiny

lobster recovery period, a single hotspot appeared in the southwestern part of Isabela Island,

which had not been registered in previous periods, suggesting that fishing effort aggregated in

new fishing grounds in 2011 (Fig 5).

Similar fishing patterns were identified by analysis of onboard observer data (Fig 6),

although some slight variations were detected. According to this source of data, during the

expansion phase of the sea cucumber fishery (RvBn2), there was a group of hotspots in the

northwestern part of Marchena and Pinta Islands, as well as in the western and eastern part of

Fig 4. Core areas (filled ellipses) and distribution ranges (unfilled ellipses) of the fishing fleets from Puerto Ayora,

Baquerizo Moreno and Puerto Villamil in the Galapagos Marine Reserve between 2001 and 2008, based on

observer onboard data. Results are shown for three time periods: Sea cucumber expansion phase (RovBan2); Sea

cucumber overexploitation phase and marine zoning (MarZon); Sea cucumber collapse phase and global financial

crisis (Crisis).

https://doi.org/10.1371/journal.pone.0228094.g004
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Fig 5. Fishing effort hotspots in the Galapagos Marine Reserve for the spiny lobster fishery between 1997 and 2011, based on

port interview data. Six-time periods are shown: Co-governance and El Niño (CoM-EN); Sea cucumber re-opening phase
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Floreana Island, which were not detected by port-based interview data analysis. Despite these

minor differences, the general fishing patterns identified by both sampling methods were quite

similar (Figs 5 and 6).

Climatic and human drivers affecting spatial fishing effort allocation

The BRT analysis was carried out with a focus on evaluating the relevance of no-take zones as

a fishing effort predictor. However, NearNTZ was a relevant explanatory variable only for

Puerto Villamil, and even in this case, the ranking of NearNTZ was very low (Table 4). This

result suggests little if any effect of no-take areas on fishing patterns, at least for two of the

three communities analyzed (Puerto Ayora and Baquerizo Moreno).

According to the regional BRT model, the most important fishing effort predictors were

(Table 4): (1) DistHP, (2) PrevCatch, and (3) Period, followed by (4) latitude, (5) longitude, (6)

SeaCucRev and (7) ONI. The remaining predictors were not useful in predicting fishing effort,

as they performed worse than RN. Homeport BRT models showed, in most cases, similar pat-

terns to the regional BRT model (Table 4). However, the contribution of fishing effort predic-

tors varied among homeports, particularly in Baquerizo Moreno (Table 4). Based on the sum

of the VI scores, static variables contributed very slightly more to the regional BRT model than

dynamic predictor variables (Table 4, static: 50.0% dynamic: 45.3%). Likewise, the importance

of static variables was higher than dynamic variables both for Puerto Villamil and Puerto

Ayora BRT models (Table 4, PV: static (49.8%), dynamic (46.2%); PA: static (59.8%), dynamic

(34.5%)). In contrast, dynamic predictor variables contributed more than static predictor vari-

ables in the BRT model for Baquerizo Moreno (Table 4, static: 37.0%; dynamic: 56.0%).

According to the BRT model for Puerto Villamil, fishing effort was mostly influenced by eight

variables, with DistHP, PrevCatch, latitude, and SeaCucRev, being the four most important

predictors (Table 4).

The most important predictors contributing to the BRT model for Puerto Ayora were simi-

lar overall to Puerto Villamil, and DistHP was again the most important predictor. However,

there were differences in other rankings (Table 4). Unlike Puerto Villamil, spiny lobster ex-

vessel price performed better than RN in the BRT model for Puerto Ayora, while NearNTZ

and SeaCucRev performed worse. The three most important predictors contributing to the

BRT model for Baquerizo Moreno were, in contrast to Puerto Villamil and Puerto Ayora, lon-

gitude, ONI, and SeaCucRev (Table 4).

Performance statistics for the BRT models suggest that all models showed a good predictive

performance to independent test data (Table 4). The regional BRT model explained 29.47% of

the deviance in the data, while the Pearson’s correlation coefficient was 0.55 (Table 4). Home-

port BRT models showed, in most cases, better predictive performance than the regional BRT

model (Table 4). Specifically, the BRT models for Puerto Villamil, Puerto Ayora and Baquerizo

Moreno explained 35.73%, 32.66% and 15.74% of deviance in the data, respectively, while their

Pearson’s correlation coefficients were 0.59, 0.54 and 0.44, respectively.

Fishing effort was affected in different ways by the most influential variables identified by

BRT models (Figs 7–10). Even though similar results were obtained by the regional and home-

port BRT models, different patterns were observed among ports. All BRT models showed that

fishing effort, measured as diver-hours, increased with distance to homeport, albeit with some

variation (Figs 8–10). In Puerto Villamil, fishing effort increased gradually between 30 and 70

km from the homeport, leveling off subsequently (Fig 8). In contrast, for Puerto Ayora, fishing

(RovBan1); Sea cucumber expansion phase (RovBan2); Sea cucumber overexploitation phase and marine zoning (MarZon); Sea

cucumber collapse phase and global financial crisis (Crisis); and Spiny lobster recovery (Recovery).

https://doi.org/10.1371/journal.pone.0228094.g005
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effort increased gradually between 20 and 150km, then levelled off until 320 km, reaching

maximum values after this distance (Fig 9). In other words, fishers from Puerto Ayora tend to

fish farther away from their homeport in comparison with their peers from Puerto Villamil. In

Baquerizo Moreno, while distance to homeport performed better than RN, its importance as a

fishing effort predictor was much lower in comparison with Puerto Ayora and Puerto Villamil

(Table 4; Fig 10).

Fishing effort showed a non-monotonic relationship with the previous spiny lobster catch

in all BRT models. At regional level, fishing effort increased with previous catch until the latter

reached 60 kg tail/fishing trip, then decreased until previous catch was approximately 105 kg

tail/fishing trip, increasing again to a second peak at 110 kg tail/fishing trip, and leveling off

subsequently. A similar pattern was observed at port level. In Puerto Villamil and Baquerizo

Moreno, fishing effort also increased with the previous spiny lobster catch, to 30 and 55 kg

tail/fishing trip, respectively, decreasing afterwards (Figs 8 and 10). In both cases, fishing effort

increased again up to a previous spiny lobster catch at 105 and 60 kg tail/fishing trip, respec-

tively, and leveled off subsequently. In contrast, fishing effort in Puerto Ayora increased

abruptly up to a previous spiny lobster catch between 40 and 60 kg tail/fishing trip, decreasing

afterwards (Fig 9).

Fig 6. Fishing effort hotspots in the Galapagos Marine Reserve for the spiny lobster fishery between 2001 and

2008, based on observer onboard data. Three-time periods are shown: Sea cucumber expansion phase (RovBan2); Sea

cucumber overexploitation phase and marine zoning (MarZon); Sea cucumber collapse phase and global financial

crisis (Crisis).

https://doi.org/10.1371/journal.pone.0228094.g006

Table 4. For each predictor variable, the variable importance score (summing to 100) and the ranking is shown, for regional results and for each port.

Variable Regional Ranking Puerto Villamil Ranking Puerto Ayora Ranking Baquerizo Moreno Ranking

DistHP 22.4 1 22.2 1 17.5 1 7.4 7

Latitude 9.0 4 10.5 3 15.7 3 8.4 6

Longitude 7.2 5 8.2 5 16.4 2 17.1 1

Bioregion 2.6 12 2.4 10 5.5 9 0.1 13

NearNTZ 4.7 9 6.5 7 4.7 10 4.0 10

Period 11.1 3 7.5 6 7.3 5 9.8 5

Month 1.9 13 1.3 12 2.1 11 5.7 9

ExVesPrice 4.1 10 2.0 11 6.2 7 2.3 11

Vessel 1.0 14 0.8 13 1.7 12 0.6 12

ONI 5.9 7 6.0 8 6.3 6 13.6 2

SeaCucRev 6.1 6 10.3 4 1.3 13 12.3 3

PrevCatch 15.2 2 18.3 2 9.6 4 11.7 4

HomePort 4.1 11 NA NA NA NA NA NA

RN 4.8 8 4.0 9 5.8 8 7.0 8

Sum of static variables importance 50.0 49.8 59.8 37.0

Sum of dynamic variables importance 45.3 46.2 34.5 56.0

Deviance explained (%) 29.47 35.73 32.66 15.74

Pearson’s correlation coefficient (r) 0.55 0.59 0.54 0.44

Bold numbers: predictor performed better than random numbers (RN). Shown at the bottom of the table are summary values for regional and homeport BRT models,

i.e. the sums of static and dynamic VI scores, the deviance explained, and the Pearson’s correlation coefficient. DistHP: distance to homeport; NearNTZ: distance to the

nearest no-take zone; ExVesPrice: average ex-vessel price per year; PrevCatch: lobster catch obtained in previous fishing trip; SeaCucRev: average sea cucumber

revenues obtained before the beginning of lobster fishing season season; ONI: Oceanic Niño Index; NA: No Applicable.

https://doi.org/10.1371/journal.pone.0228094.t004
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Fishing effort showed different patterns according to the time period. At regional level, fish-

ing effort increased dramatically during the reopening of the sea cucumber fishery (RovBN1),

then declined gradually until reaching a minimum value during the sea cucumber collapse

phase and global financial crisis 2007–09, increasing afterwards until reaching a maximum

during the spiny lobster recovery period (Fig 7). A similar pattern was observed in Puerto Vil-

lamil, although in this case fishing effort decreased to a minimum during the marine zoning

(MarZon) period, increasing afterwards (Fig 8). In Puerto Ayora, fishing effort also showed a

maximum peak during RovBN1 period. However, unlike Puerto Villamil and Baquerizo

Moreno, fishing effort decreased gradually until reaching a minimum value during the spiny

lobster recovery period (Fig 9). In Baquerizo Moreno, fishing effort showed maximum values

between CoM-EN and RovBN2 periods, then decreased until reaching a minimum value dur-

ing the sea cucumber collapse phase and global financial crisis 2007–09. Afterwards, fishing

effort increased slightly (Fig 10).

Spatially, fishing effort showed different distribution patterns across the archipelago,

according to each fishing fleets’ homeport. At regional level, fishing effort reached maximum

values between 1.0˚ N and 1.5˚ N; i.e., around Darwin and Wolf islands, in the northernmost

part of the Galapagos (Fig 7). In relation to longitude, fishing effort showed a decreasing trend

from 91.3˚ W to 90.2˚ W; i.e., from the Eastern side of Fernandina toward Santiago Island; this

was then followed by a steep increase from 90.0˚ W to 89.5˚ W; i.e., from the Western part of

Santa Cruz Island toward Española and the Southwestern part of San Cristobal. Partial depen-

dence plots for homeports showed that Puerto Ayora’s fishing fleet was the only one that fished

around these two islands between 1997 and 2011 (Fig 9). In this case, fishing effort showed a

decreasing trend latitudinally from 90.0˚ W to 92.0˚ W; i.e., from the Western of Santa Fe

Fig 7. Variation of fishing effort (in diver-hours) in relation to predictor variables for the spiny lobster fishery of the Galapagos Marine Reserve, according to the

regional BRT model. The response variable (diver-hours) has been centered by subtracting its mean. Variable importance scores are shown in parentheses. Rug plots

indicate the distribution of observations in relation to the predictor variable. CoM-EN: Co-governance and El Niño; RovBan1: Sea cucumber re-opening phase;

RovBan2: Sea cucumber expansion phase; MarZon: Sea cucumber overexploitation phase and marine zoning; Crisis: Sea cucumber collapse phase and global financial

crisis; Recovery: Spiny lobster recovery.

https://doi.org/10.1371/journal.pone.0228094.g007
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Island toward Santa Cruz, Isabela and Fernandina Islands. In contrast, fishing effort for Puerto

Villamil showed two peaks at latitudes 1.1 S and 0.5 S, while longitude showed an increasing

trend in fishing effort from 90.8˚ W to 91.2˚ W (Fig 8). These results suggest that fishing effort

increased from Puerto Villamil toward the Southwestern part of Isabela Island, reaching a

peak probably in the hotspot located in the South part of this island (Figs 5 and 6). Then fish-

ing effort increased toward the North, reaching a peak probably in the hotspot located in the

Western side of Isabela Island (Figs 5 and 6). Finally, fishing effort for Baquerizo Moreno

showed a peak at -1.5˚S, probably around Española Island, then increasing very slightly from

South to North (Fig 10). These results suggest that fishing effort is largely influenced by the

location of fishing ports, as it was also demonstrated by the strong performance of the DistHP

variable as a fishing effort predictor (Table 4) and by the location of hotspots and fishing fleets’

core areas in fishing grounds adjacents to Puerto Villamil, Puerto Ayora and Baquerizo

Moreno (Figs 3–6).

Most BRT models showed that fishing effort increased when sea cucumber revenues,

obtained the fishing season before the beginning of lobster season (SeaCucRev), ranged

between US$2000 and US$6,400/fishing season. At regional level, fishing effort decreased with

higher sea cucumber revenues, including a steep decrease when revenues exceeded US$11000/

fishing season (Fig 7). In Puerto Villamil, fishing effort increased with sea cucumber revenues

up to the latter reaching US$2500/fishing season, showing a second and highest peak when

revenues were higher than US$6400/fishing season (Fig 8). In Baquerizo Moreno, fishing effort

showed a positive relationship with sea cucumber revenues only when they reached values

between US$4000 and US$5000/fishing season (Fig 10). Before this threshold no relationship

was found. In Puerto Ayora, this explanatory variable was not relevant (Fig 9).

Fig 8. Variation of fishing effort (in diver-hours) in relation to predictor variables for the spiny lobster fishery of the Galapagos Marine Reserve, according to the

BRT model for Puerto Villamil. The response variable (diver-hours) has been centered by subtracting its mean. Variable importance scores are shown in parentheses.

Rug plots indicate the distribution of observations in relation to the predictor variable. CoM-EN: Co-governance and El Niño; RovBan1: Sea cucumber re-opening

phase; RovBan2: Sea cucumber expansion phase; MarZon: Sea cucumber overexploitation phase and marine zoning; Crisis: Sea cucumber collapse phase and global

financial crisis; Recovery: Spiny lobster recovery.

https://doi.org/10.1371/journal.pone.0228094.g008
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Finally, at regional level, fishing effort increased when the oceanographic variable ONI ran-

ged between -1.0 and 2.0. Similar patterns were observed among ports (Figs 8–10). In Puerto

Villamil and Puerto Ayora, fishing effort showed an increasing trend from -1.0 to 1.5 (Figs 8

and 9), while in Baquerizo Moreno fishing effort increased gradually after 0, showing a peak

around 2.0 (Fig 10). ONI values equal to or higher than +0.5 indicate El Niño conditions,

meaning that the East-central tropical Pacific is significantly warmer than usual. In contrast,

ONI values equal to or lower than -0.5 indicate La Niña conditions, meaning that the region is

cooler than usual. Therefore, our results suggest that fishing effort increased during El Niño

conditions.

Discussion

To our knowledge, this paper represents the first empirical study that illustrates how GIS tech-

niques can be used in combination with BRT models to evaluate and predict the spatial distri-

bution of fishing effort, and its response to human and climatic drivers of change, in this case,

inside a multiple-use MPA. Our results showed that substantial changes in the spatio-temporal

distribution of fishing effort occurred in the Galapagos spiny lobster fishery due to interaction

among various climatic and human drivers, acting at multiple temporal and spatial scales. In

this section, we first reviewed how these drivers of change influenced the large-scale dynamics

of fishing effort in the Galapagos spiny lobster fishery. That is followed with an examination of

micro-scale dynamics of fishing patterns in the small-scale fleet. Finally, we examined the

impact of no-take zones and their management implications, leading to recommendations to

Fig 9. Variation of fishing effort (in diver-hours) in relation to predictor variables for the spiny lobster fishery of the Galapagos Marine Reserve, according to the

BRT model for Puerto Ayora. The response variable (diver-hours) has been centered by subtracting its mean. Variable importance scores are shown in parentheses.

Rug plots indicate the distribution of observations in relation to the predictor variable. CoM-EN: Co-governance and El Niño; RovBan1: Sea cucumber re-opening

phase; RovBan2: Sea cucumber expansion phase; MarZon: Sea cucumber overexploitation phase and marine zoning; Crisis: Sea cucumber collapse phase and global

financial crisis; Recovery: Spiny lobster recovery.

https://doi.org/10.1371/journal.pone.0228094.g009

Human and climatic drivers affect spatial fishing patterns in the Galapagos Marine Reserve

PLOS ONE | https://doi.org/10.1371/journal.pone.0228094 January 23, 2020 22 / 32

https://doi.org/10.1371/journal.pone.0228094.g009
https://doi.org/10.1371/journal.pone.0228094


improve the design and effectiveness of Galapagos marine zoning to reconcile conservation

and fishery management objectives.

Drivers of change: ‘Macro’ adaptive responses

Our results showed that the spiny lobster fishery of the Galapagos, and the spatio-temporal dis-

tribution of its fishing effort, were especially affected by two major drivers, the boom-and-bust

exploitation of the sea cucumber fishery and the global financial crisis 2007–09. Both drivers of

change triggered substantial macro-scale changes in fishing effort dynamics within the GMR,

notably reflected in a remarkable reduction of fishing capacity, and shifts in post-harvest

arrangements.

The sequence of events examined here began with the re-opening of the sea cucumber fish-

ery, one year after the creation of the GMR. This event caused severe overcapitalization of the

entire Galapagos small-scale fishing sector, with fishing capacity increasing not only in the sea

cucumber fishery but also in the lobster fishery [2,24,52]. Only a moratorium on new entrants

in 2002 stopped the exponential growth in the number of fishers and vessels registered in Gala-

pagos, that had occurred between 1997 and 2000 [51]. Subsequently, the collapse of the sea

cucumber fishery in 2006 caused a severe economic perturbation, which was intensified a few

years later by the global financial crisis 2007–09 [38,52]. The latter led to a sharp contraction in

the consumption of lobsters in the United States, the main foreign market for Galapagos lob-

sters [53], and a price drop of 32% between 2008 and 2009 [53]. In response to this economic

perturbation, a significant number of fishers abandoned not only the sea cucumber fishery,

but also the spiny lobster fishery, leading to a 56% reduction in fishing effort between 2005

Fig 10. Variation of fishing effort (in diver-hours) in relation to predictor variables for the spiny lobster fishery of the Galapagos Marine Reserve, according to

the BRT model for Baquerizo Moreno. The response variable (diver-hours) has been centered by subtracting its mean. Variable importance scores are shown in

parentheses. Rug plots indicate the distribution of observations in relation to the predictor variable. CoM-EN: Co-governance and El Niño; RovBan1: Sea cucumber re-

opening phase; RovBan2: Sea cucumber expansion phase; MarZon: Sea cucumber overexploitation phase and marine zoning; Crisis: Sea cucumber collapse phase and

global financial crisis; Recovery: Spiny lobster recovery.

https://doi.org/10.1371/journal.pone.0228094.g010
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and 2008 [2]. This resulted in declines of total catch, and exports to mainland Ecuador, by 23%

and 45%, respectively [2,38].

Our results suggest that those fishers who decided to remain in the spiny lobster fishery

after 2006 responded to the crisis either by re-expanding their distribution ranges and core

areas (in the cases of Puerto Villamil and Baquerizo Moreno) or by diversifying their products

and markets (for Puerto Ayora). In the latter case, some fishers reacted to the global financial

crisis 2007–09 in two ways [38]: (1) diversifying their product by trading whole fresh lobsters

instead of lobster tails, as had been done since the 1960s; and (2) diversifying their market by

selling their product directly to the local hospitality sector and general public instead of mid-

dlemen. The restructuring of the value chain improved fishers’ revenues by increasing local

consumption of whole lobsters and increasing ex-vessel prices [54]. Diversification of products

and markets was enabled by the fact that tourist and land-based infrastructure (hotels and res-

taurants) is more extensive in Puerto Ayora than in Baquerizo Moreno or Puerto Villamil.

This socioeconomic feature made fishers from Puerto Ayora less vulnerable to the economic

perturbations caused by total closure of the sea cucumber fishery and the global financial crisis

2007–09. Puerto Ayora’s fishers faced the crisis by adding value to their catches, rather than

expanding the spatial range of fishing, as did fishers in other ports. Indeed the Puerto Ayora

fishers shifted their fishing effort to nearer their homeport, which likely increased their profits

by reducing variable costs (e.g., diesel fuel).

Different adaptive responses to the global financial crisis 2007–09 were reported by Castre-

jón and Defeo [38] for two Mexican spiny lobster fisheries, one in Punta Allen, Quintana Roo,

and the other in Baja California. In Punta Allen, fishers from Vigı́a Chico’s fishing cooperative

stopped lobster fishing for three months until market conditions improved and, since then,

they have acquired the infrastructure, technology and expertise needed to export live lobsters

to Asia and Europe. In Baja California, fishers from the Federation of Cooperative Societies of

the Fishing Industry of Baja California (FEDECOOP) also adapted their harvesting and trad-

ing strategies according to global market conditions. In this case, a 10-day early closure of the

spiny lobster fishing season was agreed upon, and implemented in a coordinated way, by the

10 cooperatives that made up the FEDECOOP. Thanks to this, and other harvest and trading

strategies, such as the agreement of spiny lobster unit price and harvesting levels before the

beginning of each fishing season, and the diversification of markets and products, FEDE-

COOP was able to reach maximum historic prices after the conclusion of the global financial

crisis 2007–09. These two case studies, together with the Galapagos spiny lobster fishery, rein-

force the notion that crises represent opportunities for learning, adapting, and entering onto

more sustainable pathways [55]. Such crises triggered adaptive responses, either individual or

collective, which were shaped by the social and geographic attributes of the fishing communi-

ties in which fishing cooperatives are embedded, and the capacity and willingness of individu-

als and fishing cooperatives to take actions to re-organize themselves, change harvesting and

trading strategies, and implement self-regulatory mechanisms to face the economic perturba-

tions caused by external drivers of change [38].

Finally, it should be noted that while the global financial crisis 2007–09 was detrimental for

Galapagos fishers, it was beneficial for spiny lobster stocks. Two years after the official end of

the recession, lobster CPUE and catch increased 91% and 102%, respectively, whereas fishing

effort only increased 6% between 2009 and 2011 [2]. According to Defeo et al. [56], the recov-

ery of spiny lobster stocks could be attributed to the substantial reduction in fishing effort,

together with the combined effect of market forces and favorable environmental conditions.

Our results support this hypothesis.
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Drivers of change: ‘Micro’ adaptive responses

The macro-scale changes in the spiny lobster fishery, described above, in turn altered the

micro-scale dynamics of fishing patterns in the small-scale fleet, reflected in spatio-temporal

variations in the fishing fleets’ core areas and fishing effort distribution. According to the BRT

models, these changes in fishing effort were shaped by six main predictor variables: the dis-

tance from homeport (DistHP), the latitude and the longitude, the particular time period con-

sidered (Period), the Oceanic Niño Index (ONI), and the lobster catch obtained in previous

fishing trips (PrevCatch). The average sea cucumber revenue obtained the fishing season

before the beginning of lobster season (SeaCucRev) also showed a good predictive perfor-

mance, but not for Puerto Ayora, for the reasons explained above.

The coastal nature of the spiny lobster fishery, and the geographic and socioeconomic fea-

tures of each homeport, help to explain why the six explanatory variables were the most rele-

vant as fishing effort predictors. Each port showed different adaptive responses to these drivers

due to differences regarding number of fishers, composition of the fishing fleet, and available

land-based tourism infrastructure. For example, Baquerizo Moreno has historically had the

largest concentration of fishers and mother boat vessels [51]. Such features probably have

forced fishers to fish farther away from their homeport to reduce competition with their peers,

thereby reducing the influence of static variables on fishing effort distribution. In contrast, the

reduced number of mother boats in Puerto Ayora and Villamil increased the influence of static

variables, which may explain why these fishers catch spiny lobsters near their homeports.

A special feature of Galapagos is the limited number of landing sites (Fig 1). This, together

with the limited range of the Galapagos small-scale fishing fleet and the close proximity of

homeports to the most productive fishing grounds [36,53], explains why static rather than

dynamic explanatory variables were more relevant as fishing effort predictors. Thus, distance

to homeport, latitude and longitude are the most important variables explaining why fishers

from the same homeport tend to use similar fishing grounds. This leads to exclusive core

areas, which usually do not show overlaps. Similar results were found by Bucaram et al. [20]

whose short-term analysis of factors affecting fishing behaviour in the Galapagos spiny lobster

fishery identified travel distance from vessels’ home ports to fishing grounds and expected rev-

enues as the most important factors affecting spatial allocation of fishing effort. They also

found that fishing behaviour is sensitive to changes in sea conditions and sea surface tempera-

ture, but not to precipitation or moon visibility.

In contrast, dynamic variables explain why fishing patterns changed during certain periods

of time. In this sense, our results suggest that two variables, the revenues produced by the sea

cucumber fishery and the previous lobster catch, are responsible for the alternate expansion

and contraction of fishing fleets’ core areas and distribution ranges during the boom-and-bust

exploitation of the sea cucumber fishery, marine zoning implementation and the global finan-

cial crisis 2007–09. Higher revenues produced by the sea cucumber fishery and higher previous

lobster catches were associated with increasing trends in fishing effort in the spiny lobster fish-

ery. Our results suggest that higher revenues produced during the reopening and expansion

period of the sea cucumber fishery probably acted as subsidies that allowed spiny lobster fish-

ers to extend their fishing trips for longer times and farther away from their homeports. In

contrast, lower revenues caused by the overexploitation of the sea cucumber and spiny lobster

fishery, and the global financial crisis 2007–09, led to decreasing trends in fishing effort, which

were reflected in the contraction of fishing fleets’ core areas and distribution ranges. These

hypotheses are supported by Bucaram and Hearn [57], who found that the decision to partici-

pate in the spiny lobster fishery is significantly influenced by the average catch per trip of spiny

lobsters and sea cucumbers during the previous fishing season. In other words, the higher the
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average catch per trip of both species obtained by a vessel in the previous year, the more likely

that the vessel will decide to participate in the next spiny lobster fishing season, and the greater

the extent of participation.

The oceanographic variable ONI was also identified in our analysis as a relevant fishing

effort predictor. From partial dependence plots, fishing effort increased during El Niño condi-

tions; this could be caused by the redistribution of spiny lobster stocks from inshore to deeper

waters, making them inaccessible to fishing by hooka diving (cf. [58]). Such reproductive

migrations are influenced by temperature. According to Vega [59], warmer temperatures dur-

ing El Niño periods accelerate the time of breeding of Panulirus interruptus significantly, while

the converse occurred under colder temperatures caused by La Niña. Based on these studies,

fishing effort probably was higher in the Galapagos spiny lobster fishery during El Niño events,

with reproductive migration of spiny lobsters to deeper waters making the lobster less accessi-

ble to fishing, leading to increased search times and increased diving hours per fishing trip.

Impact of no-take zones and management implications

The above results of our integrated analysis showed how Galapagos fishing communities

coped with the interactions of human and climatic drivers of change, both temporally and spa-

tially. Our results showed that ‘macro’ and the ‘micro’ fishers’ adaptive responses varied

according to the magnitude, extent and intensity of the social-ecological perturbations caused

by the drivers of change analyzed, and were shaped by geographic, economic and oceano-

graphic factors, including the socioeconomic attributes of the three fishing communities

analyzed.

Furthermore, our results indicated that among the possible effects producing a recovery of

the spiny lobster stock, the implementation of no-take zones within the GMR was not a signifi-

cant factor. Indeed, there is no scientific evidence (see also [2]) that adoption of no-take zones

contributed directly to the sustainability of Galapagos shellfish fisheries [60,61]. The lack of a

‘fishing the line’ effect around no-take zones and the poor performance of the NearNTZ vari-

able as a fishing effort predictor suggest that marine zoning, after its implementation, had little

impact on the spatio-temporal distribution of fishing effort, particularly in Puerto Ayora and

Baquerizo Moreno. This result may well be due to the manner in which locations of no-take

zones were chosen across Galapagos. According to Edgar et al. [21], fishers sought to minimize

perceived impacts on their livelihood by advocating the location of no-take zones in areas with

low densities of the most valuable commercial species (sea cucumber and spiny lobster), while

tourism operators and sport divers promoted the protection of areas containing high densities

of species important for tourism (e.g., sharks). As a result, sea cucumber and spiny lobster

baseline densities were much more abundant (3 and 2.7 times higher, respectively) in fishing

zones compared to no-take zones, although differences between both zone types were not sig-

nificant for spiny lobsters [21]. The location of no-take zones in areas with relatively low abun-

dance of the most lucrative species explains why fishers have shown a lack of interest in fishing

near these areas, thereby explaining the lack of a ‘fishing the line’ effect around no-take zone

boundaries after marine zoning implementation.

The above results have implications for fisheries policy and management in the GMR. First,

there is a need to re-evaluate the distribution of no-take zones across the GMR, to promote the

sustainability of the spiny lobster fishery and conserve key biodiversity areas. Effective no-take

zones should be implemented in areas that ensure the protection of a proportion of the breed-

ing stock and critical reproduction and nursery habitats. However, the geographic location of

these areas across the Galapagos archipelago is still uncertain. It may be useful to consider fish-

ing effort hotspots, which probably overlap with the location of spawning and nursery areas, a
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hypothesis that should be evaluated by future studies. Unfortunately, declaring fishing effort

hotspots as no-take zones will represent a challenge, considering the lack of evidence of the

ecological and economic benefits provided by no-take zones and the high opportunity and

transaction costs associated with their implementation and enforcement. That reality has con-

tributed to reduce the acceptability and legitimacy of what could be potentially a valuable tool

to manage Galapagos shellfish fisheries [22]. In consequence, additional research and manage-

ment efforts are required to create the conditions for the effective planning, implementation,

monitoring and enforcement of the GMR’s marine zoning.

Second, since no-take zones represent only one of multiple management tools available for

successful implementation of spatial EBM [22], a more effective approach could be a combina-

tion of a coastal network of no-take zones with co-managed harvested areas that allocate exclu-

sive spatial fishing rights to local communities, potentially a more robust approach to address

the roots of fisheries management failures that led to overexploitation of fisheries [2,17,18,62].

This could produce a set of strategically-placed Territorial Use Rights in Fishing (TURF) areas.

Based on the distribution of core areas and fishing effort hotspots across the archipelago for

the three fishing fleets, the most strategic places for the experimental implementation of

TURFs in the GMR are those located in the southern part of Isabela Island, the western part of

Santa Cruz Island and the southeastern part of San Cristobal Island. These places are strategic

because (1) each is used exclusively by one fishing fleet, which reduces the likelihood of poten-

tial conflicts among different fishing fleets arising over competition for the same ocean space,

and (2) each is located near the corresponding homeport, which facilitates surveillance, control

and monitoring activities and creates an economic incentive for TURF co-management. The

active involvement of local communities in the co-management of strategically placed TURFs

could contribute, under certain enabling conditions, to generate a sense of stewardship among

fishers [4,63–65]. This management approach could promote the implementation, by fishers

themselves, of effective monitoring, control and surveillance procedures, and the accomplish-

ment of objectives for management and conservation [66], as has been observed in spiny lob-

ster fisheries of Baja California, México and Chile [38,67,68], all currently certified by the

Marine Stewardship Council as sustainable [69].

Third, the geographic definition of new management areas is needed, based on core areas

and distribution ranges of the three fishing fleets. This could include area-based co-manage-

ment that could enhance the acceptability and legitimacy of GMR’s marine zoning and help to

mitigate the potential conflict associated with the redistribution of no-take zones. Within the

area-based co-management system, we suggest creating specific co-management councils for

each management area to promote the involvement and participation of local stakeholders in

their planning, implementation, monitoring and enforcement. Each co-management council

should be made up exclusively of those fishers, and other relevant stakeholders, who would be

most affected by implementation of no-take zones, and/or the experimental allocation of

TURFs, inside their core area and distribution ranges. An area-based co-management

approach could be useful to ensure a strategic distribution of no-take zones across the archipel-

ago and to minimize the impact of zoning on fishing communities’ livelihoods, helping to

improve the acceptance, legitimacy and compliance of the new marine zoning scheme.

Conclusions and lessons learned

The first and most important conclusion and lesson learned lies in the reality that fishery sys-

tems face social-ecological impacts produced by a diverse range of human and climatic exter-

nal drivers of change, acting at different spatial and temporal scales, usually simultaneously.

These include not only the implementation of new regulations, such as multiple-use MPAs
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and marine zoning schemes, and extreme climatic events associated with global climate change

(e.g., El Niño), but also socioeconomic perturbations caused by the globalization of markets

and the development and/or collapse of alternative fisheries.

Second, our results demonstrated the need for a broad-based and integrated social-ecologi-

cal approach to fishery management and marine conservation, whether in planning MPAs or

in any fisheries management, or indeed, any natural resource management. In this context,

MPAs must be designed and implemented taking into consideration not only the spatial-tem-

poral dynamics of key biodiversity areas and fishery resources, but also the dynamics of fishing

fleets, and fishers’ adaptive responses to human and climatic drivers of change. Only in this

way will management and conservation measures, such as no-take zones, be useful tools for

rebuilding depleted fish stocks, conserving marine ecosystems and improving fishing commu-

nities’ livelihoods.

Third, assessments of the effectiveness of MPAs should not assume that any change in fish-

ing patterns is caused exclusively by the implementation of an MPA. Instead, a comprehensive

understanding of how local fishing communities cope with relevant human and climatic driv-

ers is fundamental to properly assess the socio-ecological outcomes generated by an MPA.

This knowledge will reduce the risk of errors in planning, implementing and assessing the

effectiveness of MPAs and marine zoning more broadly.

These conclusions and lessons learned apply broadly, not only to situations involving

MPAs, but to any social-ecological system in which ecosystem-based management, marine

zoning and other management approaches are being considered to improve the governance

and sustainability of fisheries and the conservation of key biodiversity areas.
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