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Abstract: In this final chapter a new perspective for the application of QSAR in the nanosciences
is discussed. The role of nanomaterials is rapidly increasing in many aspects of everyday
life. This is promoting a wide range of research needs related to both the design of new
materials with required properties and performing a comprehensive risk assessment of
the manufactured nanoparticles. The development of nanoscience also opens new areas
for QSAR modelers. We have begun this contribution with a detailed discussion on the
remarkable physical-chemical properties of nanomaterials and their specific toxicities.
Both these factors should be considered as potential endpoints for further nano-QSAR
studies. Then, we have highlighted the status and research needs in the area of molecular
descriptors applicable to nanomaterials. Finally, we have put together currently available
nano-QSAR models related to the physico-chemical endpoints of nanoparticles and their
activity. Although we have observed many problems (i.e., a lack of experimental data,
insufficient and inadequate descriptors), we do believe that application of QSAR method-
ology will significantly support nanoscience in the near future. Development of reliable
nano-QSARs can be considered as the next challenging task for the QSAR community.
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14.1. INCREASING ROLE OF NANOMATERIALS

The history of the “nanoworld” begun on December 29, 1959, being initiated by
the classic talk given at the Annual Meeting of the American Physical Society by
Richard P. Feyman [1]. “There’s plenty of room at the bottom” — he summarized his
visionary ideas about libraries as small as a pin head and miniature machines able
to penetrate human body via the blood vessel and act as microscopic surgeons. The
“nano” prefix, in a chemical context, describes particles characterized by at least
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one diameter of 100 nm or less. When nanoparticles are intentionally synthesized to
be used in consumer goods, they are called “nanomaterials” [2].

Nowadays, 50 years after Feyman’s lecture, nanotechnology has emerged at the
forefront of science and technology developments and nanomaterials have found a
wide range of applications in different aspects of human life. For example, nanopar-
ticles of such inorganic compounds as TiO, and ZnO oxides are used in cosmetics
[3], sunscreens [3], solar-driven self-cleaning coatings [4], and textiles [5]. Nano-
sized CuO has replaced noble metals in newer catalytic converters for the car
industry [6]. Nanopowders of metals can be used as antibacterial substrates (e.g.,
the combination of the pure nanosilver ion with fiber to create antiodor socks)
[7]. Finally, metal salts (i.e., CdSe quantum dots) have found many applications
in electronics and biomedical imaging techniques [8, 9].

The discoveries of fullerene (Cgp) in 1985 by Kroto et al. [10] and carbon
nanotubes in 1991 by Iijima [11] opened a new area of the tailored design of carbon-
based nanomaterials. Carbon-based nanomaterials are currently used, among other
applications, for synthesis of polymers characterized by enhanced solubility and
processability [12] and for manufacturing of biosensors [13]. They also con-
tribute to a broad range of environmental technologies including sorbents, high-flux
membranes, depth filters, antimicrobial agents, and renewable energy supplies [14].

According to current analysis [15], about 500 different products containing nano-
materials were officially on the market in 2007. Most of them (247) have been
manufactured in the USA, 123 in East Asia (China, Taiwan, Korea, Japan), 76 in
Europe, and only 27 in other countries. It is interesting that the number (500) is two
times higher than the number of nanoproducts in the previous year. Investments in
nanotechnology industry grew from $13 billion in 2004 to $50 billion in 2006 and —
if one can believe the forecast — will reach $2.6 trillion in 2014.

Without doubt, nothing is able to stop such a rapidly developing branch of
technology and we should be prepared for (better or worse) living day by day in
symbiosis with nanomaterials.

14.2. THEIR INCREDIBLE PHYSICAL AND CHEMICAL
PROPERTIES

The astonishing physical and chemical properties of engineered nanoparticles are
attributable to their small size. In the nanometer-scale, finite size effects such as
surface area and size distribution can cause nanoparticles to have significantly dif-
ferent properties as compared to the bulk material [16]. For instance, by decreasing
the size of gold samples one induces color changes from bright yellow through
reddish—purple up to blue.

However, from the physico-chemical viewpoint, the novel properties of nanopar-
ticles can also be determined by their chemical composition, surface structure,
solubility, shape, ratio of particles in relation to agglomerates, and surface area
to volume ratio. All these factors may give rise to unique electronic, magnetic,
optical, and structural properties and, therefore, lead to opportunities for using
nanomaterials in novel applications and devices [16].
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New, characteristic properties of nanomaterials include greater hardness, rigidity,
high thermal stability, higher yield strength, flexibility, ductility, and high refractive
index. The band gap of nanometer-scale semiconductor structures decreases as the
size of the nanostructure decreases, raising expectations for many possible optical
and photonic applications [17].

With respect to the size of the grains, it has been suggested that nanomaterials
would exhibit increased (typically 3—5 times) strength and hardness as compared
to their microcrystalline counterparts. For example, the strength of nanocrystalline
nickel is five orders of magnitude higher than that of the corresponding microcrys-
talline nickel [18]. Interestingly, the observed strength of crystalline nanomaterials
is accompanied by a loss of ductility, which can result in a limitation of their
utility [19]. However, some of the nanocrystalline materials have the ability to
undergo considerable elongation and plastic deformation without failing (even
up to 100-300%). Such machinability and superplasticity properties have been
observed for ceramics (including monoliths and composites), metals (including alu-
minum, magnesium, iron, titanium), intermetallic elements (including iron, nickel,
and titanium base), and laminates [20]. Although the atomic weight of carbon
nanotubes is about one-sixth of the weight of steel, their Young’s modulus and ten-
sile strength are, respectively, five and 100 times higher than those of steel [21].
In addition, nanoparticles, because of their very small sizes and surface/interface
effects such as the fundamental change in coordination, symmetry, and confine-
ment, they may exhibit high magnetic susceptibility. A variety of nanoparticles
reveal anomalous magnetic properties such as superparamagnetism. This opens
new areas of potential application for them, such as data storage and ferrofluid
technology [22].

According to recent studies, nanoparticles may have also great potential in
medical application, mostly due to their good biocompatibility that allows them
to promote electron transfer between electrodes and biological molecules. For
instance, the high biocompatibility of magnetite nanocrystals (Fe3O4) makes them
potentially useful as the magnetic resonance imaging contrast agents [23]. One of
the unique aspects of nanoparticles is their high wettability, termed by Fujishima
[24] as superhydrophilicity. Depending upon the chemical composition, the sur-
face can exhibit superhydrophilic characteristics. For example, titanium dioxide
(TiO,), at sizes below a few nm, can decrease the water contact angle to 041°
[24]. Nano-sized composites, due to the chemical composition and viscosity of the
intercrystalline phase, may provide a significant increase in creep resistance. It has
been demonstrated that alumina/silicon carbide composites are characterized by a
minimum creep rate, three times lower than the corresponding monolith [25].

14.3. NANOMATERIALS CAN BE TOXIC

As mentioned in Section 14.1, different types of nanomaterials are increasingly
being developed and used by industry. However, little is known about their tox-
icity, including possible mutagenic and/or carcinogenic effects [26]. Some recent
contributions report evident toxicity and/or ecotoxicity of selected nanoparticles
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and highlight the potential risk related to the development of nanoengineering.
Evidently, there is insufficient knowledge regarding the harmful interactions of
nanoparticles with biological systems as well as with the environment.

14.3.1. Specific Properties Cause Specific Toxicity

It is well known that the most important parameters with respect to the induction
of adverse effects by a xenobiotic compound are its dose, dimension, and durabil-
ity. Conversely, it is well established that nano-sized particles, due to their unique
physical and chemical properties discussed above, behave differently from their
larger counterparts of the same chemical composition [26-31]. Because of the dif-
ference between nanoparticles and bulk chemicals, the risk characterization of bulk
materials cannot be directly extrapolated to nanomaterials.

The biological activity of nanoparticles and their unique properties causing harm-
ful effects are highly dependent on their size. Nanoparticles, because of their small
size, may pass organ barriers such as skin, olfactory mucosa, and the blood—brain
barrier [32-34], readily travel within the circulatory system of a host, and deposit
in target organs. This is not possible with the same material in a larger form [35].
Indeed, reduction of the particle’s size to the nanoscale level results in a steady
increase of the surface to volume ratio. As a consequence, a larger number of poten-
tially active groups per mass unit is “available” on the surface and might interact
with biological systems [35]. This is one possible explanation why nano-sized par-
ticles of a given compound are generally more toxic than the same compound in its
larger form [36].

However, Oberdorster et al. [37] suggested that the particle size is not the only
possible factor influencing toxicity of nanomaterials. The following features should
be also considered:

e size distribution,

» agglomeration state,

* shape,

* porosity,

e surface area,

* chemical composition,

* structure-dependent electronic configuration,
 surface chemistry,

* surface charge, and

* crystal structure.

Natural and anthropogenic nanoparticles gain access into the human body
through the main ports of entry including the lungs, the skin, or the gastrointestinal
tract. The unique properties of nanoparticles allow them not only to pnetrate physi-
ological barriers but also to travel throughout the body and interact with subcellular
structures. Toxicological studies show that nanoparticles can be found in various
cells such as mitochondria [38, 39], lipid vesicles [40], fibroblasts [41], nuclei [42],
and macrophages [43].



Nanomaterials — the Next Great Challenge for QSAR Modelers 387

14.3.2. Oxidative Stress

Depending on their localization inside the cell, nanoparticles can induce forma-
tion of reactive oxygen species (ROS), for instance, superoxide radicals, hydroxyl
radicals reactive nitrogen [44], sulfur [45], and other species stressing the body in
a similar manner to the effect of ROS [46]. This results in oxidative stress and
inflammation, leading to the impacts on lung and cardiovascular health [16].

It is worth noting that normally, due to the presence of antioxidant molecules
(i.e., vitamin C and glutathione), the body’s cells are able to defend themselves
against ROS and free radicals damage. However, when a large dose of strongly
electrophilic nanoparticles enter the body, the balance between reduced glutathione
(GSH) and its oxidized form (GSSG) is destroyed [47] and the unscavenged oxi-
dants cause cell injuries by attacking DNA, proteins, and membranes [48]. At the
cellular level, oxidative stress is currently the best developed paradigm depicting the
harmful effects of nano-sized particles [31, 49, 50].

14.3.3. Cytotoxicity and Genotoxicity

The mechanism of oxidative stress occurring at the molecular level is mainly
responsible for observed cytotoxic and genotoxic effects induced by nanoparticles.
Cytotoxicity of selected nanospecies has been confirmed by many researchers. For
example, fullerene (Cgp) particles suspended in water are characterized by antibac-
terial activity against Escherichia coli and Bacillus subtilis [51] and by cytotoxicity
to human cell lines [52]. Single multiwalled carbon nanotubes (CWCNTSs and
MWCNTys) are also toxic to human cells [41, 53]. Nano-sized silicon oxide (SiOy),
anatase (TiO»), and zinc oxide (ZnO) can induce pulmonary inflammation in rodents
and humans [54-56].

Epidemiological studies have shown that nanoparticles might be genotoxic to
humans [57]. Irreversible DNA modifications resulting from the activity of ROS
may lead to heritable mutations, involving a single gene, a block of genes, or even
whole chromosomes. DNA damage may also disrupt various normal intracellular
processes, such as DNA replication and modulate gene transcription, causing abnor-
mal function or cell death [16, 44, 58]. Until now, more than 100 different oxidative
DNA lesions have been found. The most investigated OH-related DNA lesions is
8-hydroxydeoxyguanosine (8-OHdAG) [59], which may be induced by several par-
ticles such as asbestos, crystalline silica, coal fly ashes. Oxygen free radicals may
overwhelm the antioxidant defense system by mediating formation of base adducts,
such as 8-hydroxydeoxyguanosine, and therefore play a key role in initiation of
carcinogenesis [60].

14.3.4. Neurotoxicity

Data on neurotoxic effects of engineered nanoparticles are very limited, but it has
been reported that inhaled nanoparticles, depending on their size, may be distributed
to organs and surrounding tissues, including the olfactory mucosa or bronchial
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epithelium and then can be translocated via the olfactory nerves to the central
nervous system [61]. There is also some evidence that nano-sized particles can pene-
trate and pass along nerve axons and dendrites of neurons into the brain [33]. Recent
studies confirm the translocation of nanoparticles from the respiratory tract into the
central nervous system; for example, inhalation with 30 nm magnesium oxide in rats
showed that manganese can be taken up into olfactory neurons and accumulated in
the olfactory bulb [34].

The particles at the nanoscale may also gain access to the brain across the blood—
brain barrier [2]. There is experimental evidence that oxidative stress also plays
an important role in neurodegenerative diseases and brain pathology, for instance,
Hallervorden-Spatz Syndrome, Pick’s disease, Alzheimer’s disease, or Parkinson’s
disease [62].

14.3.5. Immunotoxicity

The effects of nanoparticles on the immune system are still unclear. Although
the reticuloendothelial system (RES) is able to eliminate nanoparticles, several
toxicological studies have suggested that nanoscale particles’ interaction with the
defense activities of immune cells can change their antigenicity and stimulate and/or
suppress immune responses. Direct experiments showed that dendritic cells and
macrophages uptake of nanoparticle—protein complexes may change the formation
of the antigen and initiate an autoimmune response [16]. Several studies have also
reported that nanoparticles may induce damage to red blood cells (erythrocytes).
Bosi et al. [63] have studied the hemolytic effect of different water-soluble Cgg
fullerenes. Preliminary results indicate that hemolytic activity depends on the num-
ber and position of the cationic surface groups. However, no clinically relevant
toxicity has yet been demonstrated [64].

14.3.6. Ecotoxicity

Nano-sized particles such as volcanic ash, dust storms, or smoke from natural fires
have always been present in the environment. However, the recent progress of
industry has increased engineered nanoparticle pollution. The unique size-specific
behavior and specific physical-chemical properties, in combination with toxicity to
particular living organisms, may also result in harmful effects on the level of whole
environmental ecosystems [65].

In the pioneering report on the non-human toxicity of fullerene, Eva Oberdorster
[66] observed that manufactured nanomaterials can have negative impacts on
aquatic organisms. Water-soluble Cg( fullerenes cause oxidative damage (lipid per-
oxydation in the brain) and depletion of glutathione in the gill of juvenile largemouth
bass (Micropterus salmoides) at a concentration of 0.5 ppm. However, these results
might be disputable, because the authors used the organic solvent tetrahydrofuran
(THF) to disaggregate Cgo fullerenes, THF is classified as a neurotoxin [67].

Subsequently, Lover and Klaper [68] observed the toxicological impact of
nanoparticles of fullerenes (Cgp) and titanium dioxide (TiO;) to Daphnia magna:
Ceo and TiO, caused mortality with a LCsg value of 5.5 ppm for TiO; and a
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LCsp value of 460 ppb for the fullerene. In this case the authors also used THF
for solubilization of hydrophobic Cgg, thus the results are also of lower credibility.
Interestingly, in similar experiments by Andrievsky et al. [69] with “fullerene water
solutions” (hydrated fullerenes, Cgp - nH>O), no mortality was observed.

In a later study, Adams et al. [70] confirmed the acute toxicity of selected nano-
sized metal oxides against D. magna. He observed that SiO; particles were the least
toxic and that toxicity increased from SiO; to TiO» to ZnO. A further study by
the authors [71] showed that these three photosensitive nanoscale metal oxides in
water suspensions have similar antibacterial activity to Gram-positive (B. subtilis)
and Gram-negative (E. coli) bacteria (SiOy < TiO, < ZnO). All the metal oxides
nanoparticles tested inhibited the growth of both Gram-positive and Gram-negative
bacteria; however, B. subtilis was more sensitive than E. coli.

Similar results have been observed for a bath of ZnO, TiO,, and CuO against
bacterium Vibrio fischeri and crustaceans D. magna and Thamnocephalus platyurus
[72]. The antibacterial effects of nano-sized metal oxides to V. fischeri were similar
to the rank of toxicity to D. magna and T. platyurus; they increased from TiO; to
CuO and ZnO. It is also very important to recognize that titanium dioxide was not
toxic even at the 20 g/l level, which means that not all nanoparticles of metal oxides
induce toxicity.

Smith et al. [73] investigated the ecotoxicological potential of single-walled car-
bon nanotubes (SWCNT) to rainbow trout (Oncorhynchus mykiss) showing that the
exposure to dispersed SWCNT causes respiratory toxicity — an increase of the venti-
lation rate, gill pathologies, and mucus secretion. Additionally, the authors observed
histological changes in the liver, brain pathology, and cellular pathologies, such
as individual necrotic or apoptotic bodies, in rainbow trout exposed to 0.5 mg/l
SWCNT.

Mouchet et al. [74] analyzed the acute toxicity and genotoxicity of double-walled
carbon nanotubes (DWNTSs) to amphibian larvae (Xenopus laevis). The authors did
not observe any effects at concentrations between 10 and 500 mg/l. However, at
the highest concentrations (500 mg/1) 85% of mortality was measured, while at the
lowest concentrations (10 mg/l) reduced size and/or a cessation of growth of the
larvae were observed.

Summarizing this section, there is strong evidence that chemicals, when synthe-
sized at the nanoscale, can induce a wide range of specific toxic and ecotoxic effects.
Moreover, even similar compounds from the same class can differ in toxicity. The
available data on toxicity are still lacking; thus, more comprehensive and systematic
studies in this area are necessary and very important.

14.4. “NANO-QSAR” - ADVANCES AND CHALLENGES

As demonstrated in this book, quantitative structure—activity relationship (QSAR)
methods can play an important role in both designing new products and predicting
their risk to human health and the environment. However, taking into account the
specific properties of nanomaterials and their still unknown modes of toxic action,
this class of compounds seems to be much more problematic for QSAR modelers
than the “classic” (small, drug-like) chemicals.
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14.4.1. Description of Structure

Until now, more than 5000 different descriptors have been developed and used for
the characterization of molecular structure (Chapter 3). In general, the descriptors
can be classified according to their dimensionality. Constitutional descriptors, so-
called “zero-dimensional,” are derived directly from the formula (e.g., the number
of oxygen atoms). Descriptors of bulk properties, such as n-octanol/water parti-
tion coefficient or water solubility, are classified as “one-dimensional” descriptors.
Topological descriptors based on the molecular graph theory are called “two-
dimensional” descriptors and characterize connections between individual atoms
in the molecule. “Three-dimensional” descriptors reflect properties derived from
the three-dimensional structure of a molecule optimized at the appropriate level of
quantum-mechanical theory. “Four-dimensional” descriptors are defined by molec-
ular properties arising from interactions of the molecule with probes characterizing
the surrounding space or by stereodynamic representation of a molecule, includ-
ing flexibility of bonds, conformational behavior, etc. [75-79]. Only a little is
known about applicability of those “traditional” descriptors for the characterization
of nanostructures. Some authors [80-82] postulate that the existing descriptors are
insufficient to express the specific physical and chemical properties of nanoparticles.
Thus, novel and more appropriate types of the descriptors must be developed.

A group of nanoparticles is structurally diversified. In fact, this group has been
defined arbitrarily in some way, taking into account size as the only criterion of
the particles’ membership. Therefore, structures as various as nanotubes, fullerenes,
crystals, and atom clusters as well as chemical species of such different proper-
ties as metals, non-metals, organic compounds, inorganic compounds, conductors,
semi-conductors, and isolators were put together into one single group. Since
nanoparticles are not structurally homogenous, a common mechanism of toxicity
cannot be expected for all of them. In consequence, toxicity and other properties
should be studied within the most appropriately chosen sub-classes of structural
and physico-chemical similarity.

What is the best way to define the sub-classes? The answer might be given based
on a stepwise procedure recommended by the OECD guidance document on the
grouping of chemicals [83] (see also Chapter 7). Along with the guidelines, the
following eight steps should be performed:

1. Development of the category hypothesis, definition, and identification of the
category members. The category can be defined based on chemical similar-
ity, physico-chemical properties, toxicological endpoint, and/or mechanism of
action, as well as in terms of a metabolic pathway.

2. Gathering of data for each category members. All existing data should be
collected for each member of the category.

3. Evaluation of available data for adequacy. The data should be carefully evaluated
at this stage according to the commonly accepted protocols (i.e., according to the
appropriate OECD guidance).

4. Construction of a matrix of data availability (category endpoints vs. members).
The matrix is to indicate whether data are available or not.
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5. Performing of a preliminary evaluation of the category and filling data gaps. The
preliminary evaluation should indicate if (i) the category rationale is supported
and (ii) the category is sufficiently robust for the assessment purpose (contains
sufficient, relevant and reliable information).

6. Performing of additional testing (experiments). Based on the preliminary evalu-
ation (especially evaluation of the robustness), additional experiments and group
members for testing can be proposed.

7. Performing of a further assessment of the category. If new data from the addi-
tional testing are generated, the category should be revised according to the
criteria from step 5.

8. Documenting of the finalized category. Finally, the category should be docu-
mented in the form of a suitable reporting format proposed by the guidance.

The currently proposed [82] working classification scheme for nanostructured
particles includes nine categories:

. spherical or compact particles;

. high aspect ratio particles;

. complex non-spherical particles;

. compositionally heterogeneous particles — core surface variation;
. compositionally heterogeneous particles — distributed variation;
homogeneous agglomerates;

. heterogeneous agglomerates;

. active particles;

. multifunctional particles.

NI - NV R U S

This classification has been adapted from the original work of Maynard and
Aitken [84].

What types of structural properties should be described within the groups? As
previously discussed in Section 14.3, the diameter of a nanoparticle is important, but
it is not the only one possible factor influencing the mode of toxic action. The addi-
tional structural characteristics which must also be appropriately expressed are size
distribution, agglomeration, shape, porosity, surface area, chemical composition,
electronic configuration, surface chemistry, surface charge, and crystal structure.
In contrast to the classic QSAR scheme, an entire characterization of a nanostruc-
ture may be impossible only when computational methods are employed. Novel
descriptors reflecting not only molecular structure, but also supra-molecular pattern
(size, shape of the nanoparticles, etc.) should be derived from both computational
and experimental techniques.

The fastest and relatively easy step of characterizing the structure is the calcula-
tion of constitutional and topological descriptors. An interesting and very practical
idea in this field is to replace a series of simple descriptors by one, so-called
“technological attributes code” or “SMILES-like code” [85-88]. For instance, a
nanoparticle of ceramic zirconium oxide, existing in bulk form and synthesized at a
temperature of 800°C can be expressed by the code “Zr,0,0,CER,%E” [80]. Similar
to the simplified molecular input line entry system (SMILES), the international
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chemical identifier (InChl) might also be used directly as a descriptor of chemi-
cal composition [89]. Another possibility is to apply descriptors derived from either
molecular graph (MG) or the graphs of atomic orbitals (GAO) theory [90-92]. In
the first case, vertexes in the graph represent atoms, while edges represent covalent
bonds. In the second method, vertexes refer to particular atomic orbitals (1s, 2s, 2p,
etc.), while edges connect the orbitals belonging to different atoms (Figure 14-1).
Based on the molecular graphs, Faulon and coworkers [93-96] have developed the
signature molecular descriptor approach for the characterization of fullerenes and
nanotubes. The signature is a vector including extended valences of atoms derived
from a set of subgraphs, following the five-step algorithm:

1. constructing of a subgraph containing all atoms and bonds that are at a distance
no greater than the given signature height;

. labeling the vertices in a canonical order;

. constructing a tree spanning all the edges;

. removing of all canonical labels that appear only one time;

. writing the signature by reading the tree in a depth-first order.

[ I SN )

The signature descriptor can be utilized not only for direct QSAR modeling, but
also for calculating a range of topological indices (i.e., the Wiener index).

MG
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L

Figure 14-1. Molecular graph (MG) and graph of atomic orbitals (GAO) for SnO, (vertex numbering
and vertex degrees). [90-92, 132]
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Without doubt, simplicity of calculation is the most significant advantage of the
topological descriptors. However, in many cases these two-dimensional character-
istics are insufficient to investigate more complex phenomena. In such a situation, a
more sophisticated approach must be employed to describe the structure appropri-
ately. As mentioned previously, quantum-mechanical calculations can deliver useful
information on the three-dimensional features (see Chapter 2). Among others, they
include: molecular geometry (bond lengths, valence, and torsion angles), electron
distribution, ionization potential, electron affinity, surface reactivity, and band gap.
When performing quantum-mechanical calculations, there are always two impor-
tant assumptions to be introduced. First one is an appropriate molecular model;
the second one is the appropriate level of the theory. Both assumptions are closely
related: when the model (system) is too large, the calculations at the highest levels of
the theory are impossible, because of large computational time and other technical
resources to be required [97].

Small fullerenes and carbon nanotubes can be treated as whole systems and
modelled directly with quantum-mechanical methods. Among the theory levels,
the density functional theory (DFT) recently seems to have been accepted as the
most appropriate and practical choice for such calculations. Indeed, DFT methods
can serve as a good alternative for conventional ab initio calculations, when a step
beyond the means field approximation is crucial and the information on the electron
correlation significantly improves the results (e.g., Hartree—-Fock — HF method in
conjunction with Mgller-Pleset the second-order correction — MP2). Unfortunately,
even “small” fullerenes and carbon nanotubes (containing between 40 and 70 car-
bon atoms) are, in fact, large from quantum-mechanical point of view. Therefore,
the “classic” ab initio calculations might be impractical because of the reasons
mentioned in the previous paragraph, whereas DFT can be performed in reasonable
time.

The functional commonly utilized for DFT is abbreviated with the B3LYP
symbol. In B3LYP calculations (Eq. 14-1) the exchange-correlation energy
Exc is expressed as a combination (ap, ax, and ac are the parameters) of
four elements: (i) the exchange-correlation energy from the local spin density
approximation (LSDA, EI;E’DA), (ii) the difference between the exchange energy
from Hartree—Fock (EHF) and LSDA (ELSPA), (iii) Becke’s exchange energy with
gradient correction (EESS), and (iv) the correlation energy with Lee-Yang-Parr
correction (ECLYP) [98, 99]:

Exc = EX3PA + ag(BHF — EXSPA) 4 axEB8 4 acELY? (14-1)

Sometimes, when a system is too large from the quantum-mechanical point of
view, the calculations are practically impossible. The situation is very common for
larger crystalline nanoparticles (i.e., nanoparticles of metal oxides: TiO;, Al,O3,
Sn0O,, ZnO, etc.) and, in such cases, a simplified model of the whole structure must
first be appropriately selected. In general, there are two strategies for modeling of
crystalline solids: (i) an application of the periodic boundary conditions (PBSs)
and (ii) calculations based on the molecular clusters. In the first approach, calcu-
lations for a single unit cell are expanded in the three dimensions with respect to the
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translational symmetry by employing appropriate boundary conditions (i.e., the unit
cell should be neutral and should have no dipole moment). In doing so, the model
includes information on the long-range forces occurring in the crystal. However, the
cell size should be large enough to also be able to model defects in the surface and
to eliminate the spurious interactions between periodically repeated fragments of
the lattice [100-102].

In the second approach, a small fragment or so-called “cluster,” is cut off from
the crystal structure and then used as a simplified model for calculations. The only
problem is how to choose the diameter of the cluster correctly? This must be per-
formed by reaching a compromise between the number of atoms (and thus the
required time of computations) and the expected accuracy (and hence level of the
theory to be employed). It is worth mentioning that the molecular properties can
be divided into two groups depending on how they change with increasing size of
the cluster (going from molecular clusters to the bulk form). They are (i) scalable
properties, varying smoothly until reaching the bulk limit and (ii) non-scalable prop-
erties, when the variation related to increasing size of the cluster is not monotonic.
Although the cluster models usually avoid the long-range forces, they have found
many applications in modeling of local phenomena and interactions on the crystal
surface [103].

As previously mentioned, in addition to calculated properties, experimentally
derived properties may also serve as descriptors for developing nano-QSARs
(Table 14-1). The experimental descriptors seem to be especially useful for express-
ing size distribution, agglomeration state, shape, porosity, and irregularity of the
surface area. Interestingly, the experimental results can be combined with numerical
methods to define new descriptors. For example, images taken by scanning elec-
tron microscopy (SEM), transmission electron microscopy (TEM), or atomic force

Table 14-1. Experimental properties for possible use as descriptors in nano-QSAR
studies [105]

Properties Instruments and methods™

Diameter EM, AFM, Flow-FFF, DLS

Volume Sed-FFF

Area EM, AFM

Surface charge z-Potential, electrophoretic mobility

Crystal structure XRD, TEM-XRD

Elemental composition Bulk: ICP-MS, ICP-OES Singe nanoparticle:
TEM-EDX Particle population: FFF-ICP-MS

Aggregation state DLS, AFM, ESEM

Hydrophobicity Liquid-liquid extraction chromatography

Hydrodynamic diameter Flow-FFF, DLS

Equivalent pore size diameter Particle filtration

* Abbreviations: EM — electronic microscopy, AFM — atomic force microscopy, FFF — field flow fil-
tration, DLS — dynamic light scattering, LC — liquid chromatography, XRD — X-ray diffraction, TEM
— transmission electron microscopy, ICP-MS — inductively coupled plasma mass spectrometry, ICP-
OES — inductively coupled plasma emission spectroscopy, EDX — energy dispersive X-ray spectrometry,
ESEM - environmental scanning electron microscopy.
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Figure 14-2. Nanopowder — SEM image of nano-sized SnOp

microscopy (AFM) (Figure 14-2) might be processed with use of novel chemomet-
ric techniques of image analysis. Namely, a series of images for different particles of
a given nanostructure should first be taken. Then, the pictures must be numerically
averaged and converted into a matrix containing numerical values that correspond
to intensity of each pixel in the gray scale or color value in the RGB scale. New
descriptors can be defined based on the matrix (i.e., a shape descriptor can be cal-
culated as a sum of non-zero elements in the matrix; porosity — as a sum of relative
differences between each pixel and its “neighbors,” etc.) [104].

Without doubt, an appropriate characterization of the nanoparticles’ structure is
currently one of the most challenging tasks in nano-QSAR. Although more than
5000 QSAR descriptors have been defined so far, they may be inadequate to express
the supramolecular phenomena governing the unusual activity and properties of
nanomaterials. As a result, much more effort in this area is required.

14.4.2. Nanostructure — Electronic Properties Relationships

An important step related to the numerical description of chemical structure
and QSAR modeling involves establishing a qualitative relationship between the
structure of a nanoparticle and its various electronic properties.

The B3LYP functional and the standard 6-31G(d) Polple’s style basis set
were applied by Shukla and Leszczynski [106] to investigate the relationships
between the shape, size, and electronic properties of small carbon fullerenes, nan-
odisks, nanocapsules, and nanobowls. They found out that the ionization potentials
decrease, while the electron affinities increase in going from the Cg fullerenes to the
closed nanodisks, capsules, and open bowl-shaped nanocarbon clusters. In similar
studies performed for capped and uncapped carbon nanotubes at the B3LYP/6-
31G(d) level of theory by Yumura et al. [107, 108], the authors demonstrated that the
tube lengths, edge structures, and end caps play an important role in determining the
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band gap expressed as a difference between the energies of the highest occupied and
lowest unoccupied molecular orbitals (HOMO-LUMO) and vibrational frequen-
cies. Wang and Mezey [109] characterized electronic structures of open-ended and
capped carbon nanoneedles (CNNs) at the same theory level (B3LYP/6-311G(d))
concluding that conductivity of the studied species is strictly correlated to their size.
Only very long CNNss structures have band gaps sufficiently narrow to be semicon-
ductors, while the band gaps of very short and thin structures are too large to conduct
electrons. Similarly, Poater et al. [110, 111] observed that the Parr electrophilic-
ity and electronic movement described by the chemical potential increase with
increasing length of the carbon nanoneedles and very “short” structures (contain-
ing four layers and less) have a HOMO-LUMO gap too large to allow conductivity.
Moreover, Simeon et al. [112], by performing B3LYP calculations, demonstrated
that a replacement of the fullerene carbon atom with a heteroatom results in a
significant change of electronic and catalytic properties of the fullerene molecule.

Similar studies have been performed for crystalline metal semi-conductors with
the use of the cluster calculations. As mentioned in Section 14.4.1, some electronic
properties are scalable. They change with the changing size of the cluster until the
bulk limit is reached. Known examples of such properties are the HOMO-LUMO
gap (band gap) and the adiabatic electron detachment energy. For instance, the band
gap of ZnO nanoparticles decreases with increasing diameter of the particle up to
the bulk value observed for about 4 nm [113]. Similarly, the bulk limits of the
HOMO-LUMO gap and the detachment energy for titanium oxide anion clusters
of increasing size (increasing n) were reached already for n=7 [114, 115].

In the classic formalization of QSARs, electronic properties (e.g., HOMO,
LUMO, ionization potential) have been utilized as “ordinary” molecular descriptors.
As discussed above, this approach should be revised for nanoparticles, for which the
properties vary with size of a particle and this variation cannot be simply described
by a linear function. It is not out of the question that similar phenomena might be
observed also for other types of the “traditional” descriptors and further studies in
this area are required and strongly justified.

14.4.3. Nano-QSAR Models

Regarding the five OECD principles for the validation of a (Q)SAR as discussed in
Chapters 12 and 13, an ideal QSAR model, applicable for regulatory purpose, should
be associated with (i) a well-defined endpoint; (i) an unambiguous algorithm;
(iii) a defined domain of applicability; (iv) appropriate measures of goodness-of-
fit, robustness, and predictivity; and (v) a mechanistic interpretation, if possible.
Unfortunately, it is extremely difficult to fulfill all of these principles for (Q)SARs
applicable to nanomaterials. There are two main difficulties related to the develop-
ment of nano-QSARs. The first one is lack of sufficiently numerous and systematic
experimental data, while the second one is very limited knowledge on mechanisms
of toxic action.

As we mentioned many times, regarding their structure, the class of nanoma-
terials is not homogenous, combining a range of physico-chemical properties, as
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well as possible mechanisms of metabolism and toxicity. Thus, it is impossible
to assume one common applicability domain for all nanomaterials. Each mode of
toxicity and each class of nanomaterials should be studied separately. Analyzing
the literature data (Section 14.3) it must be concluded that even if a class of
structurally similar nanoparticles is tested with the same laboratory protocol,
the number of tested compounds is often insufficient to perform comprehen-
sive internal and external validation of a model and to calculate the appropriate
measures of robustness and predictivity in QSAR. For instance, Limbach et
al. [116] have proposed two rankings of cytotoxicity of seven oxide nanoparti-
cles based on the in vitro study of human and rodent cells. The rankings were
as follows: (i) FepOs=~asbestos > ZnO > CeO~ZrO,~TiO,~Ca3(POy4); and
(i1) ZnO > asbestos~ZrO, > Ca3(PO4)2~xFe;03~Ce0,~TiO,, respectively, for
human (mesothelinoma) and rodent cells. In another paper by the same research
group, the authors have found that for four metal nanoparticles — namely, TiO»,
Fe>03, Mn304, and Co304 — the chemical composition was the main factor deter-
mining the formation of reactive oxygen responsible for toxicity toward human lung
epithelial cells [117]. Obviously, the results cannot be combined together and a data
set containing five or six compounds is too small to build an appropriately validated
QSAR model.

Do these restrictions and problems mean QSAR modelers are not able to provide
useful and reliable information for nanoparticles? We do not believe this to be true.
The amount of data will increase along with increasing number of nanotoxicological
studies. However, no one can expect the accumulation in the next few years of such
extensive data for nanomaterials, as it is now available for some environmental pol-
lutants, pharmaceuticals, and “classical” industrial chemicals [118, 119]. Despite
the limitations, there are some very promising results of preliminary nano-QSAR
studies which are reviewed below.

Toropov et al. [81] have developed two models defining the relationships
between basic physico-chemical properties (namely, water solubility, log S, and
n-octanol/water partition coefficient, log P) of carbon nanotubes and their chiral
vectors (as structural descriptors). The two-element chiral vector (n, m) contains
information about the process of rolling up the graphite layer when a nanotube is
formed. It had been previously known [120] that the elements of the chiral vector
are related to conductivity. At this point, Toropov et al. confirmed, using the QSPR-
based research, that the vector is also strictly related to other properties. The models
developed were defined by the following two equations (Egs. 14-2 and 14-3):

log S = —5.10 — 3.51n — 3.59m

R? =0.99, s = 0.053, F = 126 (14-2)

log P =—3.92+43.77n — 3.60m (14-3)
R> =099, s =0.37, F =2.93

The study was based on experimental data being available for only 16 types
of carbon nanotube. To perform an external validation, the authors divided the
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compounds into a training set (n=8) and a test set (ns=8). Statistics of the val-
idation were RZ, = 0.99, 5it=0.093, and Fieq=67.5 and Ris;=0.99, s1e5:=0.29,
and Fieq=5.93, respectively, for the models for water solubility and n-octanol/water
partition coefficient. Without doubt, these were the first such QSPR models devel-
oped for nanoparticles. However, the ratio of descriptors to compounds (the Topliss
ratio) was low, thus the model might be unstable (see discussion in Chapter 12 for
more detail).

Another contribution by Toropov and Leszczynski [80] presents a model pre-
dicting Young’s modulus (YM) for a set of inorganic nanostructures (Eq. 14-4).

YM = —3720.0(% 39.9) + 3950.0(= 39.2)DCW
R?>=10.98,s =183, F =761, (14-4)
RZ = 0.90, Siest = 34.7, Fiest = 51

The model was calibrated with a training set of 21 compounds and validated
with eight compounds, thus the Topliss ratio in this case was satisfactory. The val-
ues of DCW descriptor were calculated from the Smiles-like code, according to the
following equation (Eq. 14-5):

N
DCW = ]_[ CW(Iy) (14-5)
k=1

where I is the component information on the nanostructure (e.g., Al, N, BULK,
refer to Section 14.4.1), CW(ly) is the correlation weight of the component /i, and
N is the total number of these components in a given nanostructure. The values of
CW(I}) were calculated by the Monte Carlo method with the software developed
by the authors. The model was correctly validated and the authors demonstrated
the possibility of the prediction the Young’s modulus for external compounds with
QSAR.

Martin et al. [121] have proposed two QSAR models predicting the solubility of
buckminsterfullerene (Cg), respectively, in n-heptane (log Speptane) and n-octanol
(log Soctanot) (Egs. 14-6 and 14-7):

10g Sheptane = 3.49( & 3.46) + 76.98( & 8.11)RNCG — 9.56( £ 2.25)*ASIC
—1.18( &+ 0.45)ERN(CC)
n=15R>=090,s> =0.18, F = 34.8,
Niest = 3, 0% = 0.84, R%, = 0.82, 53, = 0.35
(14-6)

log Soctanol = 10.5( £ 1.30) — 8.40 x 1072( £ 7.71 x 10731 1C — 1.57( £ 0.16)
EMN(CC) + 0.88( & 0.15)RPCS
R? =0.96, s> = 0.078, F = 97.3,
Q? = 0.93, R%, = 0.96, s, = 0.10
(14-7)



Nanomaterials — the Next Great Challenge for QSAR Modelers 399

The symbols Rgo and sgo refer to leave-50%-out cross-validation. The authors
applied CODESSA descriptors, namely, RNCG — relative negative charge (Zefirov’s
PC); 2ASIC - average structural information content of the second order; Egéi“ (CO)
— minimum exchange energy for a C—C bond; 'IC — first-order information con-
tent; and RPCS - relative positive charged surface area. Interestingly, the models
were calibrated on 15 compounds including 14 polycyclic aromatic hydrocarbons
(PAHs) containing between two and six aromatic rings and the fullerene. Although
values of solubility predicted for the fullerene seem to be reasonable, the authors
did not validate the applicability domain of the models. Indeed, the structural dif-
ference between 14 hydrocarbons and the fullerene is probably too large to make
reliable predictions for Cg (the polycyclic hydrocarbons are planar, but the fullerene
is spherical). In addition, the experimental values of log S for 14 PAHs ranged from
—3.80t0 0.22 in heptane and from —3.03 to —0.02 in octanol, while the experimental
values for the fullerene were —4.09 and 4.18 in heptane and octanol, respectively.

An interesting area of nano-QSAR applications is estimating solubility of a given
nanoparticle in a set of various solvents. In that case, the main purpose of molec-
ular descriptors is to correctly characterize the variation in interactions between
the particle and the molecules of different solvents [122]. In fact, it means that the
descriptors are related to the structure of solvents rather than to the nanoparticle
structure.

Murray et al. [123] have developed a model characterizing the solubility of Cgg
in 22 organic solvents by employing three following descriptors: two quantities, a,%,
and v reflecting variability and degree of balance of electrostatic potential on the
solvent surface and the surface area, SA (Eq. 14-8).

log(S x 10%) = —29.0 [ot%t/(SA)3/2] +1.28 (uafm)l/z +1.53 x 107954 —2.72
(14-8)

Although the model is well fitted (R=0.95, s=0.48), nothing is known about its
predictive ability, because the model has not been validated.

A set of linear models built separately for individual structural domains, namely
alkanes (n=6), alkyl halides (n=32), alcohols (n=6), cycloalkanes (n=6), alkyl-
benzenes (n=16), and aryl halides (n=9), was published by Sivaraman et al. [124].
The models were based on connectivity indices, numbers of atoms, polarizability,
and variables indicating the substitution pattern as molecular descriptors for the sol-
vents. The values of R? for particular models ranged between 0.93 (alkyl halides)
and 0.99 (cycloalkanes) with the corresponding values of s from 0.22 (alkyl halides)
to 0.04 (cycloalkanes). The authors concluded that it was impossible to obtain a
unified model that included all solvents. However, when the first three classes of
solvents (i.e., alkanes, alkyl halides, and alcohols) were combined together into one
model, the results of an external validation performed were satisfactory.

As well as linear approaches, non-linear models have been constructed. For
instance, Kiss et al. [125] applied an artificial neural network utilizing molar vol-
ume, polarizability parameter, LUMO, saturated surface, and average polarizability
as structural descriptors of solvents. They observed that for most of the solvents
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studied (n=126) solubility decreases with increasing molar volume and increases
with polarizability and the saturated surface areas of the solvents. The reported value
of s in that case was 0.45 of log units. The values of R? and F were 0.84 and 633,
respectively.

In another study [126] the authors proposed modeling with both multiple linear
regression with heuristic selection of variables (HM-MLR) and a least-squares sup-
port vector machine (SVM). Then they compared both models with each other. Both
models were developed with CODESSA descriptors [127]. Interestingly, the results
were very similar (the model using SVM had slightly better characteristics). The
values of R? for the linear and non-linear model were, respectively, 0.89 and 0.90,
while the values of F were 968 and 1095. The reported root mean square errors were
0.126 for the linear model (HM-MLR) and 0.116 for the model employing SVM.
When analyzing all the results it might be concluded that the main factor responsi-
ble for differences in the model error is related to the type of the descriptors rather
than to the mathematical method of modeling.

Recently, Toropov et al. [89] developed an externally validated one-variable
model for Cgo solubility using additive optimal descriptors calculated from the
International Chemical Identifier (InChlI) code (Eq. 14-9):

log § = —7.98(=+ 0.14) + 0.325(= 0.0010) DCW(InChlI)
n=92,R?>=0.94, 0> = 0.94, s = 0.25, F = 1540, (14-9)
Nest = 30, RLy = 0.94, siest = 0.35, Fiegt = 437

The descriptor DCW(InChl) is defined as the sum of the correlation weights
CW(Iy) for individual IChI attributes I characterizing the solvent molecules. The
example of the DCW(InChl) calculation is presented in Table 14-2. The values of
CW(I) were optimized by the Monte Carlo method.

Table 14-2. Tlustration of the DCW calculation using pentane
as an example (InChl: 1/C5H12/c1-3-5-4-2/h3-5H2,1-2H3).
The value of DCW(InChI)=6.9256652 [89]

Ik CW(I)
Cs 2.0516145
H12 —0.1385480
/ —0.5043203
cl 0.9127424

3 0.0975796

5 0.7976968
-4 0.7174808
-2 0.6093029
/ —0.5043203
h3 0.4292022
-5 0.7976968
H2 —0.4992814
-1 0.4421542
-2 0.6093029

H3 1.1073621
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All of the above models refer to physico-chemical properties as the endpoints,
thus they are also termed quantitative structure—property relationships (QSPRs).
Currently, there are only a small number of QSARs related directly to nano-
materials’ activity. In 2007 Tsakovska [128] proposed the application of QSAR
methodology to predict protein—nanoparticle interactions. In 2008 Durdagi et al.
published two papers [129, 130] presenting QSAR-based design of novel inhibitors
of human immunodeficiency virus type 1 aspartic protease (HIV-1 PR). In the first
work [130] the authors developed a three-dimensional QSAR model with compar-
ative molecular similarity indices analysis (CoMSIA) method for 49 derivatives
of fullerene Cgo. The values of R? and Q? for the training set (n=43) were 0.99
and 0.74, respectively. The absolute values of residuals in the validation set (n=6)
ranged from 0.25 to 0.99 logarithmic units of ECso (uM). The second model
[129] were characterized by lower values of the statistics (n=17, R*=0.99 and
0°=0.56). However, in that case the predictions for an external set of compounds
(nest=3) were possible with an acceptable level of error. In addition, the authors
proposed nine novel structures indicating possible inhibitor activity based on the
model obtained. They concluded that steric effects play the most important role
in the inhibition mechanism as well as electrostatic and H-donor/acceptor proper-
ties. However, the last two types of interactions are of lower importance. Similarly,
SMILES-based optimal descriptors have been successfully applied for modeling
HIV-1 PR fullerene-based inhibitors [131]. The model reported by Toropov et al.
[131] was described by the following equation and parameters:

pEC50 = —31.6 4+ 0.125 DCW
n=8R?=090 Q> = 0.85 s = 0.35 F = 58 (subtraining set)
n=7R%=052Rm?>=0.13 s =127 F = 5 (calibration set)
n=5R?=099 Rm> =0.96 s = 0.18 F = 367 (test set)

(14-10)

Rasulev et al. [132] developed a QSAR model for the cytotoxicity to the bac-
terium E. coli of nano-sized metal oxides. They successfully predicted the toxicity
of seven compounds (namely, SnO,, CuO, La;03, Al,03, Bi O3, SiO», and V,03)
from the model trained on the other seven oxides (ZnO, TiO,, Fe,03, Y03, ZrO,,
In, 03, and SbyO3). The model employing the SMILES-based descriptor DCW is
given by Eq. (14-11):

—pLD50 = 1.32(£ 0.031) 4 0.27(= 0.0080) DCW
n=7,R>=099, s =0.053, F = 539; (14-11)
Niest = 7, Ry = 0.82, Stest = 0.241, F = 23

tes

The DCW descriptor in this case is defined as the following (Eq. 14-12):

N
DCW = Z CW(SAy) (14-12)

i=1
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where the SAx is a SMILES attribute, i.e., one symbol (e.g., “O,” “=,” “V”) or
two symbols (e.g., “Al,” “Bi,” “Cu”) in the SMILES notation. Numbers of double
bonds have been used as global SMILES attributes. They are denoted as “=001"" and
“=002.” “=001" is the indicator of one double bond and “=002" is the indicator of
two double bonds.

Although we strongly believe in the usefulness and appropriateness of QSAR
methodology for nanomaterial studies, the number of available models related to
activity and toxicity is still very limited. When analyzing the situation, it seems that
the main limitation is insufficient amount of existing experimental data. In many
cases, lack of data precludes an appropriate implementation of statistical methods,
including necessary external validation of the model. The problem of the paucity
of data will be solved only when a strict collaboration between the experimentalists
and QSAR modelers is established. The role of the modelers in such studies should
not be restricted only to rationalization of the data after completing the experimental
part, but also they must be involved in the planning of the experimentation. Since the
experiments on nanomaterials are usually expensive, a kind of compromise between
the highest possible number of compounds for testing and the lowest number of
compounds necessary for developing a reliable QSAR model should be reached.
Regarding the limited amount of data and high costs of the experiments, the idea
of applying novel read-across techniques enabling preliminary estimation of data
(Chapter 7) [82, 133] is very promising. However, no one has yet tried to implement
this technique to nanomaterials.

14.5. SUMMARY

Without doubt, a large and increasing aspect of the near future of chemistry and
technology will be related to the development of nanomaterials. On one hand, due
to their extraordinary properties, nanomaterials are becoming a chance for medicine
and industry. But, on the other hand, the same properties might result in new path-
ways and mechanisms of toxic action. In effect, the work with nanomaterials is
challenging for both “types” of chemists: those who are searching for and synthe-
sizing new chemicals and those who are working on risk assessment and protection
of humans from the effects of these chemicals.

When analyzing the current status of nano-QSAR, the four noteworthy sugges-
tions for further work can be made:

1. There is a strong need to supplement the existing set of molecular descrip-
tors by novel “nanodescriptors” that can represent size-dependent properties of
nanomaterials.

2. A stronger than usual collaboration between the experimentalists and nano-
QSAR modelers seems to be crucial. On one hand, it is necessary to produce
data of higher usefulness for QSAR modelers (more compounds, more system-
atic experimental studies within groups of structural similarity, etc.). On the other
hand, a proper characterization of the nanomaterials structure is not possible
only at the theoretical (computational) level. In such situation, experiment-based
structural descriptors for nano-QSAR might be required.
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3. It is possible that the current criteria of the models’quality (the five OECD
rules) will have to be re-evaluated and adapted to nanomaterials. This is due
to the specific properties of chemicals occurring at the “nano” level (i.e., elec-
tronic properties change with changing size) and the very limited number of data
(problems with the “classic” method of validation which is biased to small, low
molecular weight molecules).

4. Greater effort is required in the areas of grouping nanomaterials and nano-read-
across. This technique might be useful especially at the initial stage of nano-
QSAR studies, when the experimental data are scarce.

In summary, the development of reliable nano-QSAR is a serious challenge that
offers an exciting new direction for QSAR modelers. This task will have to be com-
pleted before the massive production of nanomaterials in order to prevent potentially
hazardous molecules from being released into the environment. In the long term,
prevention is always more efficient and cheaper than clean-up.
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