
Food Chemistry: Molecular Sciences 5 (2022) 100141

Available online 17 October 2022
2666-5662/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

β-carotene genetically-enriched lyophilized orange juice increases 
antioxidant capacity and reduces β-amyloid proteotoxicity and fat 
accumulation in Caenorhabditis elegans 

Iolanda Raquel Ferreira Paulo a, Ricardo Basílio de Oliveira Caland b,c, 
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A B S T R A C T   

Citrus sinensis orange juice is an excellent dietary source of β-carotene, a well-known antioxidant. However, β-carotene concentrations are relatively low in most 
cultivars. We developed a new orange through metabolic engineering strategy (GS) with 33.72-fold increase in β-carotene content compared to its conventional 
counterpart (CV). Using Caenorhabditis elegans, we found that animals treated with GS showed a greater reduction in intracellular reactive oxygen species (ROS) 
which is associated with a greater resistance to oxidative stress and induction of the expression of antioxidant genes. Moreover, animals treated with GS orange 
showed a more effective protection against β-amyloid proteotoxicity and greater hypolipidemic effect under high glucose diet compared to animals treated with CV. 
These data demonstrate that the increased amount of β-carotene in orange actually provides a greater beneficial effect in C. elegans and a valuable proof of principle 
to support further studies in mammals and humans.   

1. Introduction 

Orange (Citrus X sinensis L. Osbeck) is one of the most important 
crops in the world from an economic point of view (USDA, 2022), and its 
consumption has been linked to several health benefits in numerous 
studies (Farag, Abib, Ayad, & Khattab, 2020; Favela-Hernández, 
González-Santiago, Ramírez-Cabrera, & Esquivel-Ferriño, 2016; Motal-
laei et al., 2021). With the aim of increasing the health properties of this 
fruit, an orange type enriched in β-carotene has been developed through 
metabolic engineering (Pons et al., 2014). This carotenoid, in addition to 
being a dietary precursor of vitamin A, is an antioxidant under low 
pressure capable of inhibiting lipid peroxidation, oxidative stress and 
inflammatory process (Kawata, Murakami, Suzuki, & Fujisawa, 2018; 
Marcelino et al., 2020). Its consumption has been related to its role in 
defense against certain degenerative diseases, such as various types of 
gastric cancer (Chen, Wu, Pan, Sang, & Chang, 2021; Lee et al., 2022; 
Peraita-Costa, Garcia, & Morales-Suarez-Varela, 2022), type 2 diabetes 
(Marcelino et al., 2020; Nimbalkar, Joshi, Shinde, & Pawar, 2021) and 

cardiovascular diseases (Jayedi, Rashidy-Pour, Parohan, Zargar, & 
Shab-Bidar, 2019; Saini et al., 2022). In addition, carotenoids treatment 
is been associated with neuroprotective effects (Manochkumar, Doss, El- 
Seedi, Efferth, & Ramamoorthy, 2021). For instance, β-carotene sup-
plementation ameliorates oxidative damage, activates antioxidant en-
zymes and attenuates β-amyloid aggregation in culture cells and mouse 
models (Cho, Shin, Kim, & Lee, 2018; Hira et al., 2019; Park, Hayden, 
Bannerman, Jansen, & Crowe-White, 2020). 

Although conventional orange contains suboptimal levels of β-caro-
tene, it is rich in other carotenoids (mainly xanthophylls, which 
constitute >80 % of total carotenoids), as well as in a wide variety of 
phytonutrients including vitamin C, flavonoids and other phenolic 
compounds, which can enhance the beneficial effect of β-carotene, as 
suggested in the literature (Grosso et al., 2013; Yeum, Russell, Krinsky, 
& Aldini, 2004). The strategy carried out to address β-carotene enrich-
ment biotechnologically consisted of silencing the endogenous gene 
encoding a β-carotene hydroxylase (CsβCHX), involved in the conver-
sion of β-carotene into xanthophylls in the mature fruits, combined with 
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overexpression of the FLOWERING LOCUS T gene from sweet orange 
(CsFT) in juvenile transgenic sweet orange plants, cv. Pineapple. In this 
way, transgenic orange seedlings were able to flower and produce reg-
ular fruits within a year. Additionally, it was possible to increase (up to 
36 times) the content of β-carotene in the pulp of this orange variety 
through metabolic engineering (Pons et al., 2014). 

Due to its high degree of homology to human genome, C. elegans has 
been widely used for evaluating the protective effects of dietary phy-
tonutrients related to human diseases such as aging, neurodegeneration 
and obesity (Ayuda-Duran, Gonzalez-Manzano, Gonzalez-Paramas, & 
Santos-Buelga, 2020; Kaletta & Hengartner, 2006). Using this model, 
Pons et al. (2014) demonstrated that C. elegans treated with the 
β-carotene-enriched oranges (named HRP) exerted a greater antioxidant 
effect in vivo than the isogenic control oranges (CV; transformed with the 
empty vector). In these bioassays, the worms that were previously fed 
with HRP oranges showed a survival rate after acute oxidative stress 
(induced by treatment with hydrogen peroxide) 20 % higher than the 
worms previously fed with CV oranges. Recently, it has been demon-
strated that C. elegans treated with oranges juices and extracts showed 
increased longevity (Caland, Cadavid, Carmona, Pena, & Oliveira, 2019; 
Wang et al., 2020). Moreover, C. elegans treated with orange juice from 
cultivars with higher carotenoid contents induced a stronger response 
against oxidative stress and β-amyloid toxicity (Caland et al., 2019). 

In order to further characterize the health benefits of β-carotene 
enriched oranges, we developed a new transgenic adult Pineapple sweet 
orange line (GS) transformed with the gene encoding a β-carotene hy-
droxylase (CsβCHX) in intron-hairpin configuration without the trans-
gene CsFT. We carried out investigations with C. elegans to test the effect 
of lyophilized orange juices (LOJ) from the new β-carotene enriched 
oranges (GS) compared to its convention counterpart (CV) on antioxi-
dant status, longevity, proteostasis and fat accumulation. 

2. Material and methods 

2.1. Strains, chemicals and reagents 

Strains: C. elegans strains used in this work was obtained at the 
Caenorhabditis Genetics Center (CGC), which is funded by the NIH Na-
tional Center for Research Resources (NCRR): N2 (wild-type strain), 
CL2006 (dvIs2[pCL12(unc-54/human Abeta peptide 1–42 minigene) +
pRF4]), CF1553 (muIs84 [pAD76(sod-3::GFP)]), CL2166 (dvls19[pAF15 
(gst-4::GFP::NLS)]), LD1171 (ldIs3[gcs-1p::GFP + rol-6(su1006)]), 
SJ4005 (zcIs4 [hsp-4::GFP; lin-15(n765)]). 

Chemical and reagents: tert-Butyl hydroperoxide (TBHP), fluo-
rodeoxyuridine (FUdR), and 2,7-dichlorodihydrofluorescein diacetate 
(H2DCFDA), Carbobenzoxy-Leu-Leu-leucinal (MG132), Oil Red O, Nile 
Red and Glucose were purchased from Sigma-Aldrich (St. Louis, MO, 
USA). 

2.2. LOJ preparation 

LOJ were obtained from CV and GS transgenic fruit (Figure S1). A 
total of 30 fruits per line were harvested when fully matured. Fruits were 
cut and pulp tissue (inner part of the fruit consisting basically on juice 
vesicles) was separated with a scalpel, frozen in liquid nitrogen, ground 
to a fine powder using a grinder and stored at − 80 ◦C. Pulp powder 
samples of each line were weighed and lyophilized for three days using 
the Alpha 1–2 LDplus − 55 ◦C Freeze Dryer equip (Martin Christ, Harz, 
GER). Lyophilized pulp samples were weighed to calculate water loss 
and conserved in dark at room temperature until analysis. Later, LOJ 
were obtained by reconstitution of lyophilized pulp samples with the 
corresponding volume of sterile milli-Q water and mixing by vortex. 
Finally, before adding to the NGM medium to perform the bioassays 
with C. elegans, LOJ were pretreated overnight with 7 mM Velcorin ® 
(Lanxess, Cologne, GER) in order to ensure proper sterilization. 

2.3. LOJ characterization 

2.3.1. Juice quality parameters 
Total soluble solid content (SSC), titratable acidity (TA) and maturity 

index (MI) of LOJs were determined according to AOAC methods 
(AOAC: 1980. Official Methods of Analysis, 13th ed. N◦46024 and N◦

22061. Association of Official Analytical Chemists, Washington, DC, 
USA). SSC was determined in terms of Brix degrees using a refractometer 
PR-101 model 0–45 % (Atago, Ribeirão Preto, BR). TA was determined 
by titration with 0.1 N NaOH, using phenolphthalein as a visual 
endpoint indicator, and was expressed as mg citric acid per 100 g. The 
MI was estimated as the SSC/TA ratio. 

Vitamin C quantification was performed in the Metabolomics Plat-
form at the Instituto de Biología Molecular y Celular de Plantas (IBMCP) 
(UPV-CSIC) according to Chebrolu, Jayaprakasha, Yoo, Jifon, and Patil 
(2012) with minor modifications. Briefly, 0.5 mL of LOJ were diluted 1/ 
10 in 2.5 % phosphoric acid on ice. The extract was filtered with 45 µm 
disposable filters. Two 0.5 mL aliquots were taken. To determine 
ascorbic acid (AA), 0.5 mL of water was added to one of them, and to 
determine ascorbic acid + dehydroascorbic acid (TOTAL), 0.5 mL of 5 
mM tris (2-carboxy ethyl) phosphine hydrochloride (TCEP) was added 
to the other one. 4 µL samples were injected in Waters Acquity UPLC 
system (Milford, MA, USA) coupled to a photodiode array detector. The 
column used was a Waters BEH C18 UPLC column (particle size 1.7 µM). 
The mobile phase was composed by 0.1 % formic acid in water (A) and 
0.1 % formic acid in acetonitrile (B). The gradient used was: in 10 min 
from 100 %A to 95 %A at a 0.4 mL/min flow rate. Ascorbic acid eluted at 
1.3 min. The ascorbic acid peak was detected at 243 nm. Measurements 
were performed from three independent samples of LOJ from each or-
ange type (GS and CV), and two-tailed Student’s t-test was performed for 
means comparison. 

2.3.2. Carotenoid extraction and analysis 
The extraction of carotenoids from LOJ followed a previously 

described protocol (Pons et al., 2014). Briefly, 1 mL of each LOJ was 
centrifuged, and the aqueous phase was removed. Carotenoids were 
extracted from pellet with successive washings with acetone (2.5 mL) 
followed by stirring for 5 min and centrifugation for 5 min at 18,000 g, 
until it was colorless. Saponification was performed by treatment of 
acetone extracts with 5 mL of methanolic KOH (10 % w/v) for 1 h under 
dim light at room temperature. The saponified carotenoids were sub-
sequently re-extracted with dichloromethane (10 mL), and washed three 
times with water. Dichloromethane extracts were dried by rotary 
evaporation and stored under a nitrogen atmosphere at − 20 ◦C until 
HPLC analysis. The HPLC analysis method was described previously 
(Alquezar, Rodrigo, & Zacarias, 2008). Dried carotenoid extracts were 
retrieved in 30 μL of chloroform/MeOH/acetone (5:3:2 by vol.), and a 
25-μL aliquot was immediately injected. Carotenoids were identified by 
their retention time, absorption and fine spectra (Britton, 1998; Rodrigo, 
Marcos, Alferez, Mallent, & Zacarias, 2003; Rodrigo, Marcos, & Zaca-
rias, 2004; Rouseff, Raley, & Hofsommer, 1996). The carotenoid peaks 
were integrated at their individual maxima wavelength and their con-
tents were calculated using calibration curves of β-carotene (Sigma) for 
α- and β-carotene; β-cryptoxanthin (Extrasynthese) for α- and β-cryp-
toxanthin; zeaxanthin (Extrasynthese) for zeaxanthin and antherax-
anthin; lutein (Sigma) for lutein and violaxanthin isomers. Phytoene and 
phytofluene standards for quantification were obtained from flavedo 
extracts of Pinalate sweet oranges, which accumulate large amounts of 
these compounds (Rodrigo et al., 2003), and were then purified by TLC 
(Pascual, Mallent, & Cuñat, 1993). Empower chromatography software 
(Waters Corp., Milford, MA) was used for quantification and the ana-
lyses were performed in triplicate. 

2.3.3. C. elegans culture conditions 
C. elegans were cultivated in Nematode Growth Medium (NGM) 

plates seeded with Escherichia coli OP50 at the temperature 20 ◦C. For 
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the treatment, the worms were cultivated NGM plates containing 2 % 
LOJ. The animals of the control group non-treated (NT) were added 2 % 
sterile water. Synchronized populations were achieved by egg-laying. 

2.4. Intracellular reactive oxygen species (ROS) quantification 

Intracellular ROS levels were measured under standard and stress 
conditions in order to evaluate the antioxidant potential of LOJ treat-
ment. Wild-type animals (N2) were synchronized at first-stage larvae 
(L1) and cultivated for 48 h in NGM plates containing 2 % LOJ. For stress 
condition, animals were exposed to 10 mM tert-butyl hydroperoxide 
(TBHP) for 1 h after LOJ treatment.  A total of 120 animals were 
analyzed across three biological replicates for each treatment group in a 
96-well microtiter plate to which 50 µM H2DCF-DA was added. For stress 
condition, after LOJ treatment animals were exposed to 10 mM tert-butyl 
hydroperoxide (TBHP) for 1 h before being transferred to the 96-well 
plate. Fluorescent measurements were calculated as the mean values 
of three wells measured by microplate reader GloMax®- Multi Detection 
System (Promega, Wisconsin, USA), with excitation at 490 nm and 
emission at 510–570 nm. Readings were performed every 30 min for 3 h 
and the reading selected for analysis was the fourth. This experiment 
was conducted three times. 

2.5. Analysis of reporter genes 

In order to evaluate whether LOJ treatment induce the expression of 
antioxidant and chaperonin genes, transgenic lines expressing γ-glu-
tamyl cysteine synthetase (gcs-1::GFP), glutathione S-transferase 4 (gst- 
4::GFP), manganese superoxide dismutase 3 (sod-3::GFP), and heat 
shock protein 4 (hsp-4::GFP) were synchronized and then treated with 2 
% of LOJ for 48 h from L1 until L4 stage. Twenty-five worms were 
captured by the optic microscope Olympus BX51 (Tokyo, Japan) and 
fluorescent signals were measured using NIH ImageJ software. This 
experiment was conducted three times. 

2.6. Oxidative stress resistance assay 

In order to evaluate whether LOJ treatment increase the worm’s 
survival under stress conditions, an oxidative stress resistance assay was 
performed. Synchronized N2 wild-type animals were cultivated in NGM 
plates for 48 h from L1 stage until L4 stage. Animals were transferred to 
either control or 2 % LOJ plates containing FudR, to avoid progeny 
growth, for another 48 h. Thereafter, 50 worms from each group were 
incubated with 10 mM TBHP to induce oxidative stress. Survival frac-
tions were scored every-three hours until all animals were determined 
dead, without any pharyngeal pumping or movement. Animals with 
internal hatched eggs, extruded parts or those who went missing were 
eliminated from analysis. This experiment was conducted three times. 

2.7. Lifespan assay 

In order to evaluate whether LOJ treatment increase the worm’s 
lifespan, a lifespan assay was conducted. Synchronized N2 wild-type 
animals were treated with 2 % LOJ for 48 h from L1 stage until L4 
stage. Ninety worms per group was distributed in three new treatment 
plates containing FudR, to prevent progeny growth. The survival anal-
ysis was performed by scoring dead/alive animals every 24 h starting at 
the first day of adulthood at 25 ◦C. The worms were considered dead 
when no pharyngeal pumping or movement was observed. This exper-
iment was conducted three times. 

2.8. Evaluation of neuromuscular parameters 

In order to evaluate whether the antioxidant effects of LOJ treatment 
was associated with improved neuromuscular parameters, synchronized 
N2 wild-type animals treated with 2 % LOJ for 48 h from L1 to L4 stage 

were used to measure body bending and pharyngeal pumping rates. For 
body bending analysis, 10 animals of each experimental group were 
transferred to NGM plates without OP50. Body folding movements of 
90◦ or more were considered, as well as two curvatures in a row to the 
same side. The body bending score was obtained by calculating the 
average number of bends of three 20-second intervals per animal. To 
evaluate pharyngeal pumping rates, 10 worms of each group were 
transferred to NGM without OP50. The pharyngeal pumping rate was 
obtained by calculating the average number of pharyngeal contractions 
of three 20-second intervals per animal observed on a 40x objective 
microscope. These experiments were conducted three times. 

2.9. Paralysis-induced by β-amyloid Proteotoxicity. 

In order to evaluate whether LOJ treatment could delay the toxic 
affect β-amyloid accumulation in C. elegans, synchronized CL2006 
transgenic animals expressing β-amyloid peptide 1–42 in the muscle 
were treated in 2 % LOJ for 48 h from L1 until L4 stage. Thirty animals 
were then transferred to new plates containing 2 % LOJ at 35 ◦C. The 
analyzes were made by scoring paralyzed/alive animals every 1 h until 
all animals were considered paralyzed. The worms were scored para-
lyzed when failing to present body movement but still kept pharynx 
pumping. This experiment was conducted three times. 

2.10. Quantification of proteasome activity 

In order to characterize a possible proteasome activity associated 
with LOJ treatment, we measured the in vitro 26S proteasome activity as 
described by Kisselev & Goldberg (2005). Approximately 5,000 syn-
chronized N2 wild-type animals were treated in plates with 2 % LOJ for 
48 h from L1 to L4 stage. The worms were then harvested and sonicated. 
Lysates were centrifuged at 20,000 × g for 30 min at 4 ◦C. Protein 
extract was quantified using the QUBIT Protein Assay Kit system (Life 
technologies, California, EUA). To measure the chymotrypsin-like ac-
tivity of the proteasome, succinyl-Leu-Leu-Val-Tyr-4-methyl-coumaryl- 
7-amide (SLLVY-MCA) (Sigma-Aldrich, St. Louis, MO, USA) was used 
both in the presence or absence of 20 µM MG-132, a proteasome in-
hibitor, and incubated for 30 min at 37 ◦C. The fluorescence measure-
ments were made with 380 nm excitation and 440 nm emission, using 
the GloMax®-Multi Detection System (Promega corporation, Wisconsin, 
USA), 90 min after the incubation. Proteasome activity was calculated as 
the difference between the total activity and the activity remaining in 
the presence of 20 µM MG-132. This experiment was conducted three 
times. 

2.11. Evaluation of lipid distribution by Oil Red O staining 

To evaluate whether LOJ treatment could reduce lipid distribution, 
synchronized N2 wild-type animals were treated with 2 % LOJ in NGM 
plates containing or not 4 % glucose for 48 h from L1 to L4 stage. Worms 
were fixed using 40 % isopropanol and stained the lipids with Oil Red O, 
a fat-soluble dye used for staining of neutral triglycerides and lipids, for 
2 h as previously described (Escorcia, Ruter, Nhan, & Curran, 2018). 
Images of worms were captured using AmScope MU300 Digital Camera 
plugged to microscope in 10x objective. The evaluation of lipid droplet 
distribution was made by measuring the red intensity of each animal 
using ImageJ. We used 15 animals for group to each experiment. This 
experiment was conducted three times. 

2.12. Lysosome organelles (LRO) quantification using Red Nile 

To quantify lysosome-related organelles, synchronized N2 wild-type 
animals were treated 2 % LOJ for 72 h from L1 stage to 1-day old in NGM 
plates seeded with 4 mg/ml of Red Nile dye, a fluorescent hydrophobic 
dye used for staining acidic lysosomal organelles. Images of 30 worms 
were captured using optic microscope Olympus BX51 (Tokyo, Japan) 
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and NIH ImageJ software was used to analyze fluorescent levels. This 
experiment was conducted three times. 

2.13. Statistical analysis 

Statistical analysis performed by Graph Pad Prism (v 6.0) software 
(CA, USA). Student’s t test and one-way ANOVA was used for compar-
ison between pairs of groups, one-way ANOVA followed by Tukey’s 
posttest was also utilized to compare three or more groups, for normally 
distributed data. Survival curves were analyzed by the log-rank (Mantel- 
Cox) test. For all tests, statistical significance was considered as p < 0.05. 

3. Results 

3.1. Quality and phytochemical characterization of lyophilized orange 
juice (LOJ) from β-carotene enriched (GS) and control (CV) oranges 

First, we evaluated the quality parameters ◦ Brix, juice acidity, 
maturity index and vitamin C from GS and CV lyophilized (Table S1). 
The lyophilized orange juices (LOJ) from GS did not show any statisti-
cally significant difference (p < 0.05) compared to CV indicating that 
both types of oranges are isolines and that the genetic modification 
introduced in the GS oranges did not affect any of the main quality 
parameters. 

Next, we analyzed the carotenoid profile from LOJ in order to 
confirm and quantify the carotenoid accumulation in GS oranges 
(Table 1). LOJ from CV fruit presented a characteristic carotenoid profile 
of standard sweet orange juice: rich in xanthophylls, with Z-violaxanthin 
being the main carotenoid (656.77 ng/mL out of a total of 2112.44 ng/ 
mL carotenoids), while its β-carotene content was very low (16.09 ng/ 
mL). In comparison with CV orange, LOJ from GS orange presented a 
33.72-fold increase in β-carotene content, as well as a moderate in-
creases in other carotenoids upstream in the carotenoid biosynthesis 
pathway such as phytoene, phytofluene, ζ-carotene and α-carotene. 
Concomitantly, a substantial reduction in the content of all the carot-
enoids downstream in the pathway was detected, that is, in the xan-
thophylls α- and β-cryptoxanthin, lutein, zeaxanthin, anteraxanthin, E- 
and Z-violaxanthin. This characteristic profile of LOJ from GS fits well 
with the blocking strategy of the pathway carried out by metabolic en-
gineering (Table 1; Fig. S1A) and coincides with the results previously 
reported by Pons et al. (2014). 

Table 1 
Content of carotenoids in lyophilized juices from CV and GS oranges.  

Carotenoid (ng/mL) CV GS Fold change 
(GS/CV) 

Phytoene 385.56 ± 17.15 459.82 ± 15.85  1.19 
Phytofluene 42.00 ± 12.24 98.21 ± 2.90  2.34 
ζ-carotene 16.85 ± 6.52 96.36 ± 5.41  5.72 
α-carotene b n.d. a 16.03 ± 2.64  – 
β-carotene 16.09 ± 8.31 542.59 ± 33.40  33.72 
α-cryptoxanthin b 28.41 ± 9.69 n.d. a  – 
Lutein 145.84 ± 11.62 85.95 ± 8.95  0.59 
β-cryptoxanthin 306.95 ± 10.06 99.14 ± 5.92  0.32 
Zeaxanthin 100.18 ± 41.57 17.39 ± 3.43  0.17 
Anteraxanthin b 373.30 ± 24.96 40.12 ± 11.16  0.11 
E-violaxanthin b 40.48 ± 4.46 13.41 ± 3.66  0.33 
Z-violaxanthin b 656.77 ± 7.39 66.50 ± 5.50  0.10 
Total carotenoids c 2112.44 ± 33.58 1535.53 ± 66.19  0.73  

a n.d., Not detected. 
b Identified tentatively. 
c Total carotenoids calculated as the sum of all the carotenoids identified 

individually. 

Fig. 1. Effect of lyophilized orange juice (LOJ) on C. elegans ROS pro-
duction, stress resistance and longevity. A) ROS was quantified by 
measuring H2DCFDA fluorescence levels. For standard condition, L1 stage wild- 
type animals were treated with 2 % of either CV or GS juices for 48 h. **** p <
0.0001 compared to not treated (NT) control by one-way ANOVA. # p = 0.0088 
comparing 2 % GS to 2 % CV using two-tailed Student’s t-test. For stress con-
dition, after the worms were treated with 2 % LOJ for 48 h, they were exposed 
to 10 mM TBHP for 1 h to induce oxidative stress. * p = 0.0130 and *** p =
0.0003 compared to NT control under stress condition by one-way ANOVA. B) 
Stress resistance assay. L1 stage wild-type animals were treated with 2 % LOJ 
for 48 h and then incubated with TBHP to induce oxidative stress. Survival 
fractions were scored every-three hours at 20 ◦C. **** p < 0.0001 compared to 
not treated (NT) control and # p = 0.0038 comparing LOJ GS to CV by log rank 
(Mantel-Cox) test. (b) Lifespan assay. Wild-type animals were treated with 2 % 
LOJ for 48 h starting at L1 stage. Survival fractions were scored daily at 25 ◦C. 
**** p < 0.0001 compared to not treated (NT) control by log rank (Mantel- 
Cox) test. 
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3.2. Lyophilized orange juice (LOJ) reduces intracellular ROS production 
and increases survival under standard and stress conditions 

Given that our previously β-carotene-enriched orange juice increased 
oxidative stress resistance in C. elegans (Pons et al., 2014), we decided to 
test the effects of lyophilized juice from this new β-carotene-enriched 
orange on the intracellular ROS accumulation in C. elegans. Previous 
work has shown that treatment of 2 % of orange juice was the most 
efficient concentration to reduce ROS production under standard con-
dition. Here, we used the same concentration and observed that 2 % of 
either CV or GS LOJ juice reduced ROS levels compared to the control 
group of untreated worms (Fig. 1A). Interestingly, ROS levels were 
significantly reduced in the animals treated with 2 % GS LOJ compared 
to those from worms treated with 2 % CV LOJ (Fig. 1A). Under stress 
conditions, both LOJ also reduced ROS production but no significant 
difference was observed between animals treated with either 2 % CV or 
2 % GS LOJ (Fig. 1A). 

We also evaluated how LOJ treatment would affect C. elegans stress 
resistance and longevity. Animals treated with either 2 % CV or GS LOJ 

showed increased mean and maximum survival under stress conditions 
compared to control non treated animals (Fig. 1B, Table S2). Notably, 
the mean survival time for the animals treated with 2 % GS LOJ were 
significantly increased compared to animals treated with 2 % CV LOJ 
(Table S2). LOJ treatment also increased mean and maximum lifespan 
compared to control non treated, however no statistical difference was 
observed between the animals treated with either 2 % CV or GS LOJ 
(Fig. 1C, Table S2). 

3.3. β-carotene-enriched LOJ increases expression of stress-related genes 
and oxidative stress resistance 

To further characterize our LOJ antioxidant status, we decided to test 
the effects of LOJ on C. elegans antioxidant and stress-related gene 
expression. We analyzed the gene expression of four reporter genes 
associated with detoxification (γ-glutamyl cysteine synthetase, gcs-1 and 
glutathione S-transferase 4, gst-4), stress resistance and longevity 
(manganese superoxide dismutase, sod-3) and heat shock protein 4 (hsp- 
4). The fluorescent levels of gcs-1::GFP, gst-4::GFP, sod-3::GFP and hsp-4:: 

Fig. 2. Expression levels of antioxidant and stress-related genes after treatment with lyophilized oranges juices (LOJ). L1 stage transgenic worms expressing (A) gcs- 
1::GFP, (B) gst-4::GFP, (C) sod-3::GFP and (D) hsp-4::GFP were treated with 2 % of LOJ for 48 h until L4 stage. Images were taken using a microscope fluorescent and 
the measure levels fluorescent were using NIH ImageJ software. **** p < 0.0001 compared control not treated (NT) and # p < 0.03 comparing 2 % GS to 2 % CV by 
one-way ANOVA. 
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GFP were significantly higher in the animals treated with 2 % LOJ from 
either CV or GS oranges compared to control non treated animals 
(Fig. 2A–D). Interestingly, fluorescent levels of gcs-1::GFP and sod-3:: 
GFP in worms treated with 2 % GS juice were significantly increased 
compared to worms treated with 2 % CV juice (Fig. 2A and C). On the 
other hand, fluorescent signals of animals expressing gst-4::GFP were 
significantly higher after treatment with 2 % CV juice compared to an-
imals treated with 2 % GS juice (Fig. 2B). No statistical difference was 
detected between the animals expressing hsp-4::GFP treated with 2 % 
LOJ from either CV or GS oranges (Fig. 2D). 

3.4. Lyophilized orange juice (LOJ) does not interfere in neuromuscular 
functions 

In order to test whether LOJ could interfere with C. elegans neuro-
muscular parameters, we analyzed C. elegans pharynx pumping and 
body bending rates. Animals treated with either 2 % LOJ CV or GS 
presented increased pharynx pumping rate compared to NT animals (p 
< 0.0001) (Fig. 3A). We did not observe a statistical difference between 
2 % CV or GS LOJ-treated animals compared to NT in body bending 
experiment (Fig. 3B). 

3.5. β-carotene-enriched LOJ reduces β-amyloid proteotoxicity 

It is known that β-amyloid and other protein aggregation alongside 
oxidative stress causes several brain inflammation and neuronal loss 
(Chen, Guo, & Kong, 2012; Currais et al., 2016). Also, the proteasome 
system plays an important role in protein degradation, contributing to 
the maintenance of protein homeostasis (Voges, Zwickl, & Baumeister, 
1999). Therefore, we decided to test whether LOJ could affect β-amyloid 
accumulation in a C. elegans model with β-amyloid super expression. 
CL2006 worms express β-amyloid in the muscle which induces paralysis 
over time. Worms treated with both 2 % LOJ CV or GS showed a delayed 
paralysis time compared to NT animals (Fig. 4A, Table S2). Moreover, 2 
% GS-treated animals demonstrated an increased mean paralysis time 
compared to 2 % CV-treated animals (Table S2). Thereafter, we tested 
whether LOJ treatment could influence C. elegans proteasome activity. 
Animals treated with either 2 % CV or 2 % GS LOJ showed an increased 
proteasome activity compared to NT animals, however, no statistical 
difference was found (Fig. 4B). 

3.6. β-carotene-enriched LOJ promotes higher hypolipidemic activity 
under glucose rich diet compared to conventional LOJ. 

Since excessive fat accumulation could stimulate oxidative stress 

(Marseglia et al., 2015), we tested whether LOJ could affect fat accu-
mulation in C. elegans under standard and high glucose diet conditions 
using Oil Red O dye. In standard conditions, worms treated with either 2 
% CV or GS LOJ presented less fat accumulation compared to NT animals 
(Fig. 5A). Similarly, glucose-fed worms treated with either 2 % CV or GS 
LOJ showed lower fat distribution compared to NT glucose-fed worms 
(Fig. 5B). Interestingly, levels of lipid distribution on glucose-fed ani-
mals treated with 2 % GS LOJ were significantly lower compared to 
animals treated with 2 % CV LOJ (Fig. 5B). Given that lysosome-related 
organelles (LRO) are an intestinal compartment for cholesterol storage 
(Lee et al., 2015), we tested how LOJ treatment would affect LRO 
accumulation in C. elegans using Red Nile dye. Animals treated with 
either 2 % CV LOJ or 2 % GS LOJ showed reduced LRO levels compared 
to NT animals (Fig. 5C). Interestingly, animals treated with 2 % GS LOJ 
showed less LRO Nile red levels when compared to 2 % CV LOJ animals. 
These findings could indicate that GS LOJ has a higher hypolipidemic 
effect compared to CV especially in glucose rich diet. 

4. Discussion 

Orange (C. sinensis L. Osbeck) is one of the most cultivated fruits 
worldwide, and is rich in several phytochemical compounds with health 
benefits such as carotenoids and flavonoids. β-carotene is a well-known 
antioxidant due to its ROS scavenger and quencher capacity (Kang et al., 
2017; Kawata et al., 2018; Nishino, Yasui, & Maoka, 2017). However, 
β-carotene concentrations are relatively low in most cultivars. β-caro-
tene antioxidant property has been associated with anti-inflammatory 
and neuroprotective effects (Chen et al., 2019; Zhou et al., 2018), as 
well as with lipid oxidation and fat accumulation inhibition (Esrefoglu 
et al., 2016; Harari et al., 2008). We have previously reported a 
β-carotene-enriched genetically-modified (GM) orange with greater 
antioxidant effect in vivo compared to the isogenic non-GM control or-
anges (Pons et al., 2014). In this work, we expand the characterization of 
the beneficial health properties of a new β-carotene-enriched orange 
obtained through a similar metabolic engineering strategy (GS) versus 
its conventional counterpart (CV). 

Both content and profile of carotenoids observed in GS and CV lines 
were as expected according to the strategy used and very similar to those 
previously reported (Pons et al., 2014). The most important change 
observed was the 33.72-fold increase in β-carotene content. In addition 
to this, changes occurred in the content of other carotenoid compounds. 
Of special interest is the moderate decrease observed in the content of all 
xanthophylls, because they have been also described as dietary antiox-
idants and multiple health benefits in the protection against some 
chronic diseases have been attributed to them. 

Fig. 3. Effect of lyophilized orange juice (LOJ) in C. elegans neuromuscular parameters. A) Pharyngeal pumping rate. L1 stage wild-type animals were treated 
with LOJ for 48 h until L4 stage. Pharyngeal pumping rate was scored by counting the movements of the pharynx terminal bulb using a microscope in 40x objective. 
**** p < 0.0001 compared to not treated (NT) control by one-way ANOVA. B) Body bending rate. L1 stage wild-type animals were treated with LOJ for 48 h until L4 
stage. Body bending score was obtained through the counting of the animal’s body movements. No statistical difference was found. 
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The physicochemical characterization of GS and CV juices revealed 
that ◦ Brix, juice acidity, maturity index and vitamin C had not changed 
in GS as a consequence of the genetic modification performed. So, it can 
be stated that GS and CV are isogenic materials (at least as regards the 
main characteristics of the juice quality) suitable for carrying out 
functional bioassays in vivo with C. elegans. Although a growing body of 
evidence supports the healthy properties of oranges (and other citrus 
fruits), in most cases, a concrete beneficial effect could not be attributed 
unequivocally to a particular phytonutrient. This is, in part, due to the 
lack of well-characterized and contrasting plant foods required to test 
hypotheses for the health-promoting activity of specific plant metabo-
lites. In fact, in the vast majority of interventional (preclinical and 
clinical) studies performed to assess the health properties of citrus, food 
treatments consisted basically on: I) juice from a citrus type versus 
water/not treatment, II) juices from very different citrus types, or III) 
juice versus juice-derived metabolites dissolved in water (Miles & 
Calder, 2021). The bioactivity of phytonutrients is highly dependent on 
the food matrix in which they are supplied, due to interactions with 
other phytonutrients, effects on bioavailability and absorption, etc. In 
this regard, metabolic engineering offers the possibility of studying the 
beneficial role of specific phytonutrients in the context of the same food 
matrix. Theoretically, genetic modification through biotechnology al-
lows the generation of isolines in which a trait or metabolic pathway has 
been modified without altering the rest of the food matrix’s character-
istics (Martin, 2013). The fact of having confirmed in this work that the 
GS is an isogenic line of CV allows us to attribute, in a more precise way, 
their putative protective effects to the changes in the carotenoid profile 
that have taken place in this orange line. Next, we used C. elegans to 
characterize in detail its antioxidant capacity in vivo and test its pro-
tective effect against physiological processes closely related to oxida-
tion, such as stress resistance, longevity, β-amyloid proteotoxicity and 
fat accumulation under glucose rich diet. 

First, we confirmed that 2 % concentrations of LOJ increases the 
worms’ antioxidant capacity as demonstrated for other oranges juices 
and extracts (Caland et al., 2019; Wang et al., 2020). But most impor-
tantly, we showed that animals treated with our new β-carotene- 
enriched genetically-modified (GS) orange juice significantly improves 
ROS reduction, gene expression activation (gcs-1 and sod-3) and oxida-
tive stress resistance compared to animals treated with conventional 
counterpart (CV). These results are in agreement with the increased 
oxidative stress resistance promoted by our previous β-carotene- 
enriched genetically-modified (GM) orange (Pons et al., 2014). The 
strategy of augmenting β-carotene content by down-regulating CsβCHX 
gene also increased the antioxidant capacity and stress resistance of 

transgenic sweet potato plants (Kang et al., 2017). Likewise, C. elegans 
treated with orange juice from cultivars with higher carotenoid contents 
have stronger response against oxidative stress (Caland et al., 2019). 
Considering that when administered alone, β-carotene can increase 
cellular antioxidant defense system in ex vivo and in vivo models under 
stress or pathologic conditions (Chen et al., 2019; Zhou et al., 2018), our 
results indicates that the greater β-carotene content in our GS LOJ is able 
to significantly improve antioxidant capacity. 

Previous work has shown that orange juice with higher carotenoid 
content induces stronger response against oxidative stress and promotes 
greater lifespan in C. elegans (Caland et al., 2019). Moreover, orange 
extract treatment induces a dose-dependent increase in the worms’ 
mean lifespan (Wang et al., 2020). Surprisingly, we did not observe any 
significant difference related to longevity between the worms treated 
with either GS or CV LOJ. Despite GS LOJ having more β-carotene, CV 
LOJ has a higher total carotenoid content. Evidence that β-carotene 
supplementation can extend mean lifespan in aging Drosophila mela-
nogaster (Lashmanova et al., 2015; Weinrich, Xu, Wosu, Harvey, & 
Jeffery, 2019) but not in C. elegans has also been observed (Lashmanova 
et al., 2015). This suggests that anti-aging effects found in orange ex-
tracts might be associated with the total concentration of the different 
phytochemicals present on them rather than a higher level of a specific 
one. 

Neurodegenerative diseases (NDD) such as Alzheimer’s disease (AD), 
and Parkinson’s disease (PD) are characterized by progressive damage 
of neurons and neuronal apoptosis leading to impaired cognitive and 
intellectual function. NDD shares many common risk factors such as 
oxidative stress, mitochondrial dysfunction, impaired bioenergetics, 
deficiency of the ubiquitin–proteasome–autophagy systems and neuro-
inflammatory processes (Liu, Zhou, Ziegler, Dimitrion, & Zuo, 2017). 
Use of carotenoids as neuroprotective antioxidants have been consid-
ered as a promising strategy to slow down the disease progression and to 
minimize the level of neuronal loss in chronic NDD and after acute brain 
lesions (Manochkumar et al., 2021). In the case of AD, β-carotene sup-
plementation has a protective role by ameliorating oxidative damage, 
activating antioxidant enzymes, attenuating β-amyloid aggregation and 
inhibiting neuro-inflammation (Cho et al., 2018; Hira et al., 2019; Park 
et al., 2020). Caland et al. (2019) observed that the onset paralysis 
induced by β-amyloid toxicity in C. elegans was significantly delayed in 
animals treated with orange juice from those with higher carotenoid 
levels. Here, GS LOJ treatment provided superior protection against 
Aβ1–42-induced paralysis over that provided by CV LOJ. Even though it 
was not statistically significant, our results suggest that LOJ treatment 
may also act as neuroprotective by modulating proteasomal activity in 

Fig. 4. Effect of lyophilized orange juice (LOJ) on C. elegans proteotoxicity. A) Paralysis-induced by β-amyloid accumulation. L1 stage transgenic worms were 
treated with 2 % LOJ for 48 h until L4 stage. Analyses were made by scoring paralyzed animals every 1 h at 35 ◦C. **** p < 0.0001 compared not treated (NT) control 
and # p = 0.0003 comparing 2 % GS to 2 % CV by log rank (Mantel-Cox) test. B) Quantification of proteasome activity. L1 stage wild-type animals were treated with 
LOJ for 48 h until L4 stage. Proteasome activity was calculated as the difference between the total activity and the activity remaining in the presence of 20 µM MG- 
132. Experiment performed in duplicate. No statistical difference was found. 
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addition to its antioxidant properties. 
Other beneficials outcomes associated with the β-carotene supple-

mentation are control of lipid metabolism and development of obesity in 
animal models and humans (Chen, Barclay, Burgoyne, & Morgan, 2015). 
Orange juice and pulp parts have also shown hypolipidemic effects in 
the diet-induced hypercholesterolemia and diabetic rats (Mallick & 
Khan, 2016; Miceli et al., 2007). Unlike mammals that store droplet-like 
lipids in adipocytes and hepatocytes, C. elegans store fat as lipid droplet 

primarily in their intestinal and hypodermic epidermal cells since they 
do not have fat cells. Triglycerides make up approximately 40–55 % of 
total lipids (Shen, Yue, & Park, 2018). The worms’ intestinal cells 
contain several different types of gut granules, including acidic 
lysosome-related organelles (LRO) (Bowman, Bi-Karchin, Le, & Marks, 
2019). LRO presents diverse functions including storage of cholesterol, 
metals and xenobiotics (Lee et al., 2015; Morris et al., 2018). Here, we 
investigated the effect of LOJ to modulate both lipid droplet and LRO in 

Fig. 5. Effect of lyophilized orange juice (LOJ) on 
C. elegans lipid distribution. A) Oil Red O staining. 
L1 stage wild-type animals were treated with 2 % 
LOJ on either NGM plates or 4 % glucose NGM 
glucose plates for 48 h until L4 stage. Animals were 
fixed with 40 % isopropanol and lipid droplets were 
stained with Oil Red O. Images were captured using 
microscope in 10x objective. B) Quantification of 
lipid distribution was done by measuring Oil Red O 
dye using NIH ImageJ software. **** p < 0.0001 
compared to control NT by one-way ANOVA and # p 
= 0.0005 comparing 2 % GS-glucose to 2 % CV- 
glucose by one-way ANOVA. C) Quantification of 
lysosome related organelles (LRO). L1 stage wild- 
type animals were treated with 2 % LOJ on NGM 
plate containing Red Nile dye for 72 h until 1-day 
old. Images were captured using fluorescent micro-
scope and fluorescence levels were analyzed using 
NIH ImageJ software. **** p < 0.0001 comparing 
either CV or GS to NT animals and # p = 0.0264 
comparing GS to CV treated animals by one-way 
ANOVA. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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the C. elegans intestine. We showed that LOJ reduces fat accumulation in 
worms cultivated in standard and glucose-rich diets. Interestingly, 
β-carotene-enriched LOJ exhibits significantly higher hypolipidemic 
activity under glucose-rich diet compared to conventional LOJ. We also 
observed that LOJ treatment reduced levels of LRO especially in animals 
treated with β-carotene-enriched LOJ. These results suggest that the 
increased β-carotene level in our GS orange is able to significantly 
change lipid and cholesterol-containing LRO granules profile in 
C. elegans. 

5. Conclusion 

In summary, we successfully showed that our new β-carotene 
transgenic orange provides increased antioxidant status. We found that 
C. elegans treated with β-carotene-enriched pulp shows reduced endog-
enous ROS production, increased expression of antioxidant genes, 
increased resistance against oxidative stress, delayed β-amyloid-induced 
paralysis, and increased hypolipidemic activity under glucose-rich diet 
compared to animals treated with conventional orange. Taking together, 
we provided a valuable proof of principle to subside further studies in 
mammals and humans aiming degenerative diseases prevention and 
health promotion. 
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