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mRIN for direct assessment of genome-wide and
gene-specific mRNA integrity from large-scale
RNA-sequencing data
Huijuan Feng1,2, Xuegong Zhang1 & Chaolin Zhang2

The volume of RNA-Seq data sets in public repositories has been expanding exponentially,

providing unprecedented opportunities to study gene expression regulation. Because

degraded RNA samples, such as those collected from post-mortem tissues, can result in

distinct expression profiles with potential biases, a particularly important step in mining these

data is quality control. Here we develop a method named mRIN to directly assess mRNA

integrity from RNA-Seq data at the sample and individual gene level. We systematically

analyse large-scale RNA-Seq data sets of the human brain transcriptome generated by dif-

ferent consortia. Our analysis demonstrates that 30 bias resulting from partial RNA

fragmentation in post-mortem tissues has a marked impact on global expression profiles,

and that mRIN effectively identifies samples with different levels of mRNA degradation.

Unexpectedly, this process has a reproducible and gene-specific component, and transcripts

with different stabilities are associated with distinct functions and structural features

reminiscent of mRNA decay in living cells.
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m
RNA sequencing (RNA-Seq) provides digital profiling of
gene expression with unprecedented depth, resolution
and coverage1,2. To obtain reliable and reproducible

RNA-Seq data, RNA quality is of paramount importance3. One
challenge to obtaining high-quality RNA is RNA degradation
before and during sample collection in preparation for RNA
isolation due to tissue necrosis, which is an issue especially for
samples collected in clinical settings and field studies4,5. For
example, human transcriptome studies, such as the BrainSpan
(http://www.brainspan.org) and Genotype-Tissue Expression
(GTEx)6 projects, rely on post-mortem tissues. In addition,
it is well documented that post-mortem intervals and cell
stressors such as hypoxia can have substantial impact on RNA
integrity7,8.

A widely adopted measure of RNA integrity is an
electrophoretic-based method to derive an RNA integrity number
(RIN)9,10. This method uses a machine-learning approach to
extract features from electrophoretic traces (Bioanalyzer) and
train a neural network that is predictive of RINs in a large set of
samples manually curated by experts. In the context of RNA-Seq
data analysis, several recent studies investigated how degraded
RNA samples of different RINs can affect detection of
differentially expressed genes4,11. By introducing experimentally
controlled RNA degradation either before or after RNA
extraction, these studies demonstrated that RINs reliably
reflected the severity of degradation and that the use of
degraded RNA samples could result in thousands of false
positives, while the genuine changes could be masked if
corrective measures were not implemented.

One apparent consequence of degraded RNA on RNA-Seq is
the 30 bias of read coverage along messenger RNA (mRNA)
transcripts. Several quality control (QC) metrics have recently
been developed to detect such bias, flag problematic samples and
identify other technical issues12,13. However, to our knowledge,
no systematic studies have carefully characterized RNA
degradation in post-mortem samples and their impact on gene
expression quantification with a wide range of tissue types across
hundreds of samples. Such an analysis is urged to develop the
optimal practices in mining the rich information provided
by large-scale transcriptome sequencing projects and by meta-
analysis of enormous data generated by individual studies
available in public repositories14.

Several challenges are present in QC of RNA-Seq data derived
from post-mortem tissues available in the public domain. First,
there is currently no consensus with regard to the RIN required to
generate high-quality data, and the criteria vary substantially
depending on the specific studies used. Thus it is not unusual that
re-analysis or meta-analysis of published data sets prefers more
stringent filtering than the original studies that generated the data
sets. Second, in public repositories, RINs of RNA samples used to
generate RNA-Seq libraries are frequently not reported and thus
re-analysis in follow-up studies has to perform QC on the
RNA-Seq data directly. Third, the use of RINs as a measure of
RNA-Seq data quality can have potential caveats. In particular,
while a RIN is derived largely based on the integrity of ribosomal
RNAs (rRNAs)9, the decay process of mRNA transcripts might be
distinct and even gene specific, which is not necessarily reflected
in the RIN completely.

To address these challenges, here we develop a method to
estimate mRNA integrity number (mRIN) from RNA-Seq data
sets directly based on quantitative modelling of the 30 bias of read
coverage. We applied this method to the large-scale RNA-Seq
data sets generated by the BrainSpan and GTEx projects
to demonstrate its effectiveness in quantifying mRNA degrada-
tion that markedly affected the global expression profiles.
Unexpectedly, our method also suggests that the degree of

degradation varies among different genes, and a substantial
fraction of the variation can be explained by functional and
structural features of the associated transcripts.

Results
30 bias in degraded RNA has a global impact on gene expression.
The mechanism of RNA degradation in post-mortem samples
during tissue necrosis is not well understood. The 30 bias
observed in RNA-Seq data could arise from RNA degradation
by 50 exonucleases15,16. Alternatively, RNA fragmentation by
endonucleases or stochastic hydrolysis can also introduce
the same apparent bias after poly-dT selection to purify
polyadenylated mRNA, which is currently a standard step in
mainstream RNA-Seq library preparation protocols including the
Illumina TruSeq RNA Sample Prep Kit.

To demonstrate the importance of assessing mRNA integrity in
RNA-Seq data derived from post-mortem tissue samples and to
distinguish different types of mRNA degradation, we first used a
large data set generated by the BrainSpan project. The dataset
used in this analysis is composed of gene and exon quantifications
of 578 samples derived from multiple brain structures of post-
mortem human brains at different developmental stages
(Supplementary Data 1). Importantly, Affymetrix HuEx exon
microarrays were used as an independent platform to profile
a largely overlapping set of samples (479 samples profiled by both
platforms)17. While poly-dT selection was used to deplete rRNAs
in RNA-Seq library preparation, it was not used to prepare
complementary DNAs (cDNAs) for HuEx exon microarray
hybridization18, a key difference of the two platforms.
Therefore, partial mRNA fragmentation will least likely result
in significant 30 bias in HuEx probe signals along transcripts.

We began with hierarchical clustering analysis of gene
expression profiles19 as measured by RNA-Seq and microarrays,
respectively, to obtain a global view of the developing brain
transcriptome. For both data sets, clustering of samples almost
perfectly separated fetal brains from neonatal and adult brains,
which is consistent with the marked gene expression changes
during development (Fig. 1a). However, there are important
differences between the two data sets. In the RNA-Seq data set,
a subset of samples show very distinct expression profiles
characterized by low levels of expression in a vast majority—
but not all—genes. Most of these samples are postnatal; some,
however, are fetal. More careful examination shows that samples
derived from the same individuals, regardless of brain regions or
age, tightly clustered together (Fig. 1a,b). This vast, characteristic
under-representation of gene expression was not observed in the
same samples measured by microarrays (see also below).

One possible cause of the observed skew in the RNA-Seq
data is that RNA-Seq is more sensitive to RNA quality than
microarrays are (in particular, partial fragmentation of RNA), due
to the poly-dT selection step. This can also explain why postnatal
brains were affected more severely than fetal brains, because for
the latter, high-quality tissues are more accessible.

To test this hypothesis, we first examined individual genes
in samples with presumed RNA degradation. One example is
the Smg1 gene in samples derived from individual VIII_50,
a 4-year-old male, which were profiled by both RNA-Seq and
exon microarrays (Fig. 1c). While the microarray data show
relatively uniform probe intensities from different exons
throughout the transcript, the RNA-Seq data suffer from a severe
30 bias and the reads are predominantly limited to the last exon.
The low read coverage throughout the transcript, except the very
30 end, has likely caused the underestimation of Smg1 expression.
These observations suggest that partial mRNA fragmentation is
likely a major source of bias in gene expression quantification of
degraded post-mortem brain samples.
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mRIN quantifies 30 bias and alteration in gene expression. To
estimate mRNA degradation directly and quantitatively from
RNA-Seq data, we went forward to develop a statistical method to
quantify the 30 bias of each gene, from which a single-number
mRIN is derived for each sample (Fig. 2a; Methods). Specifically,
for each gene and sample, mapped RNA-Seq reads are counted to
obtain a read coverage profile across all exonic positions of a
representative RefSeq transcript (step 1), which is converted into
a cumulative coverage profile (step 2). This cumulative profile is
then compared with a null distribution one would expect if reads
are uniformly distributed. Change of the cumulative distribution
due to 30 bias is quantified by a modified Kolmogorov–Smirnov
(KS) statistic20. To further mitigate additional biases that cannot
be explained by the 30 bias due to mRNA degradation (for
example, sequencing artefacts due to local base compositions21,
inaccuracy of transcript annotation or alternative RNA
processing), we normalize the matrix of KS statistics by
subtracting the median across samples (mKS matrix, step 3).
Finally, the mRIN of each sample is defined as the negative of the
average mKS values across all genes in the sample. With this
measure, samples with negligible degradation are expected to
have mRINs following approximately a normal distribution with
a zero mean, while degraded samples have negative mRINs with

larger deviations from which the statistical significance of
degradation can be evaluated (steps 4 and 5; Supplementary
Fig. 1).

In the analysis of the BrainSpan RNA-Seq data, a modification
we adopted to obtain the mKS matrix and mRINs of samples is
that read coverage profiles were estimated at the exon instead of
the nucleotide resolution due to the availability of data (Fig. 1c);
however, we expect this to have very moderate effects on mRIN
(see below). As expected, the distribution of mRINs has a heavier
tail on the left deviating from a normal distribution, indicating
degraded RNA samples. In total, 141 (24%) and 170 (29%)
samples were called to have significant degradation at Po0.05
and o0.1, respectively.

To validate the proposed mRIN as a measure of mRNA
integrity, we first examined the mRINs together with the gene
expression profiles of the associated samples. Indeed, samples
with global under-representation of gene expression matched
those with the most negative mRINs (Fig. 2b). To have a more
direct and quantitative assessment, we compared gene expression
profiles of the 479 samples that are profiled by both RNA-Seq and
exon microarrays. We argued that the extent of degradation
is reflected in the discrepancy between the RNA-Seq and
microarray data, since the latter is not affected by partial RNA
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Figure 1 | Impact of presumptive mRNA degradation on global gene expression profiling. (a) Gene expression profiles of post-mortem brain samples in

the BrainSpan data as measured by RNA-Seq (left) and Affymetrix HuEx exon microarrays (right). Genes and samples are ordered by centroid linkage

hierarchical clustering of each data set. In the RNA-Seq data, a subset of samples, frequently collected from the same individuals, show pervasive

under-representation of gene expression (examples labelled with 1, 2 and 3 below the heat map). (b) Examples of fetal (1) and postnatal (2 and 3) brain

samples derived from the same individuals for which the global gene expression profiles appear to be severely affected by RNA degradation. (c) Smg1 as an

example of discrepancy in RNA-Seq and exon array data with respect to 30 bias. RNA-Seq and exon array data shown are from different brain structures of

the same individual (VIII_50); 14/16 samples from this individual are ranked among the 50 most degraded samples. For comparison, a separate track

shows brain RNA-Seq data derived from an independent study47. A1C, primary auditory cortex (core); AMY, amygdaloid complex; DFC, dorsolateral

prefrontal cortex; HIP, hippocampus (hippocampal formation); IPC, posteroventral (inferior) parietal cortex; ITC, inferolateral temporal cortex (area TEv,

area 20); M1C, primary motor cortex (area M1, area 4); MD, mediodorsal nucleus of thalamus; MFC, anterior (rostral) cingulate (medial prefrontal) cortex;

OFC, orbital frontal cortex; S1C, primary somatosensory cortex (area S1, areas 3,1 and 2); STC, posterior (caudal) superior temporal cortex (area TAc);

STR, striatum; V1C, primary visual cortex (striate cortex, area V1/17); VFC, ventrolateral prefrontal cortex.
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fragmentation. Therefore, for each sample, we calculated the
correlation of the gene expression profiles as measured by the two
platforms (that is, seq–array correlation), and examined how
seq–array correlation relates to mRIN. The two measures are
strongly correlated with each other (Pearson correlation R¼ 0.58,
Po2.2� 10� 16, F-test; Fig. 2c). We separated the samples into
two groups depending on mRIN (using a conservative threshold:
� 0.033 or P¼ 0.1), and examined the gene expression profiles of
each group as measured by the two platforms (Fig. 2d). For the
group of samples with no or minimal degradation, the gene
expression profiles measured by the two different platforms are
indeed very similar. In sharp contrast, the samples inferred to be
severely affected by degradation have drastic difference in their
expression profiles as measured by the two platforms, with vast
under-representation in the RNA-Seq data. On the basis of these
observations, we conclude that mRNA degradation due to partial
fragmentation can have a marked impact on global expression
profiles measured by RNA-Seq, and mRIN can be used to
quantify such degradation.

Comparison of mRIN with RIN and other QC metrics. We next
investigated how mRIN relates to RIN, which is currently a
standard measure of RNA quality. Since matched RINs are cur-
rently not released publicly for RNA samples in the BrainSpan

data set, we performed a second set of analyses on a large-scale
human brain RNA-Seq data set obtained from the GTEx project6.
This data set included 410 brain samples with matched RIN
numbers. Alignment of the RNA-Seq data, QC and gene
expression quantification with RNA-SeQC12 were performed by
the GTEx project team6 and were directly used in our analysis. To
minimize technical variations introduced in RNA-Seq library
preparation and sequencing, we conservatively limited our
analysis to 317 samples with a relatively high rate of read
mapping (Z67%). In this subset, 57 samples have an RIN Z8
(18%), 144 samples between 7 and 8 (45%) and 116 samples o7
(37%); these samples are from cortex, basal ganglia, cerebellum
and other brain regions from multiple donors (Fig. 3a;
Supplementary Data 2).

We estimated the mKS matrix and mRINs of the 317 samples
from nucleotide-resolution read coverage profiles (Supplementary
Data 2). When the samples were ordered by RINs, it is apparent
from the mKS matrix that those with low RINs in general have
stronger 30 bias and thus lower mRINs, but this is not always
the case (Fig. 3b). Similar to the BrainSpan data set, mRINs
approximately follow a normal distribution, with a heavier tail on
the left side indicating degraded RNA samples. By fitting
this normal distribution, we estimated that 10 (3%) and 82
(26%) samples were degraded at Po0.05 and o0.25, respectively
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Figure 2 | mRIN effectively measures mRNA integrity from RNA-Seq data. (a) Schematic illustration of the algorithm to estimate mRIN. After estimation

of the 30 bias of each gene and sample using a KS statistic from the read coverage profile, an mRIN is calculated for each sample. A normal distribution of

the mRINs of non-degraded samples is estimated using a mixture model to assess the statistical significance. (b) Global under-representation of gene

expression of the BrainSpan samples as measured by RNA-Seq is associated with low mRINs. Samples in the mRIN bar plot and the heat map are in the

same order. (c) Validation of mRIN as a measure of mRNA integrity by a direct comparison of the RNA-Seq and exon array data. This analysis included 479

samples whose gene expression was quantified by both RNA-Seq and exon arrays. For each sample, the correlation of gene expression estimated from

RNA-Seq and that estimated from exon arrays (denoted seq–array correlation or SAC) is calculated. SAC is plotted against the mRIN of each sample

(Pearson correlation R¼0.58, Po2.2� 10� 16, F-test). (d) mRIN was used to separate 124 samples with the most severe RNA degradation

(mRINo�0.033, Po0.1, Methods) from the remaining 355 samples. For each group, the heat maps of gene expression as measured by RNA-Seq

and exon arrays are shown, with genes and samples in the same order as determined by hierarchical clustering of the array data.
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(Fig. 3c, Methods). We note the estimation of mRINs is
extraordinarily robust with respect to the set of genes used for
analysis, and genes randomly divided into two subsets gave
essentially the same results (R2¼ 0.9998, Supplementary Fig. 2).

When we compared RIN and mRIN quantitatively, 24% of
variance in RINs across samples can be explained by their mRINs
(Po2.2� 10� 16, F-test; Fig. 3d). Among the 57 samples with
RIN Z8, the smallest P values are 0.16 and 0.17, while the
remaining 55 samples (96%) have P40.25. In contrast, among
the 22 samples with RIN r6, only 6 (27%) have P40.25.
Therefore, the concordance of mRIN and RIN is remarkable,
although the two methods estimate RNA integrity using very
different approaches with different underlying assumptions.

Several other tools have been developed recently to gauge 30

bias and flag-degraded RNA samples12,13, although systematic
evaluation of their performance in large-scale data sets has not
been reported. Among these, RNA-SeQC calculates the read
coverage at the 50 or 30 end of each transcript (for example, the
first or last 50 nucleotides used in the GTEx data set) normalized
by the coverage throughout the transcript. These quantities are
averaged across all genes, denoted 50 Norm and 30 Norm, to
evaluate the overall 30 bias of the sample. We found a good
correlation between mRIN and the 50 Norm/30 Norm ratio
(R2¼ 0.59, Fig. 3e), and, to a lesser extent, between mRIN and
each of the two metrics (Supplementary Fig. 3a,b). This is not
surprising because both mRIN and RNA-SeQC quantify 30 bias.
However, the 50 Norm/30 Norm ratio by RNA-SeQC explains
only 15% of variance in RINs and even less if the two metrics
were used separately (Fig. 3f; Supplementary Fig. 3c,d).
Furthermore, no correlation between RIN and the 50 Norm/30

Norm ratio remains after mRIN is controlled (R2¼ 0.0001,
P¼ 0.84, F-test; Supplementary Fig. 3e). The better concordance
of mRIN with RIN suggests the advantage of mRIN over
RNA-SeQC in quantifying 30 bias with a carefully designed
statistical model.

As we argued earlier, RIN provides a very robust measure of
RNA integrity but does not necessarily capture all aspects of
mRNA degradation. This is in line with the imperfect correlation
of RIN and mRIN, although the comparative advantage of the
two metrics has to be assessed by an independent measure, for
example, by evaluating how each method detects alterations in
gene expression profiles resulting from RNA degradation. Since
independent expression quantifications immune to 30 bias are not
available for the GTEx data set, we sought an alternative strategy.
Specifically, we argue that samples with high RIN and mRIN
(RINZ8 and mRINZ0, respectively) have minimal degradation
and can be used as a surrogate of the ‘reference transcriptome’.
The expression correlation of the remaining samples with the
reference samples is expected to decrease depending on the
severity of degradation.

To minimize the heterogeneity of gene expression among
different brain regions, we analysed samples from the cortex,
cerebellum and basal ganglia separately, as these regions display
distinct expression profiles (Supplementary Fig. 4). When we
ordered samples by RIN or mRIN, it became clear that a subset of
cortical and basal ganglia samples with low RIN or mRIN have
distinct gene expression profiles compared with high-quality
samples in these regions, although this is less apparent for the
cerebellum (Fig. 4a–c, top panels). Quantitatively, both RIN and
mRIN effectively predicted the correlation of each sample with
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the high-quality reference (Fig. 4a–c, bottom panels, Pearson
correlation R between 0.24 and 0.50 for RIN and 0.34 and 0.48 for
mRIN). Importantly, mRIN is more predictive than RIN in the
cortex and cerebellum. Therefore, mRIN is very comparable to
RIN in isolating degraded samples with altered expression
profiles, although the two methods appear to capture both shared
and distinct aspects of mRNA degradation, which can be
explained in part by the source of degradation modelled by each
method.

Gene-specific degradation and distinct transcript features.
Besides a per-sample summary of mRNA integrity by mRIN, our
method has the advantage of being able to evaluate gene-specific
degradation. In both the BrainSpan and GTEx data sets, not all
genes appear to be affected by 30 bias to the same degree, as one
can tell from the expression profiles (Fig. 2b,d; Fig. 4a–c), but
more directly, from the mKS matrices (Figs 2a and 5a).

To investigate the mechanism of gene-specific degradation, we
calculated a gene integrity score (GIS) by correlating mKS values
of each gene and the associated mRINs across all samples
(Supplementary Data 3). We found that GIS values estimated
from the GTEx data set and the BrainSpan data set are highly
correlated (Spearman r¼ 0.6, Po2.2� 10� 16, F-test; Fig. 5b).
This is remarkable, given that the mKS matrices of the two data
sets were calculated from read coverage profiles at different
resolutions (per-exon for BrainSpan and per-nucleotide for
GTEx). Not surprisingly, the use of RIN instead of mRIN
to calculate GIS resulted in quantitatively similar scores
(Supplementary Fig. 5), as one would expect from the correlation
between mRIN and RIN. In addition, most genes have negative
GIS, suggesting more severe 30 bias in more degraded samples in
general, although the degree varies. Our analysis thus focused on
GIS estimated from the GTEx data set.

We asked whether there is any functional bias of genes
associated with transcript stability in post-mortem samples. Since
the GIS scores show a continuum without obvious cutoffs to
separate different groups of genes, we examined the top and
bottom 1,000 genes and their gene ontologies22. The top 1,000
genes with the most unstable transcripts show significant
enrichment in those involved in gene expression regulation,
such as chromatin modification (Benjamini false discovery rate
(FDR) o0.002; Fig. 5c). Genes involved in mRNA processing
also appear to be enriched, although somewhat moderately
(Benjamini FDR¼ 0.18; Supplementary Data 4). On the other
hand, the bottom 1,000 genes with the most stable transcripts
are enriched in ribosome subunits and extracellular proteins
(Benjamini FDR o5� 10� 4 and o5� 10� 14 , respectively;
Fig. 5c; Supplementary Data 5). These observations suggest that
the degradation process is not completely random.

Encouraged by this finding, we also investigated what
transcript features can predict their stability as reflected in GIS.
We found longer transcripts are more unstable and the transcript
length alone explains about 15% of the variance in GIS
(Po2.2� 10� 16, F-test); inclusion of 30 untranslated region
(UTR), coding sequence (CDS) and 50 UTR sizes, as well as exon
numbers together with the transcript length in a linear regression
model only moderately increased the explained variance (16.6%,
Po2.2� 10� 16, F-test; Fig. 5d; Supplementary Fig. 6). We also
examined base composition (GC content) in different regions of
the transcripts, as well as AU-rich elements (AREs) and PUM2
motif sites in 30 UTRs, which are reported to affect mRNA
stability23–26. Base composition and regulatory sequences each
explain 3.4 and 2.4% of the variance in GIS (Po2.2� 10� 16,
F-test). Interestingly, while unstable transcripts tend to have a
higher AU-content in 30 UTR and CDS, they tend to have a
higher GC content in the 50 UTR (Supplementary Fig. 7).
Both ARE and PUM2 motif sites are associated with unstable
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transcripts, even after normalization of 30 UTR length
(Supplementary Fig. 8). When all these variables were included
in multiple regression analysis, a total of 20.8% of the variance in
GIS can be explained (Fig. 5d). Therefore, while these features are
insufficient to predict the stability of individual transcripts, they
are predictive for the population average among groups of
transcripts that share these features.

Discussion
For human transcriptome studies that rely on post-mortem tissues,
the first and probably the most challenging issue is RNA
degradation during sample collection due to the occurrence of
tissue necrosis, so that partially degraded samples have to be used in
certain scenarios. Similar technical challenges are likely present in
the collection of samples that require prolonged processing prior to
RNA extraction (for example, laser capture microdissection). In this
study, we developed a statistical method to evaluate mRNA
integrity directly from RNA-Seq data by quantitatively modelling
the 30 bias of read coverage. Application of this method to two
independent, large-scale RNA-Seq data sets profiling human post-
mortem tissues demonstrated that degraded RNAs can result in
strong 30 bias that markedly skews global gene expression profiles
with standard pipelines of data processing. Such bias may mask
genuine biological differences such as brain region-specific expres-
sion or expression variation among different individuals, if it is not
properly controlled. To our knowledge, this is the first systematic
characterization of mRNA degradation in RNA-Seq data derived
from post-mortem samples on such a large scale.

Our analysis warrants additional caution in processing data
from samples affected by degradation. Whether such samples
should be excluded for analysis largely depends on specific studies
and the extent to which the resulting bias can be minimized by
computational normalization methods. In particular, the decision
can differ between the original studies generating the data sets
and follow-up studies that perform re-analysis or meta-analysis of
published data. Unfortunately, the quality of RNA samples used
for RNA-Seq could be somewhat obscure for follow-up analysis
of published data, and sample RINs are sometimes not reported.
Our intention was thus to develop a computational method to
provide post hoc assessment of mRNA quality directly from RNA-
Seq data independent of RIN or other prior knowledge in the
context of meta-analysis. We demonstrated the effectiveness of
our method in comparison with RIN and other existing QC
metrics in isolating degraded samples. It also has to be
emphasized that a number of approaches and software tools
have recently been developed to normalize biases in RNA-Seq data
introduced by mRNA degradation and other technical
issues12,13,27–31. Therefore, mRIN can be potentially incorporated
into some of these methods to address these issues.

In living cells, control of mRNA stability is critical for both
mRNA surveillance and post-transcriptional gene expression
regulation. The molecular mechanisms underlying such controls
are complex and only partially understood15,16. RNA degradation
pathways involve a number of RNases, including endonucleases
that cut inside the transcripts and 50 and 30 exonucleases that
digest RNA from the two termini. These RNases are assembled
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into different multiprotein complexes coupled with other steps of
RNA processing such as decapping and deadenylation15,32,33.
Their substrate specificity is conferred by many co-factors and
specific regulatory sequences embedded in the target transcripts.

Through comparison of the expression profiles as measured by
RNA-Seq and exon microarrays, our analysis suggests that partial
fragmentation of mRNA is a major source of bias in RNA-Seq
data derived from post-mortem tissue samples. How such
fragments are generated and accumulated during tissue necrosis
is not clear, but the process might be a combined consequence
of several possible mechanisms4. For example, active
endonucleolytic cleavage can occur in specific transcripts when
the cellular mRNA decay machineries initially remain active,
which can be followed by leakage of extracellular RNases (such as
RNase A) into the cells and stochastic RNA hydrolysis in the
deteriorating cellular environment.

An unexpected finding of this study is that there seems to be a
reproducible and gene-specific component of mRNA degradation
in post-mortem samples, as recently noted in another tissue type4.
Intriguingly, our analysis revealed that transcript stability is
associated with distinct functional groups and structural features,
and that these observations agree well with previous cell-based
studies of mRNA half-lives34–36. For example, genes playing
regulatory functions, including chromatin-modifying enzymes,
have been found to be unstable at both transcript and protein
levels, while transcripts encoding housekeeping genes, such as the
ribosome and extracellular proteins, are quite stable. Transcript
length and regulatory sequences previously found to be associated
with stability are also predictive in our analysis. These
observations imply that mRNA degradation in post-mortem
samples might be reminiscent of the active decay process in living
cells depending on intrinsic properties encoded in the transcripts
so that the high-level organization of the transcriptome can be
recapitulated in our analysis. Further support of this ‘active
degradation’ model comes from several recent studies
demonstrating that endonucleolytic cleavage in the mammalian
transcriptome, including the brain, is more widespread than
previously appreciated37–39. This finding is particularly exciting
because of technical challenges in global measurements of mRNA
turnover. Specifically, current methods rely on pulse labelling
of nucleosides or inhibition of transcription35,40,41 to uncouple
mRNA synthesis and degradation34,39,40, which have essentially
limited their application in cell cultures. We are therefore
tempted to propose GIS as an alternative to evaluate mRNA
stability in native tissues, although this strategy has to be
evaluated more extensively in future studies.

Methods
The statistical model to quantify mRNA integrity. mRIN provides a single-
parameter measurement of mRNA degradation, or more specifically partial
mRNA fragmentation, for each sample. This method is based on the global 30 bias
of RNA-Seq read coverage in libraries prepared from degraded RNAs using the
standard protocols, including poly-dT selection. In this study, we used RefSeq
transcripts as gene models to quantify 30 bias; for genes with multiple RefSeq
transcripts, the longest transcript was used as a representative. To avoid ambiguity
in read assignment to genes, only those genes without an overlap with other
neighbouring genes were included in this study.

After mapping RNA-Seq reads to the reference genome and exon junctions, the
mapped reads are counted in each exonic nucleotide to obtain the read coverage
profile along mRNA transcripts. The coverage profile is then transformed into a
cumulative distribution at nucleotide resolution. Denote the number of reads at
each exonic position x (starting from the 30 end of each transcript) as nx. The
cumulative read coverage is denoted as

c xð Þ ¼
Xx

i¼1
ni; ð1Þ

and the total nucleotide coverage is thus

h ¼ c Lð Þ; ð2Þ

where L is the transcript length.

When there is no degradation of RNA or technical bias during library
preparation and sequencing, RNA-Seq reads are expected to be uniformly
distributed (the null distribution). In practice, certain amount of non-uniformity is
always present, and a major source of such non-uniformity is the 30 bias due to
RNA degradation. Such deviation from the null distribution can be quantified by a
modified KS statistic20:

KS ¼
ffiffiffi
h
p

sup f xð Þ� x=Lf g ¼
ffiffiffi
h
p

sup hf xð Þ� hx=Lf g=h ¼
ffiffiffi
h
p

d=h; ð3Þ
where f(x) is the cumulative read coverage distribution at position x, f(x)¼ c(x)/h.

Note that the direction of deviation is distinguished in d, so that the KS statistic
is positive in the presence of 30 bias and negative in the presence of 50 bias.

To account for additional gene-specific bias (such as local base composition or
errors in transcript annotation) that cannot be explained by the 30 bias, the KS
statistics are median-centred across all samples for each gene to obtain mKS values.

The mRIN of each sample is defined as the negative of average mKS statistics of
all N genes:

mRIN ¼ � 1
N

XN

g¼1
mKSg : ð4Þ

The negation is used so that degraded samples with 30 bias have smaller mRINs
analogous to RIN.

We note that mRINs of non-degraded samples should follow a normal
distribution with approximately a zero mean m¼ 0. This is based on the
assumption that the mKS statistics of different genes in a sample without
degradation are independently and identically distributed. mRIN of the sample,
which is the negative average of the mKS statistics across a large number of genes,
is expected to converge to a normal distribution based on the central limit theorem.
On the other hand, degraded RNA samples are expected to have more negative
mRINs, resulting in a heavier tail on the left side of the distribution.

We can estimate the s.d. of mRINs of the null distribution (no degradation),
denoted as s, from samples with positive mRINs (which are least degraded) by the
scaled median absolute deviation. For each sample, a z-score and P value can then
be derived to estimate the probability of observing a specific mRIN under the null
hypothesis (using a single-sided test):

z ¼ mRIN�m
s

; ð5Þ

P ¼
Z z

�1
N o j 0;1ð Þdo ¼

Z z

�1

1ffiffiffiffiffi
2p
p e�o2=2do: ð6Þ

where f(o)¼N(o|0,1) is the probability density function of the standard normal
distribution.

We also consider a scenario in which a relatively large number of samples in the
data set might be degraded, such that the mean mRIN of non-degraded samples is
shifted from zero. To address this concern, we sought to develop a more robust
approach to estimating the null distribution. In brief, we assume samples with
mRINs above a certain cutoff are non-degraded and these samples follow a
truncated normal distribution, whose parameters can be estimated analytically.

For simplicity, suppose we already know the cutoff of the mRIN a and samples
with mRIN4a are regarded as non-degraded samples. mRINs of the non-degraded
samples follow a truncated normal distribution,

f mRIN j m; s; a;bð Þ ¼ N mRIN jm; sð Þ=Z ð7Þ
where Z ¼

R b
a N m jm; sð Þdm and b¼ þN. The mean and variance of the

truncated normal distribution are42

mþ f að Þ�fðbÞ
Z

s; ð8Þ

and

s2 1þ af að Þ� bf bð Þ
Z

� f að Þ�f bð Þ
Z

� �2
" #

: ð9Þ

The parameters m and s can be derived from the moment estimator by solving the
following equation system,

mþ f að Þ�f bð Þ
Z s ¼ M0

s2 1þ af að Þ� bf bð Þ
Z � f að Þ�f bð Þ

Z

� �2
� �

¼ S2
0

8<
:

9=
;; ð10Þ

where M0 and S2
0 are the estimated mean and variance of the mRINs of the

(truncated) non-degraded samples, respectively.
Since we do not actually know a, we perform a step search of the optimal a from

� 0.05 to 0.05, stepped by 0.0005 and calculate the estimated parameter m and s.
For each a, the goodness of fit is evaluated by comparing the cumulative
distribution of truncated mRINs and samples from the fit normal distribution
using a KS statistic D (Supplementary Fig. 1). The threshold a that gives the
smallest D is chosen. The estimated normal distribution is then used to calculate
the z-score and P value of each sample.

BrainSpan RNA-Seq and Affymetrix HuEx exon array data. For this study, we
used an RNA-Seq data set of developing brain transcriptomes generated as part of
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the BrainSpan project (http://www.brainspan.org, accessed in March 2013). This
was the latest version available at the time of analysis, but an updated version as
since become available at the time of writing. This data set is composed of a large
panel of post-mortem human brain samples that span 13 developmental stages
including fetal, neonatal and adult brains. For each donor, samples were collected
from 8 to 16 brain structures. A total of 578 samples were profiled by RNA-Seq
using poly-dT-selected mRNAs. In parallel, the BrainSpan project also used
Affymetrix HuEx ST exon microarrays to profile gene expression on a largely
overlapping set of samples. In total, the exon array data set is composed of 492
samples, among which 479 have matched RNA-Seq data. Poly-dT selection was not
used in preparation of cDNAs for exon array hybridization; instead, cDNAs were
generated by random priming, because rRNAs are not expected to hybridize with
probes designed for mRNAs.

The RNA-Seq data were available publicly as read per kilobase per million
(RPKM) values at the exon and gene level (GENCODE V3C). These values were
derived from read mapping using ELAND2, followed by quantification using
RSEQtools43. The exon array data were available as exon and gene intensities
normalized by the RMA algorithm implemented in the Affymetrix Power Tools.
More details of data processing as performed by the BrainSpan project team were
described in their documentation available at http://www.brainspan.org/static/help.
These processed files were downloaded from http://www.brainspan.org/static/
download.html.

To perform mRIN analysis, we used read coverage profiles derived from exon
RPKM values, because the nucleotide-resolution read coverage profiles or the raw
data were not available. In this case, the total read coverage h (average RPKM� L)
reflects the abundance and length of each transcript, but not the sequencing depth
of each sample. However, assuming the sequencing depth is relatively uniform
across different samples, we do not expect this to have significant impact on the
results. To reduce uncertainty, we estimated the KS statistic only for genes with
RPKM 42 in each sample and assigned a missing value otherwise. After we
obtained the mKS matrix, 7,783 genes with mKS estimated in 450% of samples
were used to calculate mRINs. For this study, we used the mixture model to
estimate the parameters of the null distribution (a¼ 0.003, m¼ 0.0066 and
s¼ 0.031).

Centroid linkage hierarchical clustering of gene expression profiles presented in
Fig. 1 used 9,075 of 18,979 genes in the RNA-Seq data (RPKM43 in Z10 samples,
log2-transformation, s.d.41 and then median centred) and 6,550 of 17,604 genes
in the microarray data (log2 intensity 47 in Z10 samples, s.d.40.6 and median
centred).

To determine the order of samples and genes described in Fig. 2d, we focused
on 6,550 genes that passed filtering in exon array data. Among these, 6,319
were common in the RNA-Seq data and were used for a direct comparison.
A hierarchical clustering was performed on these common genes across the 479
common samples using the exon array data. The samples were then divided into
two groups with a threshold of mRIN¼ � 0.33 (P¼ 0.1). In each group, a heat
map was generated with the predetermined order using each data set.

GTEx RNA-Seq data. The current release of the GTEx data set (phe000006.v1,
release date: 17 January 2014) included a total of 410 brain samples with RNA-Seq
data, matched RINs, gene expression quantification and RNA-SeQC results, which
were obtained from the GTEx project through dbGaP (https://dbgap.ncbi.nlm.
nih.gov). Among these, 317 samples with a read mapping rate Z0.67 (based on
RNA-SeQC results) were used in our analysis, because our initial examination of
the gene expression profiles suggested that samples with a low mapping rate have
lower correlations with the other samples. There appear to be a few additional
‘outlier’ samples as judged from their expression profiles (Fig. 4), but we did not
find apparent abnormalities in QC metrics, so they were not excluded.

Alignment of RNA-Seq reads (by TopHat44 as provided by the GTEx project
team) were extracted from bam files using bedtools45, which were converted into
read coverage profiles along exonic positions of representative RefSeq transcripts.

We estimated KS statistics for each gene and sample with average read coverage
h/LZ2 and RPKMZ2 (and missing value otherwise). To reduce potential noise in
estimating mRIN, we applied filters of genes based on KS statistic and gene
expression RPKM values calculated by RNA-SeQC. We first excluded the top 5% of
genes with the smallest s.d. in their KS statistics across samples. To remove genes
that show strong 50 bias, typically due to errors in transcript annotation, alternative
RNA processing or other technical issues, we excluded genes with a median KS
statistic across samples o0. Finally, 9,168 genes with KS estimated in 450%
samples were kept to derive the mKS matrix and calculate mRIN for each sample.
The parameters of the null normal distribution were estimated to be a¼ 0.0035,
m¼ 0.0034 and s¼ 0.033.

To evaluate gene-specific integrity, we focused on 8,493 of 9,168 filtered genes
above that are protein-coding genes with annotated 50 UTR, CDS (whose length is
multiple of three) and 30 UTR. GIS is defined as the Pearson correlation between
mKS values across all samples and their associated mRINs.

To correlate GIS estimated from the GTEx and BrainSpan data sets, we
considered only genes with Z5 exons, because for the BrainSpan data set the read
coverage profile is available only at the per-exon level, hence it is more difficult to
obtain a precise estimate of KS values and thus GIS for genes with single or few
exons.

To calculate the correlation of gene expression profiles across samples, as
presented in Fig. 4, we required genes to have RPKM 43 in Z10 samples to
eliminate low-abundance genes. RPKM values of 11,958 filtered genes are
log2-transformed and median centred to calculate correlations of each sample with
a subset of high-quality reference samples (defined by RINZ8 and mRINZ0). For
each sample, the median correlation with the reference was then calculated. For a
sample belonging to the reference, the median was calculated using the remaining
samples in the reference set. To generate the gene expression heat maps shown in
Fig. 4, we further required s.d. across all samples 40.6 and %presence Z0.8 to
highlight genes with the most variations among samples. A total of 7,000 filtered
genes were included for centroid linkage clustering analysis.

Transcript structural and functional features. Representative RefSeq transcripts
used to estimate mRIN were used to define the number of exons, whole-transcript
length as well as the lengths of 50 UTR, CDS and 30 UTR. Exonic sequences of each
of these regions were extracted to calculate GC content and search for motif sites.
For AREs, we initially searched different variations (for example, AUUUA,
WWAUUUAWW and others)46, but found AUUUA as the only one with
significant correlation with GIS. We therefore focus on this core motif in our
analysis. For the PUM2 motif, we used the consensus UGUAHAUA, as determined
by previous studies26.

To relate transcript stability with transcript features, we first generated bins of
100 genes and calculated the averages of each feature in bins and their correlation
with the average GIS in respective bins. For regression analysis, we first applied
Fisher transformation on GIS, ln[(1þGIS)/(1�GIS)]/2, so that it follows
approximately a normal distribution. For the same reason, we also applied log
transformation on length of whole transcripts, as well as lengths of 50 UTR,
CDS and 30UTR. Linear regression analyses were first performed using individual
groups of variables and then in combination, as summarized in Fig. 5d.

Gene ontology analysis was performed using the online tool DAVID22.
All genes included for GIS analysis were used as background to compare with the
1,000 most unstable and the 1,000 most stable transcripts, respectively.

Software implementation. A set of perl and R scripts were implemented to
calculate the exonic read coverage, cumulative distribution and KS statistics,
mRINs and the statistical significance. The software package and the documen-
tation are available through http://zhanglab.c2b2.columbia.edu/index.php/mRIN.
Hierarchical clustering was performed using cluster (http://bonsai.hgc.jp/
Bmdehoon/software/cluster/) and java treeview (http://jtreeview.sourceforge.net).
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