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Abstract

Epistasis has long been recognized as fundamentally important in understanding the structure, function, and evolutionary

dynamics of biological systems. Yet, little is known about how it is distributed underlying specific traits. Based on a global

map of epistatic interactions in baker’s yeast, Saccharomyces cerevisiae, we show that epistasis is prevalent (;13% increase

from random expectation) and displays modular architecture among genes that underlie the same growth traits. More

interestingly, our results indicate that hub genes responsible for the same growth traits tend to link epistatically with each

other more frequently than random expectation. Our results provide a genome-wide perspective on the genetic architecture
of growth traits in a eukaryotic organism.
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Complex traits that vary in populations of human and other

organisms are determined by multiple genetic factors. An

individual genetic factor might only contribute a modest

amount to the total variation observed in a trait over

the entire population (Carlborg and Haley 2004; Visscher
et al. 2008; Manolio et al. 2009). Genetic factors contrib-

uting to the same traits usually affect each other’s pheno-

typic outcome, a phenomenon called epistasis (Legare

et al. 2000; Manolio et al. 2009). How epistatic interactions

among genetic factors are distributed underlying the same

complex trait remains largely unknown (Phillips 2008).

Here, we use growth traits in yeast as models to study this

issue.
It is also well established that epistasis is important for

the evolution of sex (Kondrashov 1982; Azevedo et al.

2006; Otto 2007), speciation (Presgraves 2007), mutational

load (Hansen and Wagner 2001), ploidy (Kondrashov and

Crow 1991; Musso et al. 2008), genetic drift (Perez-Figueroa

et al. 2009), genomic complexity (Sanjuan and Nebot

2008), drug resistance (Trindade et al. 2009), and human

disease (Phillips 2008). In model organisms, illustrating ep-
istatic interactions also enables dissection of functional re-

lationship between genes (Avery and Wasserman 1992;

Hartman et al. 2001; Kelley and Ideker 2005; Ma et al.

2008; Brady et al. 2009). Understanding the distribution

of epistasis underlying complex traits is therefore impor-

tant for various fields.

Individual studies pointed out a prominent role for epistasis

in genetic control of complex traits (Remold and Lenski 2004;

Carlborg et al. 2006; Ehrenreich et al. 2007; Shao et al.
2008). However, a comprehensive understanding of epistasis

underlying complex traits can only be achieved by recon-

structing a global map of epistasis. Yeast provides a great

model system to address this issue due to its abundant func-

tional genomic data. Here, we examined the distribution and

prevalence of epistasis underlying growth traits of yeast in

different conditions. We firstly identified genes which con-

tribute to growth under each of 354 conditions (Hillenmeyer
et al. 2008). We then extracted subnetworks of epistasis

among the contributing genes in each of the 354 conditions

from the genome-wide epistatic network (Costanzo et al.

2010). Novel characteristics for the genetic architecture of

growth traits are described. Although the epistasis used in

this study was generated from yeast gene deletion mutants

and the complex traits used were measured from yeast

growth in specific laboratory conditions, both of whichmight
be different from the real scenario in nature, our results pro-

vide the first glimpse on the genome-wide organization of

epistasis underlying complex traits. The implication of our re-

sults on gene pleiotropy is also discussed.
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Materials and Methods

Data Resource

This study is mainly based on the integration of two high-

throughput experimental data sets: a genome-wide screen

for the fitness effects of gene deletion mutants under 354

conditions (Hillenmeyer et al. 2008) and a global survey for

the epistatic interactions among more than 5 million gene
pairs in Saccharomyces cerevisiae (Costanzo et al. 2010).

In Hillenmeyer et al. (2008), ;6,000 heterozygous gene

deletion mutants were screened in a total of 354 unique

conditions (e.g., drugs approved by the U.S. Food and Drug

Administration, well-characterized chemical probes, and

compounds with uncertain biological activity). Genes whose

heterozygous deletions significantly affect organism growth

in a specific condition were defined as genes that contribute
to organism growth in that condition. The authors defined

significant growth defect with correction for multiple com-

parisons by controlling the false discovery rate to 0.1.

Growthconditionswith the samechemical compoundbutdif-

ferent concentrations were regarded as the same condition,

andall genes identified indifferent concentrationsof the same

compound were regarded as contributing genes under

that condition. On average, there are 368 genes in each
subnetwork, and the relevant data were downloaded from

http://chemogenomics.stanford.edu:16080/supplements/

global/download.html.

In the synthetic genetic array (SGA) study (Costanzo et al.

2010), the authors screened 1,712 S. cerevisiae query

genes, including 334 conditional or hypomorphic alleles

of essential genes, against 3,885 array genes to generate

a total of more than 5 million gene pairs spanning all bio-
logical processes. These queries were selected randomly

with respect to function, while the array genes represented

the whole collection of nonessential genes. In each gene

pair, the epistasis value is calculated based on the equation:

e5Wxy �WxWy, in whichWxy is the fitness of an organism

with mutations in both genes X and Y, whereasWx refers to

the organism with the mutation in gene X but not gene Y
(and vice versa for Wy). In addition, a statistical confidence
measure (P value) was assigned to each interaction based on

a combination of the observed variation of each double mu-

tant across four experimental replicates and estimates of

background log-normal error distributions for the corre-

sponding query and array mutants. Finally, a defined confi-

dence threshold (jej . 0.08, P , 0.05) was applied to

identify epistatic interactions (Costanzo et al. 2010). The

gene pairs with epistatic interactions were downloaded
from http://drygin.ccbr.utoronto.ca/;costanzo2009/.

Calculation of Clustering Coefficient for Epistatic
Subnetworks

The clustering coefficient is a measure of the degree to

which nodes in a network tend to be clustered together.

For the node j with the connectivity i (i . 1) in a network,
its clustering coefficient Cj is defined as the following:

Cj 5
2nj

iði � 1Þ ;

where nj is the total number of links connecting all the

neighbors of the node j (Barabási and Oltvai 2004). The av-

erage clustering coefficients for each of the 354 studied
traits were calculated using clustering coefficients of con-

tributing genes in the corresponding epistasis subnetworks

(Li et al. 2010).

Statistical Fitting for the Scale-Free Distribution

Scale-free topology means that the distribution of degree in

the network, P(K), approximates a power law:

PðKÞ5K � m;

where K is the degree and m is the degree exponent, which is
usually a constant for a specific network (Barabási and Oltvai

2004). In our analyses, the degree (K) was calculated as the

number of epistatic interactions for each contributing gene

in each of the 354 epistasis subnetworks. We then calcu-

lated the average frequency of each degree value among

all 354 traits and plotted the frequency distribution of the

network degree in figure 2A. MATLAB (Mathworks) was

used to fit the regression.

Results and Discussions

Prevalent and Modular Epistasis among Genes
Underlying the Same Growth Traits

In order to study the genetic architecture of growth traits,
we firstly identified genes that are responsible for growth

traits. Based on a genome-wide screen for growth defects

of ;6,000 S. cerevisiae gene deletion mutants in 354 dis-

tinct growth conditions, genes that contribute to growth

in each condition were defined as those genes heterozygous

deletion of which significantly affect organism growth in

that condition (Hillenmeyer et al. 2008). To ensure that these

354 conditions represent independent growth traits, we cal-
culated the overlap of contributing genes between any 2 of

the 354 conditions. As shown in supplementary fig. 1 (Sup-

plementary Material online), 96% comparisons between

any two conditions have less than 10% overlap of contrib-

uting genes and 99%comparisons have less than 20%over-

lap, indicating that most of the 354 conditions are

functionally independent. In addition, we took advantage

of epistatic interaction data in yeast from a recent study
(Costanzo et al. 2010), in which epistatic interactions are

examined among more than 5 million gene pairs in S. cer-
evisiae. Subnetworks with epistatic interactions among con-

tributing genes for each of the 354 growth conditions were

reconstructed.
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While most people agree that epistasis plays an important

role in the genetic architecture of complex traits, there is
a disagreement about how common epistatic interactions are

within genes that contribute to the same trait (Moore 2003;

Phillips 2008). Using the reconstructed 354 epistasis subnet-

works, we found that when two genes are responsible for

the same growth trait, on average, 3.6% of them are linked

by an epistatic interaction. We then conducted a simulation

by keeping the number of genes responsible for each trait as

a constant, but randomly choosing genes to be responsible
foreachtrait (repeated100,000times). Ineachiteration,wealso

calculated the fraction of gene pairs connected by epistatic

interactions. As shown in figure 1A, a significantly higher ratio
wasobservedfortherealexperimentaldatathanthatofrandom

expectation(;3.2%,fig.1A,P,10�5), indicatingthatepistasis

is enriched among genes responsible for the same biological

traits. It is also noteworthy that the increase of epistasis
(;13% more than random expectation) among contribut-

ing genes underlying the same growth trait in yeast is not

dramatic.

Previous studies proposed that gene pairs linked by epi-

static interactionswould be predictive of participation in com-

mon cellular functions (Tong et al. 2004; Costanzo et al.

2010). However, although our above result is consistent with

this expectation, it has never been shown before that the con-
tributing genes underlying the same traits are also enriched

with epistatic interactions. To further understand whether

genes that contribute to the same growth traits are closely

connected by epistasis, we calculated the average clustering

coefficient, a network parameter that reflects the tightness of

connection for a group of genes by immediate interactions

(Barabási and Oltvai 2004), for genes that underlie each

growth trait. The larger the clustering coefficient is, the more
interlinked the group of genes are. For each of the 354 bio-

logical traits, we calculated the average clustering coefficient

among its contributing genes. For comparison, we also calcu-

lated the average clustering coefficient for each trait in each

of the above 100,000 simulations. Figure 1B shows the cumu-

lative distributions of the clustering coefficients for real obser-

vation and random simulations. Our result indicates

that genes underlying the same biological traits tend to be
closely interconnected by epistatic interactions (Kolmogor-

ov–Smirnov test, P 5 2 � 10�31).

Assortative Characteristic of Epistatic Interactions
for Growth Traits

We further investigated howepistasis is distributed among the

contributing genes for each growth trait. Most biological net-

works are scale-free, meaning that the network consists of
a small number of highly connected ‘‘hub’’ genes and a ma-

jority of genes with few interactions (Barabási and Oltvai

2004). The degree (connectivity in the network) in a scale-free

network usually follows a so-called ‘‘power-law’’ distribution.

To examine whether the epistatic interactions among the con-

tributing genes that underlie biological traits also display the

scale-free characteristic, we calculated the connectivity for

all contributing genes in each of the 354 subnetworks, respec-
tively. We then investigated the distribution of degrees that

were averaged over all 354 subnetworks. Figure 2A confirms

that epistatic interactions underlying growth traits follow the

power-law distribution. Contributing genes underlying most

individual traits also show the similar pattern (supplementary

fig. 2, Supplementary Material online).

How is epistasis distributed among the contributing

genes with different connectivity? To answer this question,
for each trait, we first computed the number of epistatic in-

teractions (Nko) among the contributing genes that have

more than k interactions in each of the observed epistasis

subnetworks. Randomized versions of the epistasis subnet-

work were also generated for that trait, in which all the

FIG. 1.—Prevalent and modular epistasis in the genetic architec-

ture of growth traits. (A) The distribution (red color) represents the

average ratio of contributing gene pairs that are linked by epistatic

interactions in the 354 traits based on random simulations (repeated

100,000 times). The arrow indicates the average ratio of contributing

gene pairs that are linked by epistatic interactions in the 354 traits based

on real experimental data. (B) The empirical cumulative distribution of

the clustering coefficients for experimental observations (all 354 traits,

blue curve) and random simulations (repeated 100,000 times for the

354 traits, red curve). The Kolmogorov–Smirnov test indicates that the

two distributions are significantly different (P 5 2 � 10�31).
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contributing genes have the same degree as the real epis-

tasis subnetwork, but the epistatic interactions between

the contributing genes are randomly connected. For each

trait, we calculated the average number of interactions
(Nks) among the contributing genes that have more than

k interactions from 1,000 randomly generated networks.

For each value k, we computed the average ratio of Nko/Nks

among all 354 traits. As depicted in figure 2B, the ratio

of Nko/Nks increases with k, indicating that epistasis is en-

riched among the contributing genes that are highly con-

nected in the epistatic networks. When the ribosomal

proteins and chaperones, which might represent universal
hubs in the epistatic interaction network, are excluded,

the pattern still holds (supplementary fig. 3, Supplementary
Material online).

When epistatic interactions among genes that affect or-

ganism growth in a particular condition are investigated, the

contributing hub genes for this trait are by definition more

likely than the nonhub genes to be linked by epistatic inter-

actions. However, this increase in connectivity for the hub

genes could be due to increased interactions either linking

to other hub genes or linking to nonhub genes. Indeed, the
unique network architecture of enriched epistatic interac-

tions among the hub genes revealed in this study, which

is termed as ‘‘assortative’’ in social networks (Newman

2002), is surprising because all previous analyses of available

cellular networks, including protein–protein interaction net-

works, transcriptional regulatory interaction networks, and

metabolic interaction networks, display disassortative topol-

ogies in which the connections among hub genes are sys-
tematically suppressed, and the high connectivity for the

hub genes in these networks are caused by enriched inter-

actions between hub and nonhub genes (Maslov and Sneppen

2002; Newman 2002).

Implication for Pleiotropy, Epistasis, and Complex
Traits

Why do highly connected hub genes tend to epistatically
interact with each other more frequently than expected?

It was shown that the hub genes in the epistasis network,

when mutated, tend to display impacts on more pheno-

types than the nonhub genes and thus are more likely to

have a higher level of pleiotropy (Costanzo et al. 2010).

It might be true that highly pleiotropic genes would have

higher chances of developing functional overlaps among

themselves in the fixed functional space of a cellular sys-
tem. In addition, previous studies showed that two genes

with overlapping functions tend to be linked by epistatic

interactions (Tong et al. 2004; Costanzo et al. 2010). As

a result, highly pleiotropic hub genes would have higher

chance to develop epistatic interactions among themselves.

Our observation in figure 2B is consistent with this scenario,

indicating that pleiotropy might play an important role in

shaping the genetic architecture of complex traits (Wagner
and Zhang 2011).

Although we found several novel characteristics for the

genetic architecture of growth traits, several caveats need

to be addressed. First, epistatic interactions used here were

inferred from high-throughput experiments, which were

mostly based on double gene deletion mutants. These muta-

tions are likely to be different frommost epistatically interact-

ing mutations that underlie organism phenotypic differences
in nature. Second, growth under environmental perturba-

tions was used to represent biological traits (Hillenmeyer

et al. 2008), which are also different from naturally occur-

ring phenotypic traits. Third, the epistatic interactions,

which are deduced from single and double mutants, are

FIG. 2.—Assortative genetic architecture of growth traits. (A) The

degree distribution of epistatic networks over 354 biological traits.

MATLAB (Mathworks) was used to fit the regression and the small P

value indicates that the network degree displays the scale-free

characteristic. (B) Average ratio of observed/expected number of

epistatic interactions among the 354 traits. For each epistasis sub-

network, the number of epistatic interactions among all contributing

genes that have more than k epistatic interactions was calculated (the

observed numbers). The epistatic interaction in the subnetwork was

randomized and the average number of epistatic interactions among all

contributing genes that have more than k epistatic interactions was also

calculated from 1,000 random simulations (the expected numbers). The

bands, boxes, and whiskers represent the means, ±1 standard errors,

and ±95% confidence intervals, respectively.
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incomplete because real epistasis underlying the growth
traits could exist among more than two genes. Future

high-throughput dissections, if possible, on the phenotypic

consequences of naturally occurring genetic variations will

help illustrate the genetic architecture of growth traits. For

the moment, the approach in this study, which was used in

recent studies (e.g., Dowell et al. 2010), represent excellent

tools to investigate this issue. We also need to point out

that epistasis among genes could be condition specific,
as shown in a recent study (Bandyopadhyay et al. 2010).

However, using the same data set from the paper, we were

able to show that the majority of the sign of epistases are

shared between two conditions (supplementary fig. 4,

Supplementary Material online). With these limitations in

mind, our observations identified several important fea-

tures of the genetic architecture of growth traits and indi-

cate the importance of future effort for addressing the
architecture of epistatic interaction networks in illustrating

the genetic basis of complex traits, including human dis-

eases.

Supplementary Material

Supplementary figures 1–4 are available at Genome Biology
and Evolution online (http://www.gbe.oxfordjournals.org/).
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