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A B S T R A C T   

Daily new information emerges regarding the COVID-19, infection of SARS-CoV-2, which is considered a global 
pandemic. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are 
required to complete the viral invasion pathway and are present in the oral mucosa, gingiva and periodontal 
pocket. Thus, increasing the likelihood of periodontitis and gingivitis caused by COVID-19. The cytokine storm 
during COVID-19 similarly arises during periodontal inflammation. Studies have reported that NOD-Like Re-
ceptor family pyrin domain-containing 3 (NLRP3) inflammasome is significant in the cytokine storm. Recently, 
the course of the COVID-19 has been related to the melatonin levels in both COVID-19 and periodontal diseases. 
It is known that melatonin prevents the activation of NLRP3 inflammasome. In light of these findings, we think 
that melatonin treatment during COVID-19 or periodontal diseases may prevent the damage seen in periodontal 
tissues by preventing the activation of NLRP3 inflammasome.   

Introduction 

COVID-19, an infection of SARS-CoV-2, which emerged in Wuhan, 
China in December 2019, has become a global pandemic, with the daily 
levels of mortality and morbidity continuing and increasing [1]. 

The oral cavity serves as an important reservoir for pathogens, 
through the continuous microbial communication between the envi-
ronment and the human body. Since SARS-CoV-2 is being harboured in 
the oral cavity, and abundantly present in saliva, these saliva samples 
are at the forefront of COVID-19 diagnoses using PCR based methods 
[2]. SARS-CoV-2 requires angiotensin-converting enzyme 2 (ACE2) and 
transmembrane protease serine 2 (TMPRSS2) receptors for entry into 
cells. ACE2 and TMPRSS2 were abundantly expressed in the oral mu-
cosa, gingiva, periodontal pocket and dorsal surface of the tongue [2,3]. 

Although the SARS-COV-2 invasion is mediated through the ACE2 
receptors, ACE2 activity decreases after virus replication which involves 
the activation of ACE1 enzyme. It leads to increased infiltration of 
neutrophils, with a rise in levels of reactive oxygen species, nuclear 
factor-κB (NF-κB), and NLRP3 inflammasome [4,5]. Smell and taste 
disturbances caused by cytokine storm are involved in this syndrome’s 

pathogenesis [6]. Activation of NLRP3 inflammasome leads to an in-
crease in cytokine levels, which results in caspase-mediated inflamma-
tory cell death (pyroptosis) and tissue loss [7]. 

The hypothesis 

The elevation in cytokine expression in COVID-19 infection can 
cause disease in periodontal tissues or worsening of the COVID-19 
prognosis is possible in people with periodontal disease. During 
COVID-19 infection, modulation of the immune system can prevent 
inflammation, especially in periodontal tissues. Likewise, suppression of 
periodontal inflammation can be expected in patients with periodontal 
disease who are also exposed to COVID-19. Since melatonin is an 
immunomodulator with a pleiotropic effect, we think it can suppress the 
synergistic effect between COVID-19 and periodontal diseases. 

Evaluation of the hypothesis 

Microorganisms mediate inflammation and tissue injury in peri-
odontal diseases. Periodontal tissues are also likely to be affected by 
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COVID-19, which has become widespread and distressing throughout 
the world [8]. The fact that ACE2 and TMPRSS, which play a crucial role 
in the invasion of SARS-CoV-2, are also localized in the mouth. Thus, the 
virus may also influence inflammation in the periodontal tissues and 
cytokine storm [9,10]. 

The pineal gland synthesizes melatonin, N-acetyl-5-methoxytrypt-
amine, a powerful antioxidant and immunomodulator, and its activities 
such as regulating the seasonal reproductive cycles and circadian 
rhythm. Melatonin has been reported to have scavenging effects with 
direct action against free radicals [11,12]. Moreover, it enhances the 
antioxidant defence system by increasing endogenous antioxidants; such 
as superoxide dismutase, glutathione peroxidase, and catalase [13]. 
Additionally, melatonin possesses a pleiotropic effect on the modulation 
of the immune system [14,15]. This process occurs under both physio-
logical and physiopathological conditions [16,17], where melatonin has 
been shown to elevate antibody levels in cases where the immune sys-
tem is weakened and inhibits cytokine expression in pathological events 
where the immune system has become over-activated [18,19]. 

Various inflammation models have established melatonin’s crucial 
role in reducing NLRP3 inflammasome levels, mainly via its immuno-
suppressant effect. Thus, melatonin exerts a protective effect by pre-
venting the cytokine and pyroptosis cascade such as NLRP3/Caspase-1/ 
IL-1β [20,21]. The abundance of ACE2 and TMRPSS enzymes plays a 
vital role in COVID-19′s virus invasion into oral tissues. In the later 
period, with virus replication, ACE1 is activated, and this causes cyto-
kine expression. This inflammatory process coincides with the mecha-
nism of inflammatory dental diseases such as periodontitis, caused by an 
increase in NLPR3 inflammasome. 

COVID-19 and NLRP3 

SARS-CoV-2 invasion causes NLRP3 activation in cells and cytokine 
secretion and disruption of tissue integrity (Fig. 1) [5]. The viral genome 
expresses three ion channel proteins: open reading frame (ORF) 3a 
(ORF3a), ORF8a and E [22,23]. ORF3a and E are required for both 
replication and virulence. These proteins act as NLRP3 agonists [24,25] 
and possibly mediates the pathogenesis of inflammation, the formation 

of reactive oxygen species and caspase 1 activation in COVID-19 
[26,27]. 

Periodontitis and NLRP3 

Chronic periodontitis, which influences most of the adult population, 
is a biofilm-induced chronic inflammatory disease that affects the con-
nective tissue and the alveolar bone between tooth and results in the 
slow progressive destruction of periodontium, pathological periodontal 
pocket formation, gingival recession and tooth loss [28]. The patho-
genesis of chronic periodontitis is complex and multifactorial. Although 
the disease’s aetiology is the colonization of subgingival bacteria, called 
periodontopathogen, that forms the biofilm, it is the host inflammatory 
response that determines the progression and pattern of the disease 
[29]. Periodontal health refers to the maintenance of the host- 
microorganism balance in the periodontium, also called homeostasis. 
High resistant biofilm, changes in the host’s immunoinflammatory state, 
and various predisposing factors cause this balance to change in favour 
of the microorganisms, also known as dysbiosis and initiates inflam-
matory changes [30]. 

Periodontal diseases are infections caused by bacterial species com-
plex. This ensures inflammatory cytokines secretion [31]. The red 
complex consists of Treponema denticola, Porphyromonas gingivalis and 
Tannerella forsythia, which are later involved in biofilm development 
and are considered to induce and progress periodontitis. These bacterial 
strains are prominent in adult periodontitis cases and sites with deeper 
pockets or more advanced lesions [32]. Of these species, Porphyromonas 
gingivalis is primarily responsible in the development of chronic peri-
odontitis [33]. 

Cytokine secretion is activated by inflammatory cells against bacte-
rial infection. Cytokines are initially protective in eliminating infectious 
bacteria. However, overproduction of inflammatory cytokines is related 
to periodontal degradation, including collagen destruction, alveolar 
bone resorption and the loss of periodontal attachment [34]. 

Inflammasomes are reported to be responsible for the maturation of 
proinflammatory cytokines and pyroptosis. They are the key compo-
nents in the pathogenesis of inflammatory diseases. In particular, the 
function of NLRP3 has been demonstrated in COVID-19 during cytokine 
storm and has been shown to increase cytokine expression in peri-
odontitis (Fig. 1) [35,36]. 

Melatonin and NLRP3 

Melatonin, an immunomodulator, prevents activation of NLRP3 
during inflammation. It has also been detected that melatonin prevents 
NLRP3 activation during sepsis, thus exhibiting an anti-inflammatory 
effect (Fig. 1) [37]. Likewise, Cao et al.’s [38] study found that mela-
tonin suppresses NLRP3 inflammasome in cadmium toxicity, lowering 
the level of proinflammatory cytokines and preventing caspase 1 
mediated pyroptosis. Besides, the role of NLRP3 inflammasome in 
neurodegenerative disorders has been shown, and melatonin has been 
reported to slow down the progression of neurodegenerative diseases, 
through the suppression of NLPR3 inflammasome activation [39]. 

COVID-19 and melatonin 

It has previously been observed that melatonin has indirect antiviral 
effects due to its antioxidant, immunomodulatory and anti- 
inflammatory properties [40]. It has been suggested that during 
COVID-19, melatonin can prevent cytokine storm with its immuno-
modulatory effect and thus have a protective effect [41]. It has been 
reported in these studies that melatonin may be a potential agent by 
suppressing the CD 147 protein that causes virus invasion during 
COVID-19, preventing toll-like receptor activation, and blocking in-
flammatory pathways [15,42]. 

Fig. 1. SARS-CoV-2 and Periodontitis promote expression of NLRP3 inflam-
masome and thus leads to a cytokine response and pyroptosis. Melatonin may 
act an inhibitory effect on reducing NLRP3. 
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Periodontitis and melatonin 

Periodontitis has been identified as the sixth most prevalent condi-
tion worldwide, as stated in the Global Burden of Disease 2010 Study 
[43]. Periodontal disease contributes to the inflammatory burden of oral 
diseases, shares common risk factors with various chronic diseases, 
resulting in a poorer prognosis. The World Health Organization recently 
emphasized the importance of strengthening periodontal diseases since 
periodontal diseases contribute significantly to the global burden of 
chronic diseases [44]. 

Melatonin, which is secreted in various tissues other than the pineal 
gland, is present in the oral epithelium, salivary gland ducts, maxillary 
alveolar bone osteoblasts among other oral cells and fibroblasts of the 
mucosal lamina propria [45]. It has been shown that reactive oxygen 
species and increased cytokine expression cause alveolar tissue loss in 
periodontitis [46]. In the study of Almughrabi et al., it was found that 
salivary melatonin levels from patients suffered from gingivitis and 
periodontitis were lower than healthy ones [47]. Cutando et al. has also 
reported a positive correlation between saliva melatonin levels and 
periodontitis [48]. Melatonin has been shown to reduce periodontal 
damage in experimental periodontitis studies in animals [49,50]. 

Consequences of the hypothesis and discussion 

There is a possibility of periodontal diseases during COVID-19, as the 
enzymes ACE2 and TMRPSS, which are required for SARS-COV-2 in-
vasion, are also present in tissues such as the tongue and periodontal 
pocket. Likewise, increased NLRP3 activation and cytokine expression 
during periodontitis may further exacerbate COVID-19. NLRP3 provides 
the ability to further increase the cytokine storm during both COVID-19 
and periodontitis. This increases the likelihood that damage to peri-
odontal tissues, and the effects on entire systems will be more severe. 
Therefore, modulation of the immune system is important for the pro-
tection of both oral and other tissues. Melatonin, along with its antiox-
idant and anti-inflammatory properties, is thought to reduce COVID-19 
and periodontal damage by preventing NLRP3 activation and cytokine 
expression and pyroptosis. 
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design of the study. AÖŞ, UA, RBKÜ and SS have been involved in 
literature search, data analysis, and drafting the manuscript. AÖŞ criti-
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Serafín-Higuera N. Is periodontal disease a risk factor for severe COVID-19 illness? 
Med Hypotheses 2020;144:109969. https://doi.org/10.1016/j. 
mehy.2020.109969. 
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