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Learning regularities that exist in the environment can help the visual system achieve

optimal efficiency while reducing computational burden. Using a pro- and anti-saccade

task, studies have shown that probabilistic information regarding spatial locations can be

a strong modulator of frontal eye fields (FEF) activities and consequently alter saccadic

behavior. One recent study has also shown that FEF activities can be modulated by

transcranial direct current stimulation, where anodal tDCS facilitated prosaccades but

cathodal tDCS prolonged antisaccades. These studies together suggest that location

probability and tDCS can both alter FEF activities and oculomotor performance, yet

how these two modulators interact with each other remains unclear. In this study,

we applied anodal or cathodal tDCS over right FEF, and participants performed

an interleaved pro- and anti-saccade task. Location probability was manipulated in

prosaccade trials but not antisaccade trials. We observed that anodal tDCS over

rFEF facilitated prosaccdes toward low-probability locations but not to high-probability

locations; whereas cathodal tDCS facilitated antisaccades away from the high-probability

location (i.e., same location as the low-probability locations in prosaccades). These

observed effects were specific to rFEF as tDCS over the SEF in a separate control

experiment did not yield similar patterns. These effects were also more pronounced

in low-performers who had slower saccade reaction time. Together, we conclude that

(1) the overlapping spatial endpoint between prosaccades (i.e., toward low-probability

location) and antisaccades (i.e., away from high-probability location) possibly suggest an

endpoint-selective mechanism within right FEF, (2) anodal tDCS and location probability

cannot be combined to produce a bigger facilitative effect, and (3) anodal rFEF

tDCS works best on low-performers who had slower saccade reaction time. These

observations are consistent with the homeostasis account of tDCS effect and FEF

functioning.
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INTRODUCTION

Learning regularities that exist in the environment can help
the visual system achieve optimal efficiency while reducing
processing load. This is true from foraging behavior in the
wild (Allman, 2000) to knowing where to look in scene
perception (Gegenfurtner, 2016) or even sports (Land and
McLeod, 2000). Studies have shown that the processing of
probabilistic information can be implicit (Chun and Jiang, 1998;
Fiser and Aslin, 2001; Geng and Behrmann, 2005; Tseng et al.,
2011), and is reflected in the efficiency by which it guides one’s
eye movements toward the probable locations (e.g., Peterson
and Kramer, 2001). As such, studies that have employed eye
movement tasks have repeatedly shown that targets in the high
probability locations are detected faster than targets that appear
in less likely locations (Miller, 1988; Carpenter and Williams,
1995; Geng and Behrmann, 2005; Gmeindl et al., 2005; Milstein
and Dorris, 2007, 2011; Summerfield and Egner, 2009).

Probabilities and Pro- and Anti-saccades
To investigate how the visual system processes probabilistic
information, eye movement task involving pro- and anti-saccade
is an excellent candidate because of its simplicity, and well-
delineated cognitive architecture and neurophysiological basis
(Schall andHanes, 1993; Basso andWurtz, 1997; Carpenter, 1999;
Schall and Thompson, 1999; Schall, 2001, 2004, 2009; Schiller
and Kendall, 2004). In this task, prosaccades are eye movements
toward a cue, while antisaccades are eyemovementsmoving away
from the cue. The visual attention and oculomotor system is
capable of learning probabilistic information in the environment,
and subsequently predicting where a target of interest may be
located. Consequently, prosaccades toward targets in the high
probability locations are faster than targets in other locations
(e.g., Miller, 1988; Geng and Behrmann, 2005; Liu et al., 2010).

In a typical pro- and anti-saccade task, it is frequently
observed that antisaccades have longer latencies than
prosaccades—a delay known as the antisaccade cost (Hallett,
1978). The difference between pro- and anti-saccade latency
reflects the operation of different cognitive components. Everling
and Fischer (1998) have suggested that the suppression of
automatic response (i.e., prosaccade) and the generation of
saccade toward the opposite direction are both important
sub-processes that contribute to a successful antisaccade. This
highlights the possible competing nature between pro- and
anti-saccades (Kristjánsson et al., 2001, 2004; Kristjánsson,
2007). Importantly, the factor of location probability, when
introduced in this paradigm, has been shown to be powerful
enough to modulate the magnitude of the antisaccade cost (Liu
et al., 2010). In one of our previous studies, Liu et al. (2010) used
a probability orienting task that had 75% target probability in
one location, and 25% evenly distributed in the remaining three
locations. Antisaccade trials were interleaved but did not embed
any spatial probability components. We found faster prosaccades
and no effect in antisaccades, but only in the high probability
location. Therefore, in that experimental context, probabilistic
information was able to modulate saccadic behaviors in a way
that was prosaccade-specific and location-specific.

Neural Mechanisms
Studies in monkeys have demonstrated that the frontal eye
fields (FEF) is involved in at least two stages of oculomotor
control in the context of a saccade task: visual selection (see
Thompson et al., 1996, 1997; Bichot and Schall, 1999) and
motor preparation (see Juan et al., 2004, 2008). Evidence has
also suggested that the supplementary eye field (SEF) can be
crucial to oculomotor learning (Chen and Wise, 1995), reward
prediction and detection (Amador et al., 2000; Uchida et al.,
2007), performance monitoring (Stuphorn et al., 2000), and
antisaccades (Schlag-Rey et al., 1997; Munoz and Everling, 2004).
To clarify the contributions of FEF and SEF in processing
probabilities information within the oculomotor system, we have
previously conducted a TMS study that selectively impaired
the functioning of either FEF or SEF (Liu et al., 2010). When
coupled with theta burst TMS that interfered with rFEF activities,
we found prolonged saccade latencies in both saccade types
(i.e., a general oculomotor function). We also observed slower
prosaccades only toward the high-probability location, while the
same TMS protocol did not produce any effect when applied
over the SEF. Similarly, in another TMS study, Juan et al. (2008)
demonstrated that FEF is critically involved in the pro- and anti-
saccade task in two distinct time windows, including the visual
attentional processing stage and the saccade preparation stage.
Both of these stages are important functions now associated with
the FEF. Based on these TMS findings, if anodal and cathodal
tDCS can modulate probabilistic information processing in
an excitatory and inhibitory manner, respectively, then the
straightforward prediction is that prosaccade would be faster
toward the high-probability (and possible low-probability as
well) locations, and slower to the same locations after cathodal
tDCS.

Although the probability paradigm has not been used in
combination with tDCS to date, one important study by Kanai
et al. (2012) did investigate an equal-probability version of this
saccade task, with anodal or cathodal tDCS over the FEF. These
authors found that anodal tDCS facilitated prosaccades, whereas
cathodal tDCS prolonged antisaccades. These results seem to
suggest a dissociation between anodal and cathodal stimulation
in terms of the types of saccades they impact (anodal for pro
and cathodal for anti), as well as the direction of their effect
(facilitating vs. slowing).

The Current Study
Kanai et al.’s study (Kanai et al., 2012) clearly demonstrated tDCS
as a modulator of oculomotor behavior. However, since location
probability has been shown to be a strong modulator of eye
movements both at the behavioral level (Geng and Behrmann,
2005; Liu et al., 2010) and neurophysiological level (Dorris and
Munoz, 1998; Schall, 2004; Liu et al., 2011), precisely how these
two modulating factors may interact with each other remains
unclear. In the present study, we used a similar setup as those
used by Kanai et al. (2012) and Liu et al. (2010, 2011) and applied
anodal or cathodal tDCS over rFEF. To control for current flow in
the brain, we included a control experiment of anodal tDCS over
SEF in addition to the two within-subject sham-tDCS sessions.
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METHODS

Participants
Sixty participants (31 male, 29 female) between the age of
20 and 30 were recruited from National Central University.
Participants were randomly assigned into 3 experiments: the
anode experiment (n= 20), cathode experiment (n= 20), and the
control experiment (n= 20). Participants’ data were incorporated
into group data for further analysis only if they showed a
positive probability effect during practice (Liu et al., 2010). This
criterion was used because, to investigate the potential interaction
between location probability and tDCS, we had to ensure
that our participants were actually sensitive and responsive to
the manipulation of location probability. This left us with 20
participants in the anode condition, 15 in the cathode condition,
and 18 in the control experiment. All participants had normal
or correct-to-normal vision, and received monetary payment
for their participation upon completion of the experiment. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki, and the study protocol was approved
by the Institutional Review Board of the Linkou Chang Gung
Memorial Hospital, Taoyuan City, Taiwan.

Apparatus
Participants sat in a dimly lit room with their head stabilized
with a chinrest. Stimuli were presented on a 19-inch color
cathode ray tube monitor, positioned 86 cm in front of the
participants The monitor had a resolution of 1,024 × 768 pixels
and a vertical refresh rate of 100Hz. The brightness of stimuli
and background were measured by a ColorCAL colorimeter
(Cambridge research systems). Eye movements were recorded
from the left eye with an EyeLink II tracker (SR Research Ltd.)
and the task was programmed in Experimental Builder (SR
Research Ltd). The sampling rate was set at 500Hz. Anodal
and cathodal stimulation was delivered via a NeuroConn DC-
STIMULATORPLUS (neuroCare Group) and a pair of electrodes
housed in 4 × 4 cm saline-soaked sponge coverings. The FEF
electrode was secured in position using an elastic headband,
whereas the reference electrode was placed over the left cheek and
secured by medical tapes. The peak intensity was set at 1.5mA,
which lasted for 10min plus a 15 s ramp-up and ramp-down
time.

Task and Procedures
The experiment consisted of 2 sessions (sham vs. active tDCS)
that were counterbalanced across participants. The 2 sessions
were at least 1 week apart to avoid any unanticipated carryover
effects. Each session contained 194 trials with roughly equal
pairings of prosaccade and antisaccade probabilities (prosaccade:
98 trials; antisaccade: 96 trials, see Figure 1). Location probability
was only manipulated in prosaccade trials.

In each session, 75% of prosaccade trials were to be made
to the high-probability location (right) and the remaining
25% of trials were evenly distributed over the other 3 low-
probability locations (left, top, and down; Figure 1). All trials
were interleaved in random order regardless of saccade type
(prosaccade vs. antisaccade) or probability (low vs. high), which

ensured that the programming of a prosaccade or antisaccade
had to be withheld until participants had finished analyzing the
central saccadic indicator (Olk and Kingstone, 2003; Juan et al.,
2008; Jóhannesson et al., 2013).

In this study we employed a pro- and anti-saccade paradigm
that we have previously used with TMS stimulation (Liu
et al., 2010, 2011) with slight modifications. An eye-tracker
calibration procedure was performed at the beginning of the
experiment. After calibration, participants performed 40 practice
trials and then the formal experimental sessions. Participants
were instructed to perform the task as quickly and accurately as
possible. Each trial started when participants fixated at the central
fixation cross (0.5◦) for 400ms. A search display consisted of a
saccadic indicator in the center, and 4 stimuli in the periphery,
would then appear (Figure 1).

In the search display, the saccadic indicator (circles 2◦) was
always in the center and the 4 circles were 6.5◦ from the fixation
cross at the left, right, top, and bottom positions. There were
2 versions of the singleton: blue (Commission International
de l’Eclairage, x = 0.18, y = 0.19) among green (x = 0.27,
y = 0.51) circles or green among blue circles. Colors in the
array were approximately isoluminant (blue 27.7 cd/m2, green
28.4 cd/m2) and presented on a black background. Participants
were instructed tomake a single saccade according to the saccadic
indicator. The saccadic indicator consisted of two kinds of circles.
If a solid circle was presented, participants were to perform a
prosaccade to the colored singleton. And if a hollow circle was
presented, an antisaccade away from the colored singleton and to
the opposite side was required.

In the original paradigm (Liu et al., 2010, 2011), the contrast
brightness of two concentric circles was 40.1 and 32.6 cd/m2, and
the saccade latencies of pro- and anti-saccades were 665.4ms
and 724.3ms, respectively. In order to shorten saccade latencies
and reduce cognitive load during the discrimination process,
the saccade indicators were modified into a solid circle versus a
hollow circle. This modification was expected to reduce saccade
latencies and ensure that the modulation of saccade latencies
was caused by the probabilistic information. Upon completion
of each trial, the computer displayed “Next” at the center of the
monitor. Participants could either rest or press the space bar to
continue onto the next trial at any time.

tDCS Protocol
In both sessions, participants received tDCS (sham vs. active)
before performing the search task. The order of the sham and
active sessions was counterbalanced across all participants, and
the sessions were at least 24 h apart. This study used a single-
blind design, where the participants were naïve to the purpose of
the experiment and were not aware of which stimulation session
they were participating in.

In both sessions, the center of the tDCS electrode was
placed over the target site (rFEF or SEF), with the reference
electrode placed over the left cheek to avoid confounding cortical
activations (Nitsche and Paulus, 2001; Nitsche et al., 2003a,b; Im
et al., 2012). The sites for rFEF and SEF stimulation were based
on previous TMS studies that used a similar paradigm (Ro et al.,
2002; Juan et al., 2008; Liu et al., 2011). In these TMS studies,
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FIGURE 1 | Task design. The numbers in the parentheses denote the number of trials and relative probability. Note that location probability was only manipulated in

prosaccade trials, and not antisaccade trials. In the prosaccade trials, the high-probability location would only occur at either the left or right location (horizontal)

location, and would not occur at a vertical location. Antisaccades have equal probabilities at all 4 locations (24 trials per location).

FEF was functionally localized using a simple saccade task during
which TMS was delivered for 500ms at 10Hz over candidate
sites anterior to the hand motor area in the right hemisphere
using a grid of points separated from each other by 1 cm. The site
that resulted in the longest saccade latencies was marked as the
target point for stimulation during the main task. We computed
the mean rFEF and SEF coordinates from the subject pool of
our previous study (Liu et al., 2011), and derived the steps (in
cm) from the vertex that would reach and cover these mean
coordinates in these participants. This gave us 3 cm anterior
and 5 cm lateral from the vertex for rFEF localization, and 3 cm
anterior and 0.5 cm lateral from the vertex for SEF localization.

The current was applied for 10min, plus a 15 s ramp-up
and ramp-down time, with the peak intensity at 1.5mA. These
parameters are well within the most recent recommendations
on tDCS safety, proposed by (Antal et al., 2017) ( < 4mA and
up to 60min duration per day) and by Bikson et al., 2016, 2017
(≤4mA and ≤40min in one day). In the sham condition, tDCS
was turned on for the 15 s ramp-up and 15 s ramp-down time,
with 0 s duration in between.

After the stimulation, participants rested for 5min before
participating in the formal experiment. Each session lasted about
20min such that the experiment length did not exceed the
expected duration of the tDCS effect (Stagg and Nitsche, 2011).

Data Analysis
Accuracy and SRT data were analyzed with a repeated-measures
2 × 2 × 2 × 2 ANOVA with within-subject factors of saccade
type (prosaccad vs. antisaccade), location probability (high vs.
low), stimulation (sham vs. active), and between-subject factor
of polarity (anodal vs. cathodal).

Saccades were identified when the velocity and acceleration
of eye movements exceeded 30◦/s and 8,000◦/s2, respectively.
Only the first saccade made by the participant on each trial
was collected. Eye movements were recorded as correct saccades

when the eye landed within a computer-defined square boundary
(2◦ × 2◦, not visible to the participants) centered on the target.
Saccade latency was defined as the time interval between target
onset and the initiation of a saccade. To identify outliers, a
boxplot method was used to find data that were either 1.5
times the interquartile (subtracting the first quartile from the
third quartile) lower than the first quartile, or 1.5 times the
interquartile range higher than the third quartile.

The screening criterion for group analysis was whether the
participant showed a positive probability effect or not. This
positive effect was defined as the mean SRT of prosaccade made
to low probability minus the mean SRT of prosaccade to high
probability locations, regardless of effect size.

RESULTS

Mean percent correct rate for the anodal tDCS group was 78.5%
(pro = 82.7%, anti = 74.1%) in the sham session and 79.9%
(pro = 80.4%, anti = 79.4%) in the active session; for the
cathodal group it was 81.0% (pro = 86.4%, anti = 75.4%) in
the sham session and 80.4% (pro = 85.7%, anti = 75.1%) in the
active session (Supplementary Table 1). Incorrect trials were not
included in the analysis of SRT data.

Accuracy data were analyzed with a repeated-measures 2 ×

2 × 2 × 2 ANOVA with within-subject factors of saccade
type (prosaccad vs. antisaccade), location probability (high vs.
low), stimulation (sham vs. active), and between-subject factor
of polarity (anodal vs. cathodal). There was a significant main
effect of saccade type [F(1, 33) = 14.546, p = 0.001, η2p = 0.306]
and location probability [F(1, 33) = 30.155, p < 0.001], but no
effect pertaining to stimulation [F(1, 33) = 0.807, p = 0.375,
η
2
p = 0.024] or polarity [F(1, 33) = 0.044, p= 0.836, η2p = 0.001].

In terms of interactions, the 4-way interaction was not significant
[F(1, 33) = 0.030, p = 0.863, η

2
p = 0.001], or any of the

3-way interactions [saccade type × stimulation × polarity:
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F(1, 33) = 1.391, p = 0.248, η
2
p = 0.040; location probability ×

stimulation × polarity: F(1, 33) = 0.025, p = 0.876, η2p = 0.001;
saccade type × location probability × polarity: F(1, 33) = 0.017,
p = 0.898, η

2
p = 0.001; location probability × stimulation ×

saccade type: F(1, 33) = 0.190, p= 0.666, η2p = 0.006]. There was
a significant 2-way interaction between saccade type and location
probability [F(1, 33) = 32.859, p< 0.001, η2p = 0.499], stimulation
and saccade type [F(1, 33) = 7.255, p = 0.011, η

2
p = 0.180],

and saccade type and polarity [F(1, 33) = 6.885, p = 0.013,
η
2
p = 0.173]. Everything else was not statistically significant

[stimulation × polarity: F(1, 33) = 0.007, p = 0.936, η2p < 0.001;
location probability × polarity: F(1, 33) = 0.458, p = 0.504,
η
2
p = 0.014; location probability × stimulation: F(1, 33) = 1.480,

p = 0.232, η2p = 0.043]. Therefore, accuracy data seem to be not
affected by the presence of tDCS.

Saccade latencies were analyzed with a repeated measures
2 × 2 × 2 × 2 ANOVA with within-subject factors of saccade
type (prosaccad vs. antisaccade), location probability (high vs.
low), stimulation (sham vs. active), and between-subject factor
of polarity (anodal vs cathodal). There was a main effect
of stimulation [F(1, 33) = 5.528, p = 0.025, η

2
p = 0.143],

saccade type [F(1, 33) = 48.475, p < 0.001, η
2
p = 0.595], and

location probability [F(1, 33) = 9.951, p = 0.003, η
2
p = 0.232],

and no main effect for polarity [F(1, 33) = 0.195, p = 0.662,
η
2
p = 0.006]. We observed a significant 4-way interaction

[F(1, 33) = 4.873, p = 0.034, η
2
p = 0.129], as well as 3-

way interactions between saccade type, stimulation and polarity
[F(1, 33) = 11.888, p = 0.002, η2p = 0.265], and between saccade
type, location probability, and stimulation [F(1, 33) = 7.491,
p = 0.010, η

2
p = 0.185]. We also observed significant 2-

way interactions between saccade type and location probability
[F(1, 33) = 99.336, p < 0.001, η

2
p = 0.751], and between

polarity and location probability [F(1, 33) = 6.347, p = 0.017,
η
2
p = 0.161]. All other two-way and three-way interactions were

not statistically significant.

Anodal FEF tDCS
To further explore the 4-way interaction in saccade latency,
we conducted a 3-way ANOVA with saccade type, location
probability, and stimulation as within-subject factors in the
anodal and cathodal group (Figure 2). In the anodal group, there
was a significant main effect of saccade type [F(1, 19) = 21.326,
p < 0.001, η

2
p = 0.529] and probability [F(1, 19) = 21.461,

p < 0.001, η2p = 0.530], whereas the main effect of stimulation
was not significant [F(1, 19) = 2.180, p = 0.156, η

2
p = 0.103].

There was also significant interactions between saccade type
and probability [F(1, 19) = 76.017, p < 0.001], stimulation
and saccade type [F(1, 19) = 8.026, p = 0.011, η

2
p = 0.297],

stimulation and probability [F(1, 19) = 5.922, p = 0.025,
η
2
p = 0.238], and no 3-way interaction [F(1, 19) = 0.275,

p= 0.606, η2p = 0.014].
The effect of probability was significant in both prosaccades

[t(19) = 5.979, p < 0.001] and antisaccades [t(19) = −4.835,
p < 0.001]. There was a significant RT difference between
pro- and anti-saccades in the high probability locations
[t(19) = −7.392, p < 0.001], but no difference in the low
probability locations [t(19) = −1.458, p = 0.161]. To test Kanai

et al.’s 2012 findings, we also compared prosaccdes to the low
probability locations with and without tDCS, and observed a
significant faster RT after anodal rFEF tDCS. This is consistent
with Kanai et al.’s findings of faster prosaccades to low probably
locations after anodal tDCS.

In the sham condition, post-hoc analysis revealed a significant
effect of probability in prosaccades [t(19) = 6.124, p < 0.001] and
not antisaccades [t(19) = −0.590, p = 0.562]. The RT difference
between prosaccades and antisaccades was significant only in the
high-probability locations [t(19) = −6.987, p < 0.001] but not in
the low-probability locations [t(19) = 0.845, p= 0.409].

Cathodal FEF tDCS
In cathodal rFEF tDCS group, the main effect of saccade type was
significant [F(1, 14) = 27.799, p < 0.001, η

2
p = 0.665], whereas

the effect of stimulation [F(1, 14) = 3.381, p= 0.087, η2p = 0.195]
and probability were not significant [F(1, 14) = 0.151, p = 0.703].
There was a significant 2-way interaction between stimulation
and saccade type [F(1, 14) = 5.569, p = 0.033, η

2
p = 0.285],

and between saccade type and probability [F(1, 14) = 32.195,
p < 0.001, η

2
p = 0.697]. We also observed a significant 3-way

interaction [F(1, 14) = 0.275, p = 0.020, η
2
p = 0.330]. The only

non-significant interaction was the one between stimulation and
probability [F(1, 14) = 0.149, p= 0.705, η2p = 0.011] (Figure 3).

To explore these interactions, the effect of probability for
prosaccades was significant [prosaccade: t(14) = 3.092, p= 0.008;
antisaccade: t(14) = −1.816, p = 0.091]. There was a significant
RT difference between pro- and anti-saccades in low and high
probability locations [high probability: t(14) =−5.851, p< 0.001;
low probability: t(14) =−2.203, p= 0.045]. The effect of cathodal
tDCS showed that the saccade latencies after cathodal rFEF tDCS
was shorter only for antisaccades to high probability location
[t(14) = 2.436, p= 0.029].

In the sham-tDCS condition, post-hoc analysis revealed a
significant effect of probability in prosaccade [t(14) = 3.318,
p = 0.005] and antisaccade trials [t(14) = −3.668, p = 0.003].
The RT difference between prosaccades and antisaccades
was significant only in the high-probability locations
[t(14) = −6.344, p < 0.001] but not in the low-probability
locations [t(14) =−1.441, p= 0.172].

Lastly, since individual variability in responsiveness to tDCS
has been reported in many domains of cognitive functioning
(e.g., Hsu et al., 2016; Tseng et al., 2018), we plotted all
participants’ SSRT from the sham condition against their own
SSRT from the tDCS condition (Figure 4). As illustrated in
Figure 4, the effect of anodal tDCS in facilitating prosaccades to
the low-probablity locations, as well as the effect of cathodal tDCS
in facilitating antisaccades to high-probability locations, seem
to be mostly driven by the improvement from low-performers.
High-performers, on the other hand, did not respond well to
anodal or cathodal stimulation since their RT was already faster
than their low-performing counterparts. This pattern of tDCS
facilitation in low-performers has been well-documented in the
literature of visual memory (e.g., see Juan et al., 2017, for a
review), and here we report similar patterns in oculomotor
performance.
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FIGURE 2 | Effects of anodal tDCS on rFEF. There was a robust effect of location probability in prosaccades, as well as a pro- and anti-saccade tradeoff in the high

probability condition such that antisaccades became slower even though probability information was only manipulated in prosaccades. Anodal tDCS over rFEF

facilitated prosaccades toward the low-probability locations but not the high-probability location. Error bars represent standard error of the mean.

FIGURE 3 | Effects of cathodal tDCS on rFEF. Cathodal tDCS facilitated pro- and anti-saccades in the low probability condition, but more so for the pro- than

antisaccades, thereby showing a significant antisaccade cost in the low probability condition after tDCS. Importantly, cathodal tDCS produced faster antisaccade

away from the high probability location such that the antisaccade cost is actually significantly reduced in the high probability condition after cathodal tDCS. Error bars

represent standard error of the mean.

Control Experiment (Anodal tDCS Over
SEF)
To ensure that the effects reported above were specific to FEF
and not a general result of electricity flowing through the brain,
in this control experiment we applied anodal tDCS over the
SEF of a separate group of participants. Everything else was
identical to the FEF experiment. Mean percent correct of total
trials in control and tDCS conditions were 74.9% (pro = 78.4%,
anti= 71.4%) and 73.9% (pro= 77.4%, anti= 70.2%).

For SRT data, three-way repeated ANOVA was performed
with within-subject factors of stimulation, saccade type and
probability. There was a significant effect of saccade type
[F(1, 17) = 28.839, p < 0.001, η

2
p = 0.629], but no significant

effect of stimulation [F(1, 17) < 1, p > 0.05, η
2
p = 0.020]

or probability [F(1, 17) = 3.208, p > 0.05, η
2
p = 0.159]. We

also observed a significant interaction between saccade type
and probability [F(1, 17) = 51.748, p < 0.001, η

2
p = 0.753],

whereas all other interactions were not statistically significant
(Figure 5).

In antisaccade trials, we only observed a significant main
effect of probability [F(1, 17) = 11.381, p < 0.001, η2p = 0.401].
Antisaccade latencies were longer in the high-probability location
than in low-probability location. Post-hoc analysis showed that
the effect of probability was not only present in prosaccade trials
but also in antisaccade trials [sham: t(17) = 3.0, p < 0.01; tDCS:
t(17) = 3.1, p < 0.01]. There was no significant main effect of
tDCS [F(1, 17) < 1, p > 0.05, η

2
p = 0.014] or its interaction

with location probability [antisaccade: F(1, 17) <1, p > 0.05,
η
2
p < 0.001].

GENERAL DISCUSSION

In the present study we tested how anodal and cathodal tDCS
over rFEF would impact the processing of spatial probability in
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FIGURE 4 | Individual differences in responsiveness to tDCS. Anodal tDCS facilitated prosaccades toward high-probability locations (Top) while cathodal tDCS

facilitated antisaccades toward high-probability locations (Bottom). These effects were mainly driven by low-performers who showed slower saccade latencies in the

sham condition, as evidenced by the enlarged gap between the blue and orange lines in panel 1, and blue and green lines in panel 3.

FIGURE 5 | Results from the SEF control experiment. Anodal tDCS was applied over the SEF to control for the effect of electric current in the brain. There was a

strong effect of probability with and without tDCS, and anodal tDCS did not change the pattern of any results from the sham condition. These results suggest that the

probability task used here is quite specific to FEF functioning, and that the results we observed from FEF tDCS cannot be attributed to a general effect of electric

current in any brain region. Error bars represent standard error of the mean.
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both pro- and anti-saccades. We found that, regardless of tDCS,
there was a strong effect of location probability in prosaccades,
which was coupled with a slowing effect in antisaccades.
When anodal tDCS was applied over rFEF, prosaccade to low-
probability locations became faster. And with cathodal tDCS,
antisaccades away from the high-probability cue location (in
prosaccade trials) became faster. These observed effects were
specific to rFEF because anodal tDCS over the SEF (i.e., control
experiment) did not yield similar patterns. These results imply a
substantial difference between the effects of anodal and cathodal
tDCS over rFEF on the processing of probabilistic information,
but not in a way that is consistent with the conventional
assumption of tDCS bidrectionality. Furthermore, the effects of
tDCS seemed to be driven by participants with slower SRT (i.e.,
low-performers).

Prosaccade and Antisaccade Tradeoff
We first start with no-tDCS observations from the sham sessions.
Looking at the results from the sham sessions alone, it is quite
clear that the effect of spatial probability is strong in prosaccades.
As such, although previous studies have found that antisaccade
cost in RT can be eliminated when peripheral orienting and
cue discrimination is moved to the center location (Liu et al.,
2010; Chiau et al., 2011), in the present study we were able to
reinstate the antisaccade cost by introducing high spatial location
probabilities to the prosaccades. These results are consistent
with previous reports of a robust spatial probability effect in
oculomotor programming.

One observation is that in the high probability condition,
where prosaccades enjoyed a much faster RT, there seemed to
be a tradeoff in antisaccades such that antisaccades actually
became slower when the cue was presented in the high
probability location (Figures 2, 3, left). Upon closer inspection,
this probability-induced tradeoff was also present in one of
our earlier studies, although it was not noticed or discussed
before (Liu et al., 2010, Experiment 2 and Figure 4). This
tradeoff possibly suggest an automatic anticipation response
toward the high probability location, which was accrued over
the prosaccade trials and carried over to the antisaccade trials.
This pro- and anti-saccade tradeoff in the high probability
condition was only absent in the sham condition of Experiment
1, yet resurfaced after anodal tDCS was applied over the
rFEF. Therefore, this tradeoff effect that is usually induced via
probability, can also be induced via anodal tDCS over the rFEF.
We think this suggests that spatial information was learned
or encoded better with anodal tDCS applied over the rFEF.
Furthermore, the fact that this slowing is specific to the high-
probability cue locations, as opposed to all antisaccade trials
in general, implies that rFEF activity is specifically relevant for
processing probabilistic information, or the weighting of spatial
locations, instead of domain-general oculomotor programming
alone. Consequently, when a cue appeared at the probabilistically
salient location, a reflexive response to that location is triggered,
thus making an antisaccade to the opposite location more
difficult and slower. This suggests an important role for rFEF
in the encoding and processing of probabilistic information in
visual space.

Since our task informed the participants of trial type at the
start of every trial, we speculate that such anticipation to be a
result of implicitly-learned (and transferred) association, rather
than a reflection of deliberate decision-making. This would be
quite consistent with the wealth of implicit learning literatures
(Chun and Jiang, 1998; Fiser and Aslin, 2001; Tseng et al.,
2011, 2012), and also in line with the fact that most of our
participants did not realize the probability manipulation despite
the seemingly-obvious contrast in location ratios.

Anodal tDCS Effect in Prosaccades
Our anodal tDCS results showed a significant decrease in
latencies for prosaccades to the low probability locations. This
finding is somewhat similar to the Kanai et al. (2012) study that
reported faster prosaccades and reduced saccade error rate to
contralateral locations of the stimulated FEF. Although location
probability was not manipulated in that particular study, their
evenly-distributed probabilities can perhaps be equated with the
low-probability locations from the current study since the three
low-probability locations were also evenly distributed in terms
of their probability ratio. Therefore, our anodal tDCS results
seem to suggest that enhanced rFEF activity can also facilitate
processing of the low probability locations.

The simplest mechanistic explanation for this effect is
perhaps the activity level of rFEF—where high probability
prosaccades have already enjoyed heightened activities from
spatial probability, the low probability locations that lack
probabilistic advantages can only be facilitated via tDCS. If
we assume similar behavioral effect and neuronal mechanisms
behind the facilitatory effect of spatial probability and anodal
tDCS, as we have argued above, then it is plausible that the same
neural populations that are already tuned to high probability
locations cannot receive a further boost in activity via anodal
tDCS. Meanwhile, on the other hand, neural assemblies that
are tuned to low probability locations still have much room
for increasing activity. This interpretation would be consistent
with our understanding of saccade latency as dependent on the
time for FEF to reach its threshold (Hanes and Schall, 1996),
which is also true at the macroscopic level when we look at
individual differences in responsiveness to tDCS. For example,
in the visual working memory literature, it has been consistently
demonstrated that high-performers can hit their cognitive ceiling
(note: not task ceiling) in the sham condition, and therefore
tDCS tend to be non-effective in these participants (e.g.,
Tseng et al., 2016, 2018). Indeed, this is also what we have
observed here in our data: tDCS effect was mainly driven
by those with slower SRT in the sham condition (Figure 4,
top). This is discussed in more details in the tDCS section
below.

One alternative explanation is that anodal tDCS may have
modulated the processing of infrequent location information.
This is based on the studies that suggest an important role for
rFEF in processing unanticipated target locations. One study
by Doricchi et al. (2010) employed a cuing paradigm to clarify
the neural correlates of spatial and expectancy components
of endogenous and stimulus-driven orienting of attention.
They manipulated cue validity and probability, and found
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that regions in the right hemisphere such as the temporal-
parietal junction (TPJ), superior parietal lobule (SPL), and FEF
showed increased BOLD responses when targets appeared at
unattended locations after a spatial expectation was established
by a cue. In addition, another fMRI study by Shulman et al.
(2009) manipulated cue types (shifting cue vs. maintaining cue)
and the proportion of these two cue types while measuring
BOLD signals, and found greater dorsal frontoparietal (including
rFEF) activations when such reorienting was unexpected. In the
current study, participants over time had formed an expectation
of cues appearing in the high-probability location due to
prior experience, which makes low-probability locations less
anticipated and harder to reorient to.

Cathodal tDCS Effect in Antisaccades
The results from the cathodal condition looks similar to those
from the anodal condition, with two notable exceptions: (1) a
significant antisaccade cost in the low-probability condition, and
(2) faster antisaccades away from the high probability location.

The emerging antisaccade cost in the low-probability
condition can be a result of faster prosaccade or slower
antisaccade. From our results it seems that both saccade types
were facilitated by cathodal tDCS over rFEF, but to a lesser
extent in antisaccades. This presents a stark contrast to the results
from Kanai et al. (2012), who found slower antisaccades after
cathodal FEF tDCS. However, Kanai et al. attributed such slowing
in antisaccades to a poor suppression of enhanced reflexive
prosaccades to the cue. To this end, our data actually support
their interpretation. That is, the surfacing of the antisaccade
cost was in part due to faster prosaccade that trumped the
improvement in antisaccade (Figure 3). Therefore, our cathodal
tDCS results provide empirical support to their poor-suppression
account.

The cathodal effect becomes quite different in the high
probability condition. We observed a significant improvement
in antisaccade latency from sham to cathodal tDCS condition.
This effect is harder to account for, but seems to suggest that
cathodal tDCS has produced an endpoint-specific effect. That
is, if we look at the pro- and anti-saccade results together,
the anodal and cathodal effects are actually coming from
the same endpoint location. This is because low-probability
endpoints in prosaccade trials happen to coincide with high-
probability antisaccade endpoints. For instance, given that the
high probability cue location is on the right side, anodal tDCS
would facilitate prosaccades to the left side (i.e., low probability).
In an antisaccade trial, if a high probability cue appears again
(on the right), then the correct endpoint location would also
be at the left spot. Therefore, our results imply that tDCS over
rFEF seems to be endpoint-specific and favors the contralateral
field. This is also consistent with the conclusion from Kanai et al.
(2012).

Anodal vs. Cathodal tDCS in rFEF
One important observation of the present study is the
dissociation between tDCS polarity and their effects on saccade
type. That is, anodal stimulation seems to be more effective
in prosaccades, and cathodal in antisaccades. If we insist on

the anode-excitatory and cathode-inhibitory approach, then one
possibility is that cathodal tDCS may have impaired reflexive
prosaccades to the high probability location, thereby making the
competing antisaccades away from that location faster. However,
this interpretation is not supported by our prosaccade data, since
this would also predict a tDCS-induced slowing in prosaccades
in the cathodal condition. In fact, one benefit of the current
paradigm is that we have already conducted a rTMS study using
this task for comparison with the present findings (Liu et al.,
2011). In that particular study, continuous theta burst TMS that
is known to interfere cortical activity was applied over rFEF, and
prosaccades to high probability location was indeed significantly
impaired and prolonged (Liu et al., 2011). This rTMS finding
is exactly what the impairment account would predict, but is
actually in the opposite direction of what we have observed in
the current study. Therefore, the actual effect of cathodal tDCS
from the present study is incompatible with the notion of an
impairment or inhibitory effect, and cathodal tDCS is clearly not
an electrical equivalent of continuous theta burst TMS. On the
other hand, our data from the anodal condition is more in line
with the facilitation account, and looks more like the opposite
effect of the rTMS study (Liu et al., 2011).

The results from the present study also suggest that tDCS
models based on data from the motor cortex might need more
fine-tuning when it comes to predicting activities in the FEF.
Although early work from the 1960s in rats have established
anodal and cathodal stimulation as excitatory and inhibitory
(Albert, 1966; see Utz et al., 2010, for a review), this concept of
a bidirectional neuro-modulatory effect of anodal and cathodal
tDCS has been challenged recently (Jacobson et al., 2012; Krause
et al., 2013; Pirulli et al., 2014; Hsu et al., 2016), and is also not
supported by our data. This limitation may be due to differences
in neurophysiology, anatomical connections, or even cognitive
functioning (Juan et al., 2017). This also implies that, for every
brain region, systematic investigations using precise tasks that
target their activities are necessary in order to establish the effect
of anodal and cathodal tDCS in these regions. In this light, it is
important to note that our observation of an endpoint-specific
effect may also be specific to tDCS over rFEF, and in the context
of the current orienting paradigm.

Individual Differences in Responsiveness
to tDCS
Although anodal and cathodal tDCS had dissociable effects in
different saccade types, one common observation across the
anodal and cathodal conditions is the pattern of inter-individual
variation in our participants’ responsiveness to tDCS. Looking at
Figure 4, it is quite clear that the decrease in SRT was coming
from participants that had slower SRT in the sham condition.
This was true for both the anodal and cathodal condition in
prosaccade and antisaccade RT, respectively. This “room for
improvement” pattern strongly resembles the patterns of tDCS
effect in other studies, particularly the visual memory literature
(e.g., Juan et al., 2017). For example, we have previously reported
that anodal tDCS can interact with individual participant’s
natural baseline performance such that only the low-performers
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(i.e., below the median) would show an improvement effect
from anodal tDCS, whereas the high-performers would show no
effect at all (Tseng et al., 2012, 2016, 2018; Hsu et al., 2014).
This would be consistent with our understanding of tDCS and
its effect on firing rates (e.g., Nitsche et al., 2009) and can be
well explained by the recently-proposed inhibition-excitation
balance model (Krause et al., 2013), where overly-excited high-
performers cannot improve their cognitive performance with
anodal tDCS (for an excellent review on different models of
tDCS mechanisms, see Fertonani and Miniussi, 2017). In our
previous studies we have also reported that the magnitude
of the anodal tDCS effect in these low-performers is usually
somewhere between their natural baseline and below the high-
performers. That is, even when tDCS is facilitative, it is
not enough to bring them to the same level as their high-
performing counterparts (Juan et al., 2017). This pattern is
also true here at the task level, where tDCS did not bring
down low-probability prosaccade latencies to the same level
as high-probability did. This is plausible given that tDCS
is applied non-selectively over all neurons within rFEF (as
opposed to functional selection) and that only a small portion
of the electricity can actually get through the skull (Opitz
et al., 2016). It may be possible for future studies to direct
currents to particular neural assemblies within FEF by applying
tDCS while participants are actively performing a prosaccade
task, thereby varying the threshold of different neurons to
achieve state-dependent and targeted stimulation (Silvanto et al.,
2008).

CONCLUSION

In the present study we observed different effects of anodal and
cathodal stimulation on pro- and anti-saccades, respectively. It
was found that anodal tDCS over rFEF facilitated prosaccdes
to low probability locations, whereas cathodal tDCS facilitated
antisaccades away from the high probability cue location. Our
control experiment also rules out SEF for a causal role in
processing location probability since anodal tDCS over SEF did
not yield any findings. Our findings on the effect of anodal tDCS
on prosaccades are consistent with the anode-excitatory idea, and

the observation that only low-performing participants and low-
probability locations were facilitated closely resemble the state-
dependent (Silvanto et al., 2008) and homeostatic (Krause et al.,
2013) nature of tDCS that has been proposed by others (Juan
et al., 2017; Silvanto and Cattaneo, 2017). The effect of cathodal
tDCS on antisaccades away from high-probability locations is less
conclusive, and possibly reflect an endpoint-selective mechanism
within rFEF. Furthermore, these results suggest that the effect
of anodal rFEF tDCS, as well as its interaction with baseline
activity, is more generalizable and predictable across brain
regions and different studies; while a comparison between the
present cathodal results and our previous rTMS study suggest
that cathodal rFEF tDCS is not an electrical equivalent of
continuous theta burst TMS in the context of visual attention and
oculomotor control.
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