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Abstract: The dynamic patterns of the belowground microbial communities and their corresponding
metabolic functions, when exposed to various environmental disturbances, are important for the
understanding and development of sustainable agricultural systems. In this study, a two-year field
experiment with soils subjected to: chemical fertilization (F), mushroom residues (MR), combined
application of chemical fertilizers and mushroom residues (MRF), and no-fertilization (CK) was
conducted to evaluate the effect of fertilization on the soil bacterial taxonomic and functional compo-
sitions as well as on the rice yield. The highest rice yield was obtained under MRF. Soil microbial
properties (microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), urease, invertase,
acid phosphatase, and soil dehydrogenase activities) reflected the rice yield better than soil chemical
characteristics (soil organic matter (SOM), total N (TN), total K (TK), available P (AP), available K
(AK), and pH). Although the dominant bacterial phyla were not significantly different among fertil-
izations, 10 bacterial indicator taxa that mainly belonged to Actinobacteria (Nocardioides, Marmoricola,
Tetrasphaera, and unclassified Intrasporangiaceae) with functions of xenobiotic biodegradation and
metabolism and amino acid and nucleotide metabolism were found to strongly respond to MRF.
Random Forest (RF) modeling further revealed that these 10 bacterial indicator taxa act as drivers for
soil dehydrogenase, acid phosphatase, pH, TK, and C/N cycling, which directly and/or indirectly
determine the rice yield. Our study demonstrated the explicit links between bacterial indicator
communities, community function, soil nutrient cycling, and crop yield under organic and inorganic
amendments, and highlighted the advantages of the combined chemical and organic fertilization
in agroecosystems.

Keywords: bacterial community; fertilization; indicator species; rice yield; soil chemical properties;
soil microbial properties

1. Introduction

Modern agriculture is facing the challenge of meeting the increasing demand for
agricultural products [1]. Chemical fertilization is considered an effective way to maintain
the agricultural yield in agroecosystems [2]; however, excessive use of chemical fertilizers
has triggered a series of environmental problems (accumulation of heavy metals in soil,
water eutrophication, and soil acidification) [3–5]. Organic fertilization, such as with animal
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manure and/or plant residues, is an environmentally friendly way to improve the soil
nutrition and increase the agricultural yield [6]. This strategy though results in a lower
degree of soil nutrition than that from chemical fertilizers [7]. Simultaneous application of
chemical and organic fertilizers is considered to be an ideal strategy that benefits the soil
state, crop yield, and agricultural sustainability.

Microorganisms, especially the relevant functional species, play vital roles in agricul-
tural soil multi-nutrient cycling and crop disease biocontrol [8,9]. Such taxa not only use
the substances from the fertilizers to form easily absorbed nutrients for the plants but also
indirectly regulate soil pH through biochemical metabolism, which provides the optimum
conditions for microbial community growth and crop yield promotion [10]. Generally, fertil-
ization strategies tend to influence the soil microbial community structure [11], which can,
in turn, influence the microbial ecological functions [12,13]. Many studies have evaluated
the effect of fertilization on the soil microbial communities and have assessed how they
both promote the crop yield [1,14]. Exploring the microbial community functions, rather
than just identifying the microbial composition, is considered essential to understanding
the actual microbial functional roles in a given ecosystem [15,16]. Unfortunately, the ef-
fect of simultaneous chemical-organic fertilization on community functions is a topic that
remains unexplored.

Moreover, on numerous occasions, the entire microbial community’s composition
has been found, at the taxonomic level, to have demonstrated only minor and often
insignificant changes, with only several indicative species significantly differing, when
subjected to various fertilization amendments [17,18]. This represents a significant scientific
gap in research on the properties of fertilization and how these link the microbial indicator
communities and their metabolic functions with crop yield. Understanding the functions of
specific microbial indicator species is challenging as it requires multidisciplinary research
involving microbial ecology, microbiology, and ecosystem function analysis. Thus, studies
focusing on the link between the crop yield and microbial indicator taxa, including their
relevant functions, in the presence of simultaneous organic and inorganic amendments to
fertilization are rare.

In this study, Random Forest modeling and function prediction, combined with statis-
tical analysis, were used to study the effect of fertilization on the rice yield and taxonomic
and functional compositions of the indicator microorganisms. Since most of the rice culti-
vation period during experimentation was under anoxic conditions, the activities of fungi
were expected to be limited [19]; thus, in this study, there was only a focus on the bacterial
kingdom. We hypothesized that inorganic and organic amendments shape the bacterial
indicator communities, with the latter serving an essential function in promoting the rice
yield. To test this hypothesis (by evaluating the effect of organic-inorganic fertilization
on crop yields and microbial communities and functions), a two-year field fertilization
experiment was conducted on a rice-rice cropping system.

2. Methods
2.1. Field Site and Experiment Description

The experiment was conducted at a long-term crop trial site in Huizhou, Guangdong,
China (23◦15′ N, 114◦49′ E), during rice-rice (“Meixiangzhan 2”) rotation at the beginning
of March 2019. The local climate is subtropical monsoon with annual precipitation of
~2000 mm and an average annual temperature of 22.8 ◦C. Four fertilization treatments
were prepared: CK (without fertilization), F (mineral NPK fertilizers), MR (mushroom
residues), and MRF (mineral NPK fertilizers plus mushroom residues). The mineral NPK
fertilizers were obtained from Hubei Sinochem & Orient Fertilizer Co., Ltd. (Sinochem,
Wuhan, China). The N content of mineral NPK fertilizers was 46%. The mushroom
(Flammulina velutipes) residues were obtained from Guangdong Xuerong Bio-Technology
Co., Ltd. (Xuerong, Huizhou, China). The main properties of mushroom residues were
1.84% total N, 0.70% total P, 1.25% total K, and 63.80% organic matter. The F, MR, and MRF
treatments were designed to supply the same rate of total N (i.e., 135 Kg N ha−1). For the
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MRF treatment, i) the mineral NPK fertilizer and ii) the mushroom residues used contained
50% of the total N. For each treatment, eight replicates were randomly conducted.

2.2. Soil Sampling and Analysis

Paddy soils exposed to a two-year application of different fertilization treatments were
collected from the plow layer (0–20 cm) of each replicate plot of each treatment using a
30-mm-diameter auger; sampling took place after the harvesting of rice. The soil sample
from each replicate was a combination of five soil cores that were randomly collected, and
a total of 32 samples were prepared for analysis in this study. Each sample was sieved
through a 2-mm mesh and then screened and divided into two subsamples: i) air-dried for
soil chemical and enzyme activity analyses, and ii) stored at −80 ◦C for DNA extraction
and molecular analysis.

The soil chemical properties were determined according to the protocols of Lu [20]. The
soil organic matter (SOM) was determined using a volumetric K2Cr2O7-heating method.
The soil total N (TN) was determined by Kjeldahl digestion. The soil total K (TK) was di-
gested by hydrofluoric acid (HF)-perchloric acid (HClO4) and determined by molybdenum-
blue colorimetry and flame photometry. The soil available P (AP) was determined using
the molybdenum-blue method. The soil available K (AK) was extracted by ammonium
acetate and determined by flame photometry. The soil pH was determined from soil-water
suspensions (1:2.5 v/v) using a pH meter.

2.3. Soil Enzyme Activities and Microbial Biomass Analysis

The soil urease (EC 3.5.1.5) activity was determined with the indophenol blue
colorimetric method [21]. The soil invertase (EC 3.2.1.26) activity was determined
by the 3, 5-dinitrosalicylic acid method [22]. The soil acid phosphatase (EC 3.1.3.2)
activity was assayed by Hoffman’s method [23]. The soil dehydrogenase activity was
estimated by the reduction of 2, 3, 5-triphenyltetrazolium chloride (TTC) to 2, 3, 5-
triphenylformazan (TPF) [24].

The microbial biomass carbon (MBC) and nitrogen (MBN) were determined according
to the validated methods described by Vance et al. [25]. In brief, fresh soils were firstly
fumigated for 24 h, and then the soluble carbon and nitrogen were extracted using 0.5 mol
L−1 K2SO4 for 60 min on a rotary shaker. MBC and MBN were then calculated as described
by Joergensen [26] and Joergensen and Mueller [27], respectively.

2.4. DNA Extraction, PCR Amplification, and MiSeq Sequencing

We extracted 0.5 g soil from each sample using a FastDNA® SPIN Kit for Soil (MP
Biomedicals, Santa Ana, CA, USA). The extracted DNA was quantified using a Nan-
odrop 2000 (ThermoFisher, Wilmington, NC, USA) and then stored at −20 ◦C for further
use/analysis. The 519F/907R primer set was used to amplify the bacterial 16S rRNA gene
V4–V5 fragments according to Feng et al. [28]. Then, the TruSeq™ DNA Sample Prep LT Kit
(Illumina Inc., CA, USA) was used to normalize all the purified PCR products in equimolar
amounts. Following this, the libraries were sequenced with the Illumina MiSeq sequencing
platform (Illumina Inc., CA, USA).

2.5. Processing High-Throughput Sequencing Data

Amplicon libraries were processed using the Quantitative Insights Into Microbial
Ecology (QIIME 1) (v.1.9.1, USA) pipeline [29]. Sequences with a quality score below 25
and a length smaller than 300 bp were trimmed. Then, the quality reads were divided
into operational taxonomic units (OTUs) using the 97% identity threshold, and the most
abundant sequence of each OTU was chosen as the representative sequences. Taxonomy
information was assigned to each OTU concerning a subset of the Greengenes database. In
total, 530,266 quality bacterial 16S rRNA gene V4–V5 fragment sequences were obtained
(12,222~21,682 sequences per sample), with a median value of 15,913 sequences per sample.
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2.6. Bacterial Community Function Predictions

Bacterial community functions under different fertilization treatments were analyzed
by PICRUSt [30]. Firstly, the normalized OTU table was submitted to PICRUSt v.1.1.2 for
metagenome prediction, and then the final metagenomic functions based on KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways were created.

2.7. Random Forest Model

The relative levels of abundance of the bacterial taxa against the different fertilization
treatments were regressed at the genus level using the default parameters of R (implemen-
tation of the algorithm in the R package included “Random Forest”, ntree = 1000) [31]. Then
10-fold cross-validation was used to identify the number of marker taxa. The RF model was
further applied to estimate the importance of the bacterial indicator taxa according to the
degree to which they explained the soil multi-nutrient cycling [32]. A multiple regression
model was used to validate the outcome of RF with the lm and calc.relimp function of the
“relaimpo” package. Then, the RF model was further performed to evaluate the important
bacterial metabolic functions under each fertilization treatment by regressing the relative
levels of abundance of the predicted functional genes against fertilization treatments.

2.8. Statistical Analysis

In this study, all samples were randomly rarified to 12,222 sequences for downstream
analyses since an even depth of sampling is required for alpha (α) and beta (β) diversity
comparisons [33]. The bacterial community distribution patterns from different fertilization
treatments were further displayed by nonmetric multidimensional scaling analyses (NMDS)
based on the Bray-Curtis distance. Permutational multivariate analysis of variation (PER-
MANOVA) tests [34] were conducted to test the statistically significant differences of the
Bray-Curtis-based community compositions among different fertilization treatments (using
vegan package in R software) (v.2.2-1). To show the relationship between the rice yield and
soil chemical and biological properties, polynomial regression curves were plotted. The soil
chemical and biological properties were calculated using the combined Z-scores of SOM,
TN, TK, AP, AK, and pH, and the MBC, MBN, soil urease activity, soil invertase activity,
soil acid phosphatase activity, and soil dehydrogenase activity, respectively. The Procrustes
test was used to determine the links between the bacterial community composition and
community function [35]. Statistical procedures were calculated using IBM Statistical Prod-
uct and Service Solutions (SPSS) Statistics for Windows (v.13, Armonk, NY, USA). Mean
separation among decomposition stages was evaluated by one-way ANOVA followed by
posthoc Tukey’s HSD tests. A difference of p < 0.05 was considered statistically significant.

3. Results
3.1. Crop Yield, Soil Chemical and Biological Properties under Different Fertilization Regimes

Both the soil’s chemical and biological properties were altered by different fertilization
regimes (Supplementary Table S1). Most of the soil properties’ indices, such as TN, AP,
AK, SOM, MBC, MBN, acid phosphatase, and dehydrogenase, reached their peak values
when subjected to MR (Supplementary Table S1). The rice yields from different fertiliza-
tion regimes are presented in Figure 1A. Overall, fertilization significantly increased the
rice yield (p < 0.05). The maximum yield was observed under MRF, and no significant
difference between F and MR treatments in terms of rice yield (p > 0.05) was observed.
Many of the biological properties, such as soil urease, invertase, acid phosphatase, and
dehydrogenase, were significantly correlated (p < 0.05, Mantel test) with the soil bacterial
community composition and the corresponding microbial activities, an observation that is
also well-supported in the literature [36–39]. Thus, biological properties can be referred
to as “microbial properties”. It was also found that soil microbial properties had a strong,
significant correlation (r = 0.673, p < 0.0001) with the rice yield (Figure 1C); however, no
significant correlation between soil chemical properties and the rice yield was observed
(r = 0.095, p = 0.234) (Figure 1B).



Microorganisms 2022, 10, 482 5 of 13

Microorganisms 2022, 10, x FOR PEER REVIEW 5 of 14 
 

 

Many of the biological properties, such as soil urease, invertase, acid phosphatase, and 
dehydrogenase, were significantly correlated (p < 0.05, Mantel test) with the soil bacterial 
community composition and the corresponding microbial activities, an observation that 
is also well-supported in the literature [36–39]. Thus, biological properties can be referred 
to as “microbial properties”. It was also found that soil microbial properties had a strong, 
significant correlation (r = 0.673, p < 0.0001) with the rice yield (Figure 1C); however, no 
significant correlation between soil chemical properties and the rice yield was observed (r 
= 0.095, p = 0.234) (Figure 1B). 

 
Figure 1. Crop yield under different fertilization treatments (A) and the quadratic correlations of 
the rice yield with soil chemical (B) and microbial (C) properties. Soil chemical properties were cal-
culated using the combined Z-scores of SOM, TN, TK, AP, AK, and pH, while soil microbial prop-
erties were calculated using the combined Z-scores of MBC, MBN, soil urease activity, soil invertase 
activity, soil acid phosphatase activity, and soil dehydrogenase activity. CK: without fertilization, 
F: mineral NPK fertilizers, MR: mushroom residues, MRF: mineral NPK fertilizers plus mushroom 
residues. The error bars indicate standard deviations of means. Different letters over error bars de-
note significant differences (p < 0.05). 

3.2. Taxonomic Distribution of the Bacterial Communities under Different Fertilization Regimes 
Bacterial communities with an average relative abundance of over 1% are shown in 

Figure 2A (Proteobacteria (32.3%), Acidobacteria (21.8%), Chloroflexi (13.2%), Actinobac-
teria (10.8%), Nitrospirae (4.7%), Firmicutes (3.6%), Planctomycetes (2.8%), Gemmatimo-
nadetes (2.7%), Cyanobacteria (1.7%), Chlorobi (1.2%), and Bacteroidetes (1.1%)). The pat-
terns of the relative abundance of the dominant phyla (average relative levels of abun-
dance > 10%) among different fertilization treatments show that Proteobacteria, Acido-
bacteria, and Chloroflexi did not significantly differ among different treatments (p > 0.05, 
Supplementary Figure S1), with the exception being the abundance of Actinobacteria (p = 
0.036, Supplementary Figure S1). The important bacterial genera, defined as biomarker 
taxa for each fertilization, were further examined by the RF model (Figure 2B). The RF 
model explained 57.64% of the bacterial variance related to different fertilization regimes. 
Twenty-four important genera were identified and used as representative biomarker taxa 
based on the minimum cross-validation error obtained (Supplementary Figure S2). Gen-
erally, 10 bacterial indicator taxa (unclassified Phycisphaeraceae, Nocardioides, Marmori-
cola, unclassified GOUTA4, Tetrasphaera, unclassified Actinobacteria, unclassified Acido-
bacteria, unclassified Intrasporangiaceae, unclassified Rhodospirillales, and unclassified 
Sphingobacteriales) distinctly responded (these bacterial taxa were referred to as “indica-
tor bacterial taxa”) to the MRF treatment. 

Figure 1. Crop yield under different fertilization treatments (A) and the quadratic correlations of the
rice yield with soil chemical (B) and microbial (C) properties. Soil chemical properties were calculated
using the combined Z-scores of SOM, TN, TK, AP, AK, and pH, while soil microbial properties were
calculated using the combined Z-scores of MBC, MBN, soil urease activity, soil invertase activity, soil
acid phosphatase activity, and soil dehydrogenase activity. CK: without fertilization, F: mineral NPK
fertilizers, MR: mushroom residues, MRF: mineral NPK fertilizers plus mushroom residues. The
error bars indicate standard deviations of means. Different letters over error bars denote significant
differences (p < 0.05).

3.2. Taxonomic Distribution of the Bacterial Communities under Different Fertilization Regimes

Bacterial communities with an average relative abundance of over 1% are shown in Fig-
ure 2A (Proteobacteria (32.3%), Acidobacteria (21.8%), Chloroflexi (13.2%), Actinobacteria
(10.8%), Nitrospirae (4.7%), Firmicutes (3.6%), Planctomycetes (2.8%), Gemmatimonadetes
(2.7%), Cyanobacteria (1.7%), Chlorobi (1.2%), and Bacteroidetes (1.1%)). The patterns of
the relative abundance of the dominant phyla (average relative levels of abundance > 10%)
among different fertilization treatments show that Proteobacteria, Acidobacteria, and Chlo-
roflexi did not significantly differ among different treatments (p > 0.05, Supplementary
Figure S1), with the exception being the abundance of Actinobacteria (p = 0.036, Supple-
mentary Figure S1). The important bacterial genera, defined as biomarker taxa for each
fertilization, were further examined by the RF model (Figure 2B). The RF model explained
57.64% of the bacterial variance related to different fertilization regimes. Twenty-four
important genera were identified and used as representative biomarker taxa based on the
minimum cross-validation error obtained (Supplementary Figure S2). Generally, 10 bacte-
rial indicator taxa (unclassified Phycisphaeraceae, Nocardioides, Marmoricola, unclassified
GOUTA4, Tetrasphaera, unclassified Actinobacteria, unclassified Acidobacteria, unclassified
Intrasporangiaceae, unclassified Rhodospirillales, and unclassified Sphingobacteriales)
distinctly responded (these bacterial taxa were referred to as “indicator bacterial taxa”) to
the MRF treatment.

3.3. Variation in Bacterial Community Composition among Different Fertilization Regimes

The entire bacterial community composition, among different fertilization treatments,
was further visualized by an NMDS plot based on the Bray-Curtis distance (Figure 3A).
This showed that the bacterial communities were separated into four clusters. Significant
differences between the bacterial communities based on the fertilization treatments (F, MR,
and MRF) and the CK were confirmed by a PERMANOVA pairwise test (p < 0.05, Figure 2A).
In addition, the F score between MRF and CK (F score = 9.076) was higher than that for MR
vs. CK (F score = 3.257) or F vs. CK (F score = 3.764). This suggests that the extent of the
bacterial community changes under MRF is larger than that under F and MR. To understand
the roles of the previously mentioned top-10 bacterial indicator taxa in the community
under MRF (Figure 2B), we visualized the subcommunity (community excluding the 10
key taxa from the whole bacteria community) composition among different fertilization
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treatments (Figure 3B). Although significant differences in the bacterial subcommunity
composition were found among different fertilization treatments, the difference between
MRF and CK was found to be less significant (with a lower F score = 7.960, Figure 3B) than
that in entire community comparisons (with a higher F score = 9.076, Figure 3A).
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3.4. Dynamic Change in Compositions of Bacterial Metabolic Functions under
Different Fertilizations

The RF model was further performed to evaluate the important bacterial metabolic
functions under each fertilization treatment (Figure 4). The RF model explained 66.63% of
the variance in the bacterial metabolic functions related to different fertilizations. The mini-
mum cross-validation error was obtained from the 54 metabolic functions that were chosen
(Supplementary Figure S3), and these were used as the representative metabolic functions
under different fertilization treatments. More specifically, the 13 bacterial indicators of
KEGG Orthology functional genes that got enriched in MRF treatment were K03212, K08590,
K01912, K09780, K02012, K00857, K03394, K02342, K02011, K03297, K01156, K10676, and
K01032, with the corresponding functions of translation, membrane transport, xenobiotic
biodegradation and metabolism, and metabolism of amino acids, nucleotide, cofactors, and
vitamins (Figure 4).
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3.5. Relationship between Bacterial Indicator Community, Community Function, Soil Nutrient
Cycling, and Crop Yield

The Procrustes test was used to reveal the relationship between the bacterial indicator
communities (Figure 3) and the metabolic functions (Figure 4) observed in MRF treatment
(Figure 5A). It was found that the indicator bacterial community composition in MRF was
significantly correlated with the indicators of metabolic functions (r = 0.532, p = 0.001).
The RF model was further used to estimate the importance of the bacterial indicator taxa
enriched in each treatment for explaining soil multi-nutrient cycling. Specifically, it was
found that 10 bacterial indicator taxa enriched in the MRF treatment were main drivers for
soil dehydrogenase (40.0%), acid phosphatase (32.3%), pH (27.5%), TK (25.7%), and C/N
(15.4%) cycling (Supplementary Table S2). In addition, the linear regression model showed
that the relative abundance of the bacterial indicator taxa was significantly correlated with
the rice yield (r = 0.605, p < 0.001) (Figure 5B).
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4. Discussion
4.1. Microbial Properties of the Soil Community Reflect Crop Yield Better Than Soil
Chemical Characteristics

In this study, the rice yield and the soil properties under the four fertilization treat-
ments were evaluated. The highest rice yield was obtained under the MRF treatment. This
observation is consistent with that of Mi et al. [40] who also found that the rice grain yields
under NPK-cattle manure and NPK-rice straw amendments were significantly higher than
when under NPK or CK alone. This yield promotion may be attributed to the complex-
ity of fertilization, which influences/changes the soil properties, and thus, improves the
crop yield [40]. This plausible scenario is consistent with the significantly different chemi-
cal and microbial properties of the soils when subjected to different fertilization regimes
(Supplementary Table S1). This observation is aligned with Zhao et al. [17], Ye et al. [41],
and Lu et al. [14], who found that soil chemical (e.g.,; pH, TN, AN, AP, and AK) and
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microbial properties (MBC, MBN, urease activity, urease activity, and alkaline phosphatase)
significantly differ when subjected to complex fertilization.

More interestingly, although the MR treatment achieved the highest soil chemical and
microbial indices (Supplementary Table S1), the highest rice yield was obtained under the
MRF treatment. This outcome suggests that there was a nonlinear relationship between
the rice yield and soil properties, which would be consistent with the quadratic correla-
tions between soil properties (especially for soil microbial properties) and the rice yield
(Figure 1B,C). This observation is consistent with previous work related to the impact of
soil properties on the crop yield [42,43]; these studies highlighted that it is the optimal,
rather than maximum, soil chemical and microbial values that benefit crop productivity.
There could be various factors explaining this phenomenon, for example, higher and/or
lower-than-optimum soil pH is usually considered a major obstacle to crop productiv-
ity [42]. In addition, the combined effect of soil properties (e.g.,; pH and/or nitrogen) on
plant growth may be superimposed. For example, it was found that high soil pH and
nitrogen could superimpose on each other and together have a negative effect on the rice
yield [42]. Another potential explanation may be that there could have been an optimal
enzyme concentration that accelerated the hydrolysis and fermentation of the available
organic carbon form for plant growth. An increase in enzyme concentration can indeed
accelerate plant growth due to a surplus in carbon availability; however, a continuous
increase in enzyme concentration may result in no marked effect on plant production [44].
In this study, the soil chemical and microbial properties may have become optimal for
rice plant growth under MRF. Collectively, the abovementioned factors provide plausible
reasons for why MRF, with its moderate soil chemical and microbial indices, achieved the
maximum rice yield.

Moreover, the greater correlation between soil microbial properties and the rice yield
(Figure 1C) compared to the one between soil chemical properties and the rice yield
(Figure 1B) suggests that soil microbial properties are more sensitive to the fertilization
type. Subsequently, microbial properties can stand as a potential indicator for assessing
the rice yield. Our result was consistent with the study of Wu et al. [1] who found that
although both soil biotic (e.g., microbes) and abiotic factors (e.g., nutrient elements) have
a critical effect on crop yield, biological properties reflect the actual conditions of crop
growth better than soil physicochemical characteristics [1]. There could be a couple of
justifications for that. Specifically, the flow of matter and energy in the soil matrix have
been proven to have a great influence on crop yields [45,46]. Microorganisms can secrete
many of the enzymes needed for soil nutrition and energy conversion [1,47], and as such,
can act as a bridge between plant roots and the environment they inhabit, so the plant
can achieve high crop yields. This is a phenomenon related to the ability of both microbes
and plants to coexist and act synergistically [48,49]. Another potential justification may be
that soil chemical characteristics, such as SOM, AK, and pH, can influence soil microbial
community composition, which can, in turn, indirectly affect the crop yield [14]. The
abovementioned phenomena collectively imply that the high rice yield achieved under
MRF may have resulted from specific microbial communities enriched by the specific
fertilization type. This, in turn, led to optimal soil biochemical conditions for both bacteria
and rice crop growth.

4.2. Organic and Inorganic Amendments Indirectly Affect Crop Yield by Shaping the Bacterial
Indicator Communities

In numerous soil microbial studies, the dominant members of the communities were
over-focused as they were generally considered more active and important than other taxa
participating in biogeochemical cycling [50]. However, many dominant species in soils
have been proven not to necessarily respond to environmental changes [18]. As such, they
may dilute the effect of environmental disturbances on some that are maybe less dominant
in the community species; the latter may relate with more essential functions for plant
growth. By revealing these microbial indicator taxa and the corresponding functions, we
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can theoretically clarify the response of the former to different environmental changes.
However, to the best of our knowledge, such information is still unknown as this field is
yet unexplored.

In this study, although the dominant bacterial phyla were not significantly different
among fertilization treatments (Figure 2A and Supplementary Figure S1), different bacterial
indicator taxa were found to be enriched under specific fertilization regimes (Figure 2B).
This observation is consistent with the findings of Zhao et al. [17] and Yao et al. [18]
who also found that the majority of the dominant microbial species were considered
non-responsive, and only a subset of more sensitive species responded differently to
environmental disturbances. In this study, only 10 bacterial indicator taxa were found to
strongly respond to MRF treatment. The difference in bacterial community compositions
between MRF and CK decreased when these 10 bacterial indicator taxa were screened
out of the entire community (Figure 3). This result implies that it is these 10 bacterial
indicator taxa that altered the original soil bacterial community composition after the MRF
amendment. Thus, we speculate that these 10 bacterial indicator taxa are those playing
vital roles in affecting the rice yield due to the specific functions that they possess.

As mentioned earlier, the RF model was used to further reveal the bacterial indica-
tor functions under different fertilizations. Interestingly, it was found that 13 bacterial
indicators of KEGG Orthology functional genes, such as K01032 and K10676, responsible
for xenobiotic biodegradation were enriched in the MRF treatment (Figure 4). The strong
Procrustes correlation (r = 0.532, p = 0.001, Figure 5A) between the bacterial indicator com-
munity composition and the indicator organisms’ metabolism functions in MRF suggests
that the enriched KEGG Orthology functions may be mainly derived from the enriched
bacterial indicator taxa. This suggestion is consistent with the functional analysis of the bac-
terial phylum of Actinobacteria, which accounted for 50% of the total indicator species in
MRF (Figure 2B). For example, the relative levels of abundance of actinobacterial functional
genes, responsible for xenobiotic biodegradation and metabolism including carbohydrate
metabolism, were significantly higher in MRF than in CK, NPK, and MR treatments
(p < 0.05). Mushroom residues contain poly-aromatic hydrocarbons (a kind of organic
matter derived from mushroom residues) and are considered xenobiotic compounds [51],
or in other words, a substrate that can specifically select for Actinobacteria to degrade and
convert to nutrients for the rice plant to uptake. This observation is in line with previous
studies indicating that Actinobacteria play a key ecophysiological role in plant residue
decomposition [52,53].

The RF model further confirmed that the 10 bacterial indicator taxa enriched in MRF
treatment have specific functions and act as drivers for many of the soil multi-nutrient
cycling parameters (such as soil dehydrogenase, acid phosphatase, pH, TK, and C/N)
(Supplementary Table S2). Hence, such indicator taxa and their functions directly determine
the plant yield [42,54–57]. In addition, microbial-driven soil chemical nutrient cycling such
as soil C/N and pH can significantly influence soil hydrolase activities, which indirectly
affect the plant yield [58]. Overall, the significant correlations between the relative levels of
abundance of the 10 bacterial indicator taxa and the rice yield (Figure 5B), combined with
the abovementioned results, collectively confirm our hypothesis that organic and inorganic
amendments shape the bacterial indicator communities to serve essential functions that
promote the rice yield.

5. Conclusions

Different from previous relevant studies, which usually only focused on the microbial
communities, the present study focused on the links between the rice yield and bacterial
indicator taxa and their functions under different fertilization regimes. Our results indicate
that soil microbial properties reflect the rice yield better than soil chemical characteristics in
crops subjected to different fertilizations. Only several bacterial indicator taxa—for example,
Actinobacteria—rather than the entire bacterial community, are specifically enriched under
organic and inorganic amendments. These indicator bacterial taxa possess specific functions
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such as xenobiotic biodegradation and carbohydrate metabolism that act as drivers for soil
multi-nutrient cycling, promoting the rice yield. Combining the taxonomic and functional
information on the microbial indicator species under different fertilization regimes can
provide an overall understanding of the mechanisms that improve crop productivity by
organic and inorganic amendments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10020482/s1, Figure S1: Relative abundance
levels of dominant bacteria among different fertilization regimes, Figure S2: The number of bacterial
genera against the cross-validation error curve, Figure S3: The number of metabolism functions
against the cross-validation error curve, Table S1: Soil chemical and microbial properties under
different fertilization regimes, Table S2: Random Forest (RF) mean predictor importance (percentage
of increase of mean square error) of the bacterial indicator taxa enriched in each treatment as drivers
for the soil multi-nutrient cycling index (i.e., SOM, TN, TK, AP, AK, pH, C/N, MBC, MBN, urease
activity, invertase activity, acid phosphatase activity, and dehydrogenase activity).
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