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Abstract

Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial

transition (MET), are believed to play key roles in facilitating the metastatic cascade. Meta-

static lesions often exhibit a similar epithelial-like state to that of the primary tumour, in par-

ticular, by forming carcinoma cell clusters via E-cadherin-mediated junctional complexes.

However, the factors enabling mesenchymal-like micrometastatic cells to resume growth

and reacquire an epithelial phenotype in the target organ microenvironment remain elusive.

In this study, we developed a workflow using image-based cell profiling and machine learn-

ing to examine morphological, contextual and molecular states of individual breast carci-

noma cells (MDA-MB-231). MDA-MB-231 heterogeneous response to the host organ

microenvironment was modelled by substrates with controllable stiffness varying from

0.2kPa (soft tissues) to 64kPa (bone tissues). We identified 3 distinct morphological cell

types (morphs) varying from compact round-shaped to flattened irregular-shaped cells with

lamellipodia, predominantly populating 2-kPa and >16kPa substrates, respectively. These

observations were accompanied by significant changes in E-cadherin and vimentin expres-

sion. Furthermore, we demonstrate that the bone-mimicking substrate (64kPa) induced mul-

ticellular cluster formation accompanied by E-cadherin cell surface localisation. MDA-MB-

231 cells responded to different substrate stiffness by morphological adaptation, changes in

proliferation rate and cytoskeleton markers, and cluster formation on bone-mimicking sub-

strate. Our results suggest that the stiffest microenvironment can induce MET.
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Author summary

The epithelial-mesenchymal transition (EMT), a process by which epithelial cells lose

their cell polarity and cell-cell adhesion and gain migratory and invasive properties to

become mesenchymal cells, is believed to play the key role in the initiation of the meta-

static cascade. The ability of mesenchymal cells to survive, transform and establish colo-

nies in distant organs is well known but not well understood. To gain insight into this

process, we developed a workflow using machine learning and image analysis of cells to

examine how morphology (or physical form and structure) and biochemical properties of

individual (triple negative) breast carcinoma cells vary in response to their interaction

with a substrate of variable stiffness. We found that mesenchymal breast cancer cells

responded to different substrate stiffness by morphological adaptation, changes in prolif-

eration rate and cytoskeleton markers such as cell-cell adhesion protein E-cadherin. Sur-

prisingly, the cell properties on the stiffest tested substrate that mimicked bone stiffness

changed dramatically–they formed multicellular clusters with distinct E-cadherin localisa-

tion at the cell-cell adhesion surfaces. Our results suggest that the stiffest microenviron-

ment can induce cell transitioning from mesenchymal to epithelial cell phenotype.

Introduction

Breast carcinoma, one of the most commonly occurring cancers in women with over 2 million

new cases diagnosed in 2018 [1], primarily spread to the liver, bones, lungs and brain [2].

About 15% of all invasive breast cancers classified as triple negative breast carcinoma (TNBC)

are characterised by the lack of estrogen and progesterone receptors and HER2 amplification.

TNBC are not responsive to current endocrine and other targeted therapies limiting the treat-

ment options to surgery, chemotherapy, and radiation [3]. It has been shown that TNBC

patients have a higher probability of recurrence and distant relapse during the first five years

compared to other types of breast cancer [4] and shorter post-recurrence survival [5]. There-

fore, understanding the underlying mechanisms of TNBC metastasis is crucial to improve the

treatment outcomes.

One of the viable hypotheses relevant to TNBC metastasis relate to organotropic metastasis

and is originated from the Paget’s “seed and soil” hypothesis [6,7]. It states that certain cancer

types prefer to grow in certain organs in a way that cannot be explained by the circulatory pat-

terns alone. Indeed, a solid body of evidence suggests that metastatic events are regulated by

many factors including tumour-intrinsic properties, specific characteristics of the host organ

microenvironment, and their interaction [8]. Among TNBC-related cell lines, MDA-MB-231

is recognised as a highly mesenchymal invasive cell phenotype. Notably, unlike the general

cohort of TNBC, MDA-MB-231 have the propensity to form osteolytic bone metastases in

vivo when inoculated into the bloodstream of immunodeficient mice [9].

It is recognised that one of the key processes facilitating the metastatic progression of carci-

noma cells is the epithelial-mesenchymal transition (EMT). During this process, a progressive

loss of intercellular junctional complexes is initiated in the polarised epithelial cells accompa-

nied by the acquisition of a mesenchymal phenotype through the remodelling of the actin

microfilament network, weaker intercellular adhesion and a number of other mesenchymal

markers [10–12]. Hence, EMT triggers carcinoma cells dissociation from the primary tumour,

invasion through the surrounding stroma, intravasation into the lymphatic or blood vessels

and dissemination to distant body sites.

PLOS COMPUTATIONAL BIOLOGY Breast carcinoma cell adaptation to matrix stiffness

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009193 July 23, 2021 2 / 25

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009193


Despite its lethal effects, metastasis is a highly inefficient process [13]. Following extravasa-

tion from the bloodstream and infiltration of the parenchyma of a distant organ, disseminated

tumour cells, either individually or in clusters, are exposed to an unfamiliar microenvironment

characterised by a drastically different structural and molecular composition. A critical gap in

our understanding of cancer metastasis, therefore, lies between the initial interaction of dis-

seminated tumour cells with the host organ microenvironment and their successful outgrowth

into micrometastases.

Carcinoma cells with an activated EMT program can revert to the epithelial phenotype

through mesenchymal-epithelial transition (MET) allowing them to establish new colonies

after reaching their destination in secondary sites. Cellular and non-cellular components of

both primary tumour and host organ microenvironment play crucial roles in the initiation

and progression of each step of the metastatic process including EMT [12,14,15] and MET

[16–18]. Among the non-cellular components, the properties of the extracellular matrix

(ECM), including stiffness, structure, and composition showed a significant impact on the car-

cinoma cell plasticity through modulation of mechanotransduction [19,20]. A number of

recent studies have recognised stiffness of the ECM as one of the critical mechanical factors

contributing to the promotion of EMT in various types of cancer [21–24].

Despite numerous studies, the EMT-MET hypothesis fails to explain colonisation of sec-

ondary organs by carcinoma cells which are quasi unable to engage in MET. MDA-MB-231

cell line displaying a pronounced mesenchymal phenotype has been shown to form metastatic

lesions in vivo [25]. We have found that the MDA-MB-231 colonisation patterns in whole-

organ decellularized liver scaffolds varied dramatically across loose parenchymal (Young mod-

ulus, ~2 kPa) and denser (Young modulus, >2 kPa) stromal scaffold compartments [26],

where cell morphology was one of the discriminants of the colonisation patterns. Cells infil-

trated rapidly the parenchymal tissue, and their dominant morphological trait was identified

as small round shape cells, whereas spindle-shaped, large-footprint cells were prevalent in the

stromal compartment. Besides, the intriguing propensity for clustering of MDA-MB-231 cells

on the stromal substrates was observed.

In this study, we have investigated the heterogeneous response of carcinoma cells to sub-

strates fabricated with physiologically relevant stiffness levels. We deliberately chose essentially

mesenchymal MDA-MB-231 cell phenotype to investigate the mechanisms enabling the for-

mation of micrometastases by cells quite refractory to change their phenotype via MET.

It has been recently shown that cancer cell morphology is correlated with tumorigenic and

metastatic potentials in vivo providing an easily measurable quantity [27]. Therefore, we use

morphological profiling as a surrogate endpoint to measure the effect of stiffness on TNBC cell

behaviour. We investigated the coupling between biochemical and morphological features

using immunocytochemistry and examined the cell clustering mechanism, which may be a

pivotal process in forming micrometastases.

Rapidly progressing state-of-the-art approaches of analysing and interpreting large biologi-

cal datasets, including single-cell measurements derived from optical cell images, provide

meaningful and oftentimes unexpected insight into both physical and molecular states of an

individual cell. These approaches allow capturing cell heterogeneity in comparison with the

existing population-based profiling [28,29]. In line with recent publications, in our study, we

aimed to demonstrate a more data-driven approach by adopting a single-cell resolution tech-

nique [27,30]. Indeed, algorithms of machine learning are capable of compiling a large number

of parameters and extract relationships between different factors to capture patterns invisible

to the naked eye.

In this study, we report on the evaluation of the cellular adaptations to substrates of varying

stiffness at the single-cell level. Using multi-parametric image-based cell profiling [31],
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followed by the application of machine learning techniques, we have identified subpopulations

with distinct morphological cell types (morphs) and demonstrated the relationship between

stiffness and the prevailing morphology. Further, we have analysed the expression levels of sev-

eral biomarkers conventionally associated with epithelial and mesenchymal phenotypes to

uncover the underlying molecular alterations mediated by substrate stiffness. Taken together,

our results suggest that the softer microenvironment, especially at the 2-kPa stiffness level, pro-

motes more aggressive morphs of MDA-MB-231 cells. It was intriguing to find that the sub-

strate, with the stiffness of 64 kPa corresponding to that of the bone tissue, promoted the

expression of E-cadherin inducing pronounced cell clustering.

Results

Cell adhesion to extracellular matrix components

In our study, we used a representative human TNBC cell line MDA-MB-231 to investigate

morphological and molecular changes in response to substrate stiffness. First, to uncouple the

chemically-mediated effects of the ECM, we explored how the biochemical composition of the

underlying substrate affects cell adhesion. We simultaneously tested a total of 36 conditions

consisting of the 9 most common ECM proteins taken in various concentrations and combina-

tions (see Materials and Methods). Each condition was replicated in 9 spots imprinted on a

hydrogel surface and the non-fouling material of the rest of the slide ensured specific cellular

attachment. As a proxy for cell adhesion, we counted the number of cells attached to each spot

24 hours after seeding (Table B and Fig B in S1 Text). Collagens 1, 6, fibronectin and vitronec-

tin appeared to facilitate cell adhesion while adhesion to collagens 3,4,5, laminin and tropoelas-

tin was very minimal (Table B in S1 Text). Correlation analysis was performed to determine

whether, for any of the ECM proteins, there were any associations between its concentration

and the number of attached MDA-MB-231 cells. Fig 1A demonstrates that collagen I and

fibronectin concentrations had the highest correlation with the number of adherent cells. Con-

versely, the higher concentrations of collagen type III, IV, V and tropoelastin were associated

with decreased numbers of attached cells. Therefore, we chose collagen type I for further

investigations.

Multi-parametric image-based cell profiling

Evaluation of the stiffness-induced morphological and molecular changes in TNBC cells was

performed in several steps. First, TNBC cells were cultured on substrates with five elastic mod-

uli varying from 0.2 kPa to 64 kPa (Fig 1B). Routinely used tissue culture plates typically have a

stiffness of 2–4 GPa, a multitude of times more rigid than tissues in the human body [32,33].

Silicon inserts, on the other hand, allow mimicking physiologically relevant conditions. Our

choice of stiffness values was governed by the rigidity profiles of organs and tissues in which

carcinoma cells reside following their dissemination [32,34]. The biocompatible silicone sub-

strates placed on the bottom of wells were coated with collagen type I prior to cell seeding as

schematically illustrated in Fig 1C. TNBC cells seeded in equal densities were cultured for 24

hours followed by fixation and immunostaining.

To quantify the effect of the stiffness at the single-cell level, we employed multi-parametric

image-based profiling combined with the application of statistical analysis and machine learn-

ing techniques. The key steps of the data analysis workflow are shown in Fig 2A. To visualise

cell membranes and nuclei and evaluate the expression of the biomarkers in each cell, cells

were specifically immunolabelled with fluorescent dyes and imaged using confocal micros-

copy. We divided each of the 5 plates equally and stained one half for vimentin and pan-
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cytokeratin, and the other half for E-cadherin which allowed us to limit the number of fluoro-

phores per well to 4 and avoid overlapping signals (see Materials and Methods).

Image segmentation was performed to outline cells and nuclei and use the extracted bound-

aries for quantification of the fluorescent signal intensity from E-cadherin or vimentin and

cytokeratin within each cell as well as obtaining various geometric and contextual measure-

ments (Fig 2B and 2C, Fig A and B in S2 Text). Fig 2D provides a comprehensive summary of

the final dataset. For each of the 910 cells, we calculated 150 features describing cell morphol-

ogy and context (Fig 2D, left). These include cell and nucleus shape descriptors such as the

area, circularity and nuclear-cytoplasmic ratio (NCR); measurements of the shape irregularity

such as solidity and compactness; measurements of the cell polarity calculated as a distance

between the centroids of a cell and its nucleus; and contextual measurements such as the num-

ber of neighbouring cells and the proportion of the shared boundary. Upon visual examina-

tion, some cells cultured in the most rigid conditions appeared to form multicellular clusters

(84 cells) and thus were excluded from the main dataset (826 cells remained) and considered

separately.

The effect of stiffness on TNBC cell density and morphology

We first sought to evaluate differences in the cell densities versus substrate stiffness. Images at

low magnification were acquired to capture the fluorescent signal from cell chromatin located

in the central region of each well (Fig C in S2 Text). Cells were initially seeded at equal densi-

ties and cultured for 24 hours followed by fixation. We observed significantly higher cell densi-

ties at 2 and 16 kPa indicating that these stiffness levels positively affect either cell attachment

or proliferation, or both (Fig 3A).

Fig 1. Choice of ECM protein coating and experimental design. (a) A heat map shows the values of Pearson’s correlation coefficient measuring the

association between ECM protein concentration and the number of cells attached. (b) Substrate stiffness values investigated in this study. (c) In the designed

experiment, MDA-MB-231 cells were seeded on silicone substrates of different stiffness coated with collagen type I. Afterwards, cells were cultured for 24 h,

fixed, stained for biomarkers of interest and imaged using confocal microscopy.

https://doi.org/10.1371/journal.pcbi.1009193.g001
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Fig 2. Generation of single-cell profiles and data analysis workflow. (a) A flow chart illustrating the key steps of image-based cell profiling and

data analysis workflow. (b) Schematic representation of the image segmentation process: cells were labelled with WGA and DAPI to visualise

cytoplasm and nuclei. Extracted cell outlines were used to quantify the intensity of E-cadherin, vimentin or cytokeratins within each cell. (c)

PLOS COMPUTATIONAL BIOLOGY Breast carcinoma cell adaptation to matrix stiffness
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Illustrations of the measurements calculated for each cell: geometric parameters, intensity and texture of the fluorescent signal, and measurements

of the context. (d) Summary of the final dataset. Left column indicates the proportion of cells captured at each stiffness level. Morphological and

contextual features of the cells were calculated (left); additionally, intensity and texture of the fluorescent biomarker signals were measured (right).

Each row of the heatmaps corresponds to a single cell and each column represents a single feature. Z-score normalisation was applied to each

feature to allow for direct comparison regardless of the scale. Right column indicates z-score values.

https://doi.org/10.1371/journal.pcbi.1009193.g002

Fig 3. Distinct adaptations to substrate stiffness by TNBC cells. (a) An increase in cell density compared to baseline (dashed line) after cells were cultured

for 24 hours on substrates with different stiffness values, n = 4 replicates per stiffness value. (b) Analysis of the association between the top 10 parameters

modulated by substrate stiffness. Most measurements are related and thus are highly correlated with each other. (c) Changes in the distributions of NCR, cell

perimeter, area, smallest diameter, circularity, and distance to the nearest cell in response to substrate stiffness. Distributions are reported using box plots: a

box shows the median value, first and third quartiles, whiskers indicate median +/-1.5 � IQR. Significance of the difference assessed by Welch’s t-test (‘���’:

p< 0.001, ‘��’: p< 0.01, ‘�’: p< 0.05), n = number of cells, see Table A in S2 Text.

https://doi.org/10.1371/journal.pcbi.1009193.g003
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Next, we analysed the 150 features describing the individual cell morphology and its rela-

tionship with surrounding cells. The effect of the substrate stiffness was immediately evident

from the average profiling (Fig A in S3 Text); however, a single cell-based approach was fur-

ther employed to exploit the intrinsic heterogeneity of the TNBC cell population. Analysis of

Spearman’s rank correlation coefficients (rs) revealed several cell characteristics associated

with the substrate stiffness value (Fig B in S3 Text). Since Spearman’s correlation is not robust

to non-monotonic relationships, we verified these results using two other approaches (see

Materials and Methods, Table A in S3 Text). The list of the top 10 parameters that displayed

the strongest correlation with the substrate stiffness is given in Table B in S3 Text along with

feature descriptions. While none of the parameters showed a strong association with substrate

stiffness, all three methods indicated the presence of some sort of dependence.

It is important to note that some of these measurements are not independent of each other

as can be seen from the correlation matrix shown in Fig 3B, for example, an increase in the cell

area naturally results in extension of its perimeter. The effect of the stiffness on the value distri-

butions of NCR, cell perimeter, area, smallest diameter, circularity, and distance to the nearest

cell is demonstrated in Fig 3C and Fig C in S3 Text. These variables were chosen as they pro-

vide complementary information about the system (pairwise |rs|< 0.8). Notably, NCR com-

monly used in histopathology as a predictor of malignancy [35] was found to have the highest

absolute correlation coefficient (|rs| = 0.31). A local maximum can be seen at 2 kPa where cells

displayed a wider range of NCR values with a higher median value. Conversely, the smallest

NCR values were observed at 32 kPa with a positive trend towards the stiffest substrate (64

kPa).

Matrix stiffness shifts the balance between TNBC cell morphs

The identification of distinct cell morphs was complicated by the fact that the analysed TNBC

cells exhibited a continuum of morphological states. Dimensionality reduction techniques

including Principal Component Analysis (PCA) revealed no apparent clusters suggesting a

spectrum of closely related morphs across the cell population (Fig A in S4 Text). However, an

unsupervised machine learning algorithm called hierarchical clustering (HC) enabled group-

ing of the data points (here, individual cells) into clusters (here, cell morphs) based on their

profile similarity. As a result, we identified three subpopulations of cells displaying morpholo-

gies pertaining to distinct cell morphs. Our analysis was supported by two cluster validity indi-

ces (Silhouette score and Davies–Bouldin index) designed to select the number of clusters in

the dataset (Fig B in S4 Text). Fig 4A demonstrated the results obtained by applying HC to sin-

gle-cell profiles containing morphological and contextual measurements. To gauge the appear-

ance of the cells, we identified representative objects for each cluster by calculating their

medoids (Fig 4B). A medoid is defined as a data point with a minimum average distance to

other objects in the cluster; therefore, it is conceptually similar to a centroid but restricted to

members of the cluster.

We then assessed the contribution of each feature towards cluster separability. The six most

important features across all stiffness levels were compactness, eccentricity, circularity, perim-

eter, cytoplasm circularity, and area (Fig 4C, Fig C and D in S4 Text). The compactness

describes the concavity of a membrane, the eccentricity relates to the elongation of a cell, and

the circularity measures the similarity to a perfect circle. These characteristics alongside the

perimeter and area differed significantly between the three cell morphs (p< 0.001). The pro-

jection of the data on the first two principal components (PCs) illustrates the inter-cluster spa-

tial relationships (Fig 4D). These results together with the representative examples depicted in

Fig 5 suggest that cell morphs 1, 2, and 3 display dramatically different appearances and are
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Fig 4. Identification of cell morphs using machine learning. (a) The results of HC applied to 826 cells based on similarities between single-cell

profiles consisting of 150 morphological and contextual features. Left column indicates three cell morphs (green, blue, and red) identified in the

total population of cells. Each row of the heatmap corresponds to a single cell and each column represents a single feature. Subgroups of features

are depicted on the bottom. (b) Representative objects (medoids) of each of the three identified cell groups. (c) Top six features ranked by their

contribution towards cluster separation. Distributions of the values are reported using box plots: a box shows the median value, first and third
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predominantly represented by irregular-shaped cells with lamellipodia, large flattened and

compact roundish cells, respectively.

Interestingly, we observed considerable variation in the cell morph composition of cell pop-

ulations across the substrate stiffness values (Fig 4E). Notably, all cell morphs exhibit local

extrema at 2kPa–morphs 1 and 2 (green and red) have a local minimum, while morph 3 (blue)

shows a local maximum. Small round cells (morph 3; blue) were prevailing at 2 kPa with a sig-

nificant reduction in numbers on the stiffer substrates where cells were predominantly classi-

fied as morphs 1 and 2, i.e., stiffer substrates promote cell spreading and elongation with a

prominent expression of lamellipodia (c.f. Fig 5). Note that the cell morph dependence versus

the substrate stiffness falls out at 64 kPa–the expected trend of the morph 3 cell population

decline versus the substrate stiffness is reversed, while the expected growth of the morph 1 and

2 cell population is not maintained. It is worth mentioning that the cell density depicted in Fig

3A did not appear to influence cell morphology as can be seen from the distributions of the

number of cell neighbours and the fraction of the shared boundary (Fig E in S4 Text). When

assessing the contribution of each feature to the cluster separability, we found that these

parameters were not important, with the mutual information measuring 0.06 and 0.05, respec-

tively. Taken together these results demonstrate a heterogeneous response to the matrix stiff-

ness indicating significant changes in morphology and the composition of the cell population

at 2 kPa and suggesting high morphological adaptability of TNBC cells.

Expression of biomarkers is stiffness-dependent

To substantiate our observations, we assessed the role of the matrix stiffness on the expression

of key biomarkers reporting on the cell cytoskeleton and cell-cell adhesion at the single-cell

level. As described earlier and schematised in Fig 2D, about half of the total cell population

was used to evaluate the expression of E-cadherin (Fig 2D, bottom right) while the other half

was simultaneously stained for vimentin and cytokeratins (Fig 2D, top right).

Fig 6A demonstrates changes in the mean expression levels of E-cadherin across the sub-

strate stiffness values. Two local maxima, at 2kPa and 64 kPa, are clearly observable.

MDA-MB-231 cells also showed a peak in the expression of vimentin at 2kPa (Fig 6B). At the

same time, the mean fluorescent intensity of cytokeratins increased gradually at 16–64 kPa

(Fig 6C). We also calculated the ratio of the expression of cytokeratins to vimentin (CVR) and

examined its distribution across stiffness values (Fig 6D) observing a nonlinear trend with a

minimum at 2 kPa. It is worth noting that the expression of E-cadherin and vimentin at 2 kPa

(and accordingly the CVR) differed significantly in comparison to the softest substrate (0.2

kPa) indicating that TNBC cells are highly sensitive to even small changes in matrix stiffness.

Additionally, to investigate the variability of molecular distributions in response to substrate

stiffness we performed PCA on the full sets of features describing the intensity and spatial dis-

tribution of E-cadherin, vimentin, and cytokeratins (Fig A in S5 Text). While no clearly sepa-

rated groups could be observed, cells cultured on substrates with stiffness values 2.0 kPa and

32.0 kPa appear to reside on the opposing sides of the clusters in line with the trends that can

be seen in Fig 6.

Our next goal was to relate the identified cell morphs to the expression levels of the bio-

markers. Given that the integrated fluorescent signal is proportional to the area of a cell and

quartiles, whiskers indicate median +/-1.5 � IQR. Significance of the difference assessed by Welch’s t-test (‘���’: p< 0.001). (d) Projection of the

data on the first two PCs and visualisation of the identified cell morphs. “×” markers indicate the centroids of the groups. (e) Proportion of cells of

each morph across stiffness values. Bar plots represent average proportions, error bars indicate 95% confidence intervals, values calculated by

grouping cells by images. The inset shows the total number of cells in each cluster.

https://doi.org/10.1371/journal.pcbi.1009193.g004
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Fig 5. Visualisation of cell morphs. Representative images of cells cultured at different stiffness levels corresponding

to the three cell morphs, as determined by the clustering algorithm. The bottom row provides examples of Clumped

cells classified as one of the three cell morphs by the RF classifier. Cell membranes were visualised using WGA

staining.

https://doi.org/10.1371/journal.pcbi.1009193.g005
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Fig 6. Changes in expression of biomarkers associated with epithelial and mesenchymal phenotypes. (a-c) Mean fluorescent signal from E-cadherin,

vimentin, and cytokeratins, respectively, across substrates of different stiffness. (d) The ratio of fluorescence intensity of cytokeratins to vimentin (CVR)

calculated for all stiffness values. For (a-d) values are mean, error bars indicate standard deviation. Orange line shows the mean values and the band indicates

95% confidence intervals. Significance of the difference assessed by Welch’s t-test (‘���’: p< 0.001, ‘��’: p< 0.01, ‘�’: p< 0.05), n = number of cells, see Table A

in S2 Text. (e) Box plots comparing mean fluorescent signal from E-cadherin, cytokeratins, and vimentin in cells belonging to three cell morphs. There appears

to be no difference in CVR between the three cell morphs as can be seen in the rightmost plot. Distributions of the values are reported using box plots: a
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that cell area was found to be one of the key characteristics distinguishing the clusters, we

again examined fluorescent signal normalised by cell area (“mean intensity”). Notably, the

mean intensity of E-cadherin in small round cells (morph 3; blue) was significantly higher

than in its counterparts (Fig 6E). Contrary to our expectations, there was no difference in

vimentin or in the CVR between the three cell morphs, as can be seen in Fig 6E. Overall, these

results confirm the high sensitivity of MDA-MB-231 cells to substrate stiffness. The increase of

both E-cadherin and vimentin (and the minimum in the CVR) at 2 kPa suggests possible

events in MDA-MB-231 cells cultured on these substrates.

Rigid substrates promote the formation of cell clusters

A distinct tendency to multicellular clustering was observed on the most rigid substrates.

Unlike other stiffness levels, where cells were growing individually, approximately half of the

cells cultured at 64 kPa appeared to form tight cell clusters, indicating that the rigidity of a sub-

strate can be a promoting factor. Representative images of individual and clustered cells (fur-

ther referred to as “Single” and “Clumped”, respectively) are illustrated in Fig 7A. Clumped

cells were excluded from the analysis above and examined separately (Fig A in S6 Text). Com-

parison of Single and Clumped cell populations cultured at 64 kPa revealed that, apart from

obvious distinctions (Fig B in S6 Text), the two groups have significantly different NCR values

due to differences in the total cell area (Fig 7B) while nuclear areas were comparable.

A Random Forest classification model was trained to classify cells into one of the cell

morphs (morph 1, 2, or 3) and was validated on the test set achieving the F1 score of 0.98 (see

Materials and Methods for details). The model was next used to estimate the distribution of

the morphs in Clumped cells. As can be concluded from Fig 4D, among Single cells cultured at

64 kPa the majority exhibited irregular shapes (morph 1; green), which included relatively

large cells with lamellipodial protrusions, as confirmed by visual examination. Conversely,

morph 3 was prevailing in the population of Clumped cells (56%) while only a few cells

assumed morph 2.

The analysis of the fluorescent signal distribution from E-cadherin revealed a peculiar pat-

tern: while the mean intensity of E-cadherin was higher in Single cells, Clumped cells showed

an increased localisation of E-cadherin on the cell surface suggesting a stronger capacity for

the intercellular adhesion (Fig 7D). Additionally, we examined a fraction of the total cell fluo-

rescent signal located along the edge of the cell. Fig 7E demonstrates the comparison of cells

across all stiffness levels with values for Single and Clumped cells plotted separately. A pro-

nounced difference in the fraction of cell surface-localised E-cadherin can be noted between

Single and Clumped cells. Moreover, cells cultured on 2-kPa substrates also showed an

increase in junctional E-cadherin. The latter observation once again suggests possible com-

monalities in cell behaviour between cells cultured on 2-kPa and 64-kPa substrates.

Discussion

It is well established that the early steps of the metastatic cascade are facilitated by the epithe-

lial-mesenchymal transition (EMT) allowing carcinoma cell detachment, migration, and dis-

semination. However, there is a lack of understanding of how cancer metastasis progresses

from the initial dissemination of circulating tumour cells to a secondary organ and the ensuing

formation of metastatic lesions [13]. Previous studies have pointed to the importance of the

box shows the median value, first and third quartiles, whiskers indicate median +/-1.5 � IQR. Significance of the difference assessed by Welch’s t-test (‘���’:

p< 0.001, ‘��’: p< 0.01, ‘�’: p< 0.05).

https://doi.org/10.1371/journal.pcbi.1009193.g006
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Fig 7. Comparison of individual and clustered cells cultured at 64 kPa. (a) Example images of individual and clumped cells cultured at 64 kPa. Cells

stained with DAPI (blue) and WGA-FITC (green) to visualise cell nuclei and cytoplasm, and for E-cadherin (magenta). (b) Key differences between Single

and Clumped cells. (c) Cell morph composition of Clumped cell population. (d) Mean intensity and mean edge intensity of E-cadherin in Single and

PLOS COMPUTATIONAL BIOLOGY Breast carcinoma cell adaptation to matrix stiffness

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009193 July 23, 2021 14 / 25

https://doi.org/10.1371/journal.pcbi.1009193


reverse process of EMT, namely, mesenchymal-epithelial transition (MET) for metastatic out-

growth, although this process remains poorly understood and unlike the inducers of EMT, few

inducers of MET are known [25].

The expression of E-cadherin, a trait of epithelial cells, persists in many cancer types,

including primary and metastatic tumours. Furthermore, E-cadherin junctional complexes are

essential for several processes occurring during metastasis–collective cell migration and high-

confluence cell proliferation [36]. The MB2 bone marrow tropic isogenic subline from

MDA-MB-231 expresses E-cadherin in bone metastases, supporting the occurrence of MET

induced by binding to E-selectin in the bone vascular niche [25], although these observations

pointed towards a “non-canonical MET program” with unchanged RNA expression of the

master transcriptional regulators of EMT, such as Snail1/2, Twist1/2 and Zeb1/2 suggesting a

hybrid phenotype [37].

In light of this new evidence, we chose the cell line MDA-MB-231 characterised by the high

mesenchymal index [38]. MDA-MB-231 cells are aggressive, treatment-resistant triple-nega-

tive breast carcinoma (TNBC) cells that are essentially mesenchymal since the epithelial bio-

marker E-cadherin expression is transcriptionally repressed by methylation of the E-cadherin

promoter. We tested a set of physiologically relevant stiffness levels ranging from very soft (0.2

kPa) to highly rigid (64 kPa) and examined the heterogeneous response of the MDA-MB-231

cell population. Circulating tumour cells in vivo enter bone marrow by first residing for a

while in the perivascular niche (2 kPa) where they partially regain the epithelial features. They

later lodge into the bone matrix (64 kPa) and become osteolytic while shifting towards an epi-

thelial-like phenotype.

We can make several comments on our results in the context of the recent observations out-

lined above. Firstly, our investigation of the adhesion of MDA-MB-231 cells to different com-

ponents of the ECM aided by the correlation analysis suggest significant differences in the

preferred and suppressed adhesion of these cells, where collagen type 1 displayed the largest

adhesion. The ECM components that induce stronger adhesion can potentially contribute to

cellular arrest in the tissue, while the components associated with decreased cell attachment

can facilitate cell migration.

Secondly, we note that the cell density is the highest at 2 and 16 kPa, implicating the highest

proliferation-to-apoptosis ratio, cell adhesion or both. It is possible that there exists a causal

relationship between the cell density and cell morphology, for example, specific cell morphs

may have a higher proliferation-to-apoptosis ratio. Conversely, higher cell density may result

in smaller more rounded cells. Although we cannot rule out such dependency, our results add

little support to this possibility.

Thirdly, by evaluating the profiles of individual cells, we showed that MDA-MB-231 cells,

while displaying a continuum of morphologies, can be related to three distinct morphological

types (termed cell morphs). Machine learning techniques allowed to identify the three subpop-

ulations based on their geometric and contextual parameters and characterise each of these

morphs by extracting the key distinguishing parameters. While a more granular partitioning

can be produced by changing the cut-off in the dendrogram (Fig 4A), at the high level cells

group into the identified three subpopulations. Taken together, our results show that morph 1

corresponds to cells with various irregularities and lamellipodial protrusions, morph 2 consists

Clumped cells. Schematic illustrations of the measurements are provided on the bottom. (e) Fraction of the total cell fluorescent signal located along the

edge of a cell. Single and Clumped cells at 64 kPa are plotted separately. (f) TNBC cells (purple) displayed dramatically different morphological and

colonisation patterns in the parenchymal (left) and stromal (right) compartments of our 3D liver tissue model. For (b), (d) and (e), values are mean, error

bars indicate standard deviation. Significance of the difference assessed by Welch’s t-test (‘���’: p< 0.001, ‘��’: p< 0.01, ‘�’: p< 0.05).

https://doi.org/10.1371/journal.pcbi.1009193.g007
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of large flattened cells, and morph 3 is represented by small compact round cells. Notably, in

their recently published study, Devaraj and Bose report on the similar morphological states of

MDA-MB-468 cells [39].

It is important to note that the displayed distinct morphological traits appeared highly vari-

able across the substrate stiffness values. This implicates that cells respond to the substrate stiff-

ness variation by remodelling their matrix adhesion and cytoskeleton. Notably, the ratios

between the identified morphs change with an increase of the substrate stiffness in a nonlinear

manner. Specifically, morph 3 dominated at 2 kPa but was significantly less present at the

higher stiffness values. Interestingly, in a recent theoretical work, the authors showed that cells

transition into one of the three cell morphs: weakly adhered (similar to morph 3), elongated

with multiple protrusions (morph 1), or crescent-like (morph 2) depending on the strength of

cell-substrate adhesion [40].

It is worth noting that single cell clones enriched with cells displaying a cell shape with a

high aspect ratio akin to morph 1 do not show a high metastatic potential [27]. Both morphs 1

and 2 showed an increased cell population on the stiffer substrates. The morphological traits of

an individual MDA-MB-231 cell have been reported to persist for several weeks. Single cell

clones with the same morphological types displayed similar in vivo behavioural patterns,

including tumorigenicity, survival in circulation, and metastatic potential [27]. In regard to

cell motility, primarily flattened cells corresponding to morph 2 are expected to exert strong

interaction with the substrate and are likely to be immotile due to the presence of large stable

focal adhesions [41]. At the same time, protruding lamellipodia displayed by morph 1 is a hall-

mark of cell motility. Lastly, morph 3 may exhibit ameboid movements, however, video

microscopy would be required to confirm this hypothesis.

Furthermore, we assessed the changes in expression levels of three biomarkers reporting on

the cell cytoskeleton and intercellular adhesion aiming to investigate links between these

changes and cell morphology. While the expression of cytokeratins was found to increase grad-

ually with the stiffness, the intensity of vimentin displayed a nonlinear relationship peaking at

the softer stiffness values. Interestingly, we also observed a local maximum in E-cadherin

along with a peak in the vimentin expression at 2 kPa–this stiffness is typical for parenchymal

type tissues e.g., liver and lungs. Mechanistic interpretation suggests that compliant substrates

preclude the formation of widely spread cell-matrix junctions so that the cell retracts to a small

round footprint. This hampered the cell motility and caused an upregulation of vimentin to

restore this property typical for mesenchymal cells.

The stiffest tested substrate (64 kPa) typical for bone tissue induced dramatic variation in

TNBC cell behaviour. We observed a subpopulation of MDA-MB-231 cells that formed multi-

cellular clusters (“Clumped”). These cells appeared to have pronounced differences in both the

morphology and expression of E-cadherin compared to the single cells cultured on the same

substrate (“Single”). Notably, Clumped cells mostly displayed small round morphology con-

trary to the large irregular footprint prevalent among Single cells. In comparison with the over-

all cell population, the E-cadherin expression in Single cells cultured on 64 kPa substrate was

significantly greater while in Clumped cells it was relatively low. However, the localisation of

E-cadherin in Clumped cells was considerably shifted towards the cell surface. Previously, a

similar trend in the E-cadherin signal localisation has been observed as a result of the matura-

tion of the cell-cell E-cadherin-mediated contacts [42]. Moreover, it has been shown that as

the cell-cell adhesion increases, cells become smaller and are characterised by a decrease in

lamellipodia formation [43] thus providing a potential explanation for the morphological dif-

ferences between Single and Clumped cells.

Predominant expression of E-cadherin at the cell-cell junctions speaks in favour of a stiff-

ness-induced mechanism of cluster formation of mesenchymal cells in bone-type tissues. It is
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known that expression of E-cadherin alters cell morphology and decreases fibroblast-like

migration in MDA-MB-231 cells [44]. Moreover, local microenvironment at the secondary

site may induce re-expression of E-cadherin through the changes in epigenetic regulation of

the E-cadherin gene in MDA-MB-231 [17]. Therefore, high extracellular matrix (ECM) stiff-

ness might be one of the contributing–if not the key–factors forcing cell aggregation followed

by re-expression of E-cadherin and changes in cell morphology, migratory and invasive behav-

iour [45]. However, while organ stiffness may play a role in bone metastasis it may not be a fac-

tor in other organs such as the liver, lung and brain which are also commonly colonised by

breast carcinoma cells.

These results are also in line with the observations from our previous study, where we inves-

tigated colonisation of the liver parenchymal and stromal compartments by MDA-MB-231

cells [26]. We showed that the cell growth and invasion patterns, as well as their morphology,

critically depend on the stiffness of the ECM. In particular, it was found that among rapidly

proliferating cells deep into the soft (2 kPa) parenchymal tissue, the morphological trait of a

small spheroidal shape dominated (Fig 7F, left). Meanwhile, the dense stromal substrate stimu-

lated the morphological type characterised by elongation and a large footprint (Fig 7F, right).

Finally, a tendency towards the formation of multicellular and multilayer clusters of

MDA-MB-231 cells was also detected exclusively in the stromal compartments.

Overall, our work helps substantiate the evidence of a significant effect of the tumour

microenvironment on the cancer cell morphological and molecular adaptability. The dramatic

variation of the cell behaviour of the E-cadherin-mediated cluster formation occurred on the

stiffest substrate pertinent to the bone tissue implicates a potentially new promoter for cluster-

ing of mesenchymal cells critically important in metastasis [46,47].

Further, it addresses the problem of intra-population heterogeneity and presents a frame-

work for evaluating the morphological and molecular states of individual cells. We believe the

proposed workflow can be adopted to analyse populations of cells cultured in various condi-

tions and using a range of cell models as long as compatibility with confocal microscopy imag-

ing and scaffold-free or gel-based 3D cultures is ensured.

It is worth mentioning, however, that the MDA-MB-231 cell line used in this study has

been established a long time ago and over the years has been selected to a very stable highly

mesenchymal metastatic phenotype. In the future, we aim to investigate whether differentiated

breast cancer cells demonstrate a similar response to various substrate stiffness. Variable

responses to EMT or MET inducers are observed using distinct cell lines and single-cell

sequencing [48,49]. To further investigate this phenomenon, it would be necessary to analyse

single cell-derived clones to determine which clones can form clusters. Furthermore, multicel-

lular clusters observed at the most rigid substrate may have formed through other cadherins.

Further experiments are required to verify these observations with cells stained for beta-cate-

nin together with F-actin to show its localisation at the cell cortex. Finally, verification of the

machine learning model on publicly available histological samples can illuminate the transla-

tional potential of this research, specifically, in the field of digital pathology.

Materials and methods

Ethics approval and consent to participate

No human or animal ethics approval was required for this study.

Assay substrates

To choose the best ECM protein for coating, cells were seeded on an extracellular matrix

screening array, ECM Select Array Kit Ultra-36 (Advanced Biomatrix, San Diego, USA),
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containing 36 ECM conditions on hydrogel surface. Each condition is a combination of 1 to 4

human-derived ECM proteins taken in a total concentration of 250 μg/mL. It is replicated in 9

spots each having a diameter of 400 μm (Fig A in S1 Text). The following ECM proteins were

used: collagen I, collagen III, collagen IV, collagen V, collagen VI, fibronectin, laminin, vitro-

nectin, tropoelastin (Table A in S1 Text). The array was washed and prepared for cell seeding

according to the manufacturer’s instructions.

To study the effect of stiffness, cells were seeded into CytoSoft Imaging 24-well plates

(Advanced Biomatrix) containing a thin silicon layer of different stiffness on the bottom of

each well. The elastic moduli of silicon were 0.2 kPa, 2 kPa, 16 kPa, 32 kPa, and 64 kPa. Glass-

bottom 24-well plates (Ibidi, Gräfelfing, Germany) were used for control experiments and

treated according to the same protocols unless stated otherwise. Plate wells were coated with

human type I collagen solution of 3 mg/mL, VitroCol (Advanced Biomatrix). Collagen was

diluted in 1x DPBS (15 μg/mL), and 1 mL of solution was dispensed into each well to thor-

oughly coat the surface. Coated plates were incubated at room temperature, covered for 1

hour. After incubation, coated surfaces were rinsed two times with PBS.

Cell culture

MDA-MB-231 (ECACC 92020424) breast cancer cells were subcultured and maintained in

complete culture medium prepared from Dulbecco’s Modified Eagle’s Medium/Nutrient Mix-

ture F-12 Ham (DMEM/F-12; Sigma-Aldrich) supplemented with 10% fetal bovine serum

(FBS; Sigma-Aldrich, Sent-Luis, USA) and 1% penicillin-streptomycin (PS; Gibco, Waltham,

USA). Cells were incubated at 37˚C under a humidified atmosphere of 5% CO2. Passaging of

cells was performed once the confluence reached 80%. Cells were washed with PBS and Try-

pLE (Gibco) was applied for cell dissociation. Following incubation with TrypLE for 5 minutes

at 37˚C, a complete medium was added to the cells. The cell suspension was centrifuged at 500

g for 5 minutes. Seeding densities for ECM Select Array and CytoSoft plate were 0.3×105 cells/

mL and 0.75×105 cells/mL, respectively. The samples were then incubated for 24 hours prior

to staining. We performed a series of tests on Cytosoft plates to optimise the seeding density

for microscopy. The high growth rate of MDA-MB-231 cells resulted in a confluency build-up

that can hinder accurate cell segmentation in case of excessive overlapping. This precluded cell

culturing over longer periods.

Staining procedures

ECM Select Array was washed with 5 mL warm 1x Hank’s Balanced Salt Solution with Ca2+

and Mg2+ (HBSS; Gibco). Cells were then fixed on the slide by adding 5 mL cold 4% parafor-

maldehyde (PFA) prepared from methanol-free 16% formaldehyde solution (Thermo Fisher

Scientific, Waltham, USA) in 1x PBS. The slide was left in the PFA solution for 5 minutes at

4˚C followed by 10 minutes at room temperature and then washed again with 1x HBSS. To

visualise the cell nuclei, cells were stained with 4,6-diamidino-2-phenylindole dihydrochloride

(DAPI, Sigma-Aldrich). The slide was covered with PBS for imaging.

Cells in CytoSoft plates were fixed with 4% PFA and left for 15 minutes at room tempera-

ture. Membranes of fixed cells were labelled with FITC-conjugated WGA (Sigma-Aldrich,

1:300) and diluted in HBSS for 10 minutes at 37˚C. Next, cells were permeabilised using 0.2%

Triton in PBS for 15 minutes at room temperature and then blocked using 1% Bovine Serum

Albumin (BSA; Sigma-Aldrich) in PBS for 1 hour at room temperature. Half of the wells on

each plate were stained for E-cadherin and the other half for vimentin and cytokeratins (Fig C

in S1 Text). Samples were incubated for 1 hour at room temperature with the following pri-

mary antibodies: either mouse anti-Vimentin (1:100; Invitrogen, Waltham, USA) and rabbit
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anti-pan Cytokeratin (1:100; Abcam, Cambridge, UK) or rat anti-E-cadherin (1:200; Sigma-

Aldrich). To perform fluorescent microscopy, cells were then treated for 1 hour at room tem-

perature with fluorophore-labelled secondary antibodies against the corresponding host spe-

cies: goat anti-rabbit Alexa Fluor 647 (1:300; Abcam), goat anti-mouse Alexa Fluor 568 (1:300;

Invitrogen), goat anti-rat Alexa Fluor 647 (1:200; Abcam). DAPI was incorporated for the last

10 minutes of incubation followed by washing with PBS. All primary and secondary antibodies

were diluted in blocking solution. Finally, 1 mL of PBS was added into each well and plates

were stored at 4˚C prior to imaging. Our measurements show that the stiffness has a negligible

effect on the optical properties of the fluorescent labels used in our immunocytochemistry

assays (as discussed in S8 Text).

Image acquisition

To evaluate the cell adherence to different ECM proteins, images were acquired using an

upright epi-fluorescent microscope Axio Imager Z2 (Zeiss, Germany) with a dry EC Plan-Neo-

fluar 5×/0.16 objective. To study the effect of substrate stiffness, high magnification imaging

was carried out using an inverted confocal laser-scanning microscope (LSM 880, Carl Zeiss,

Germany) equipped with an oil-immersion Plan-Apochromat 40×/1.3 objective lens. The cell

nuclei stained with DAPI were imaged under excitation with a 405 nm laser and the emission

filter was tuned to 411–494 nm. WGA-FITC was excited with a 488 nm laser and emission col-

lected through a 491–544 nm bandpass filter. Vimentin was excited with a 561 nm laser and

the emission bandpass filter was in the 568–620 nm range. All images for pan cytokeratin and

E-cadherin were acquired under excitation with a 633 nm laser and emission was detected

over the 638–755 nm range. To avoid signal overlapping, imaging was performed sequentially

for each fluorophore with frame-wise switching between channels. 9–15 fields of view were

randomly selected in each well for image acquisition. Cell density was calculated from images

obtained by the same system with a dry Plan-Apochromat 10×/0.45 objective.

Image analysis and cell segmentation

Acquired images containing signal from cell membranes and nuclei were preprocessed and

segmented in ImageJ v2.0.0, [50]. Noise reduction was performed with a Gaussian filter with

kernel σ = 0.25um. Colour thresholding was applied to separate cells and nuclei from the back-

ground followed by manual segmentation of adjacent cells to ensure the highest precision.

Cells not completely present in the image or overlapping with other cells were excluded from

the further single-cell analysis. However, they were taken into account when calculating con-

text measurements such as the number of cell neighbours or the length of the shared bound-

ary. Created images with masked cells and nuclei were used to extract features from individual

cells. The complete dataset contained 910 cells. Table A in S2 Text provides the exact number

of segmented cells per condition.

Feature extraction

Automated feature extraction was performed using CellProfiler 3.1.8 software [51]. Measure-

ments of cell and nuclei shape, context measurements, intensity and texture of DNA, membrane,

cytokeratins and vimentin were obtained using built-in plugins in CellProfiler. First, variables

with zero variance and absolute pixel coordinates were removed from the dataset. Additional fea-

tures were engineered, such as measurements of cell polarity (distance between centroids of a cell

and its nucleus), nuclear-cytoplasmic ratio (ratio of the areas of a nucleus and a cytoplasm) and

the fraction of fluorescent signal localised on edge. Specifically, throughout the paper, we refer to

the total fluorophore intensity normalised by cell cross-sectional area as mean intensity. Similarly,
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mean edge intensity denotes fluorophore intensity captured from the boundary pixels normalised

by cell perimeter. The fraction of the total cell fluorescent signal captured along the edge of a cell

was calculated as the total edge intensity / total cell intensity � 100.

Overall, 150 measurements were calculated for each cell describing its morphology and

context (Table B in S2 Text). Additionally, depending on the staining group, 140 measure-

ments were obtained describing the intensity and distribution of fluorescent signal from cyto-

keratins and vimentin and 69 measurements describing the expression of E-cadherin.

Hierarchical clustering

All features were standardised prior to further analysis by subtracting the mean from each col-

umn and dividing it by its standard deviation (z-score normalisation). That allowed to take all

features into account with equal weights regardless of the scale and the nature of the variable.

Cluster validity indices were used to estimate the number of clusters in the dataset. This

procedure was performed by randomly subsampling ~30% of the data and was repeated 30

times. Two alternative indices, namely the silhouette score [52] and the Davies-Bouldin index

[53], supported the presence of 2 to 3 clusters in the dataset. Taking into account the cluster

validity indices and examining the outcomes of the hierarchical clustering we concluded that

cells exhibit 3 general morphotypes.

Agglomerative hierarchical clustering was performed on the whole population of cells using

all 150 morphological and contextual features recursively merging clusters subject to the small-

est variance. The output was displayed as a dendrogram.

Feature selection

We performed iterative feature selection removing features with Pearson’s correlation

coefficient > 0.8. As a result, 50 features were excluded, and the rest 100 features were used to

assess cluster separability and train a Random Forest model.

Statistical analysis

For the cell adhesion study, we computed Spearman’s rank correlation coefficient to determine the

associations between protein concentrations and the number of attached cells. To identify cell

properties associated with the substrate stiffness value, we calculated and compared the results of

Spearman’s and Kendall’s rank correlation coefficients as well as distance correlation [54] that can

capture both monotonic and non-monotonic relationships. For feature selection, we only consid-

ered Pearson correlation. Features correlated with cluster number and cell clumping were identi-

fied using the mutual information criterion. Bar plots show mean and error bars indicate standard

deviation unless otherwise stated. Distributions of the values are shown using box plots, where a

box represents the median value, first and third quartiles, whiskers indicate median +/-1.5 � IQR.

Confidence intervals were calculated at the 95% level both for mean values and proportions.

Statistical discernibility was assessed using unpaired two-tailed Student’s t-test with Welch’s

correction for unequal variances. Statistical significance was reported as follows: �p-

value < 0.05, ��p-value< 0.01 and ���p-value< 0.001.

All experiments were replicated three times and for each sample, nine to twelve sections

were randomly selected and captured by confocal microscope.

Random Forest classification model

A Random Forest Classifier was used to predict the cell morph based on the selected 100 mor-

phological and contextual features. The dataset was split into training and test set with 10% of
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the data used for model evaluation. Hyperparameter tuning was performed using randomised

search with K-fold cross-validation to optimise the model parameters and achieve the best

results. The performance of the model was evaluated using the F1 score (a weighted average of

the precision and recall) due to unequal sizes of the classes.

In silico analysis

Updated clinical data and sample genomic information for TCGA-BRCA samples were

obtained from the Genomic Data Commons (https://portal.gdc.cancer.gov/). All data analysis

including gene expression, mutation, copy number variation (CNV), and Pearson´s correla-

tion coefficient was performed with TCGAbiolinks and Bioconductor packages under R pro-

gram (version 3.4.0). The ECM-signature (18 genes) and classical EMT-signature (14 genes)

used in this analysis were analysed and selected according to the previous studies [38,55,56].
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