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Objective. To investigate potential drugs for diabetic nephropathy (DN) using whole-genome expression profiles and the
Connectivity Map (CMAP).Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study.
Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip.
Differentially expressed genes (DEGs) between late stage and early stage DN samples and the CMAP database were used to identify
potential drugs for DN using bioinformatics methods. Results. (1) A total of 1065 DEGs (FDR < 0.05 and fold change > 1.5) were
found in late stage DN patients compared with early stage DN patients. (2) Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2),
vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-𝜅B inhibitors, histone
deacetylase inhibitors (HDACIs), PI3K pathway inhibitors, or PPAR𝛾 agonists, respectively. Conclusion. Using whole-genome
expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed
by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these
drugs in the treatment of DN.

1. Introduction

Diabetic nephropathy (DN), which is clinically character-
ized by proteinuria and morphological and ultrastructural
changes in the kidney, is a serious complication of diabetes
mellitus and is amajor cause of end-stage renal diseaseworld-
wide. DN is amultifactorial progressive disease with complex
pathogenesis, involving hyperglycemia, advanced glycation
end products (AGEs), hemodynamic disorder, metabolic
abnormalities, inflammatory factors, and oxidative stress [1].
Although our knowledge of DN is continuously increasing,
no treatment strategies specifically target the pathogenesis
of DN beyond controlling glucose levels, blood lipid levels,
and high blood pressure [2]. As a result, the prognosis for
most DN patients is poor, especially for those in late stages
of the disease. The identification of potential drugs targeting
themolecular pathogenesis ofDN is critical for improving the
prognosis and survival of patients with DN.

Whole-genome expression profiling is the simultaneous
measurement of the expression of thousands of genes by
microarray technology (or RNA-Seq) to create a global
picture of tissue or cellular function. Comparing the whole-
genome expression profiles of tissues (or cells) under physio-
logic and pathologic conditions may reveal the pathogenesis
of DN. In addition to identifying differentially expressed
and coexpressed genes, from which one can generate new
hypotheses about the molecular mechanism of complex
diseases, whole-genome expression data are also used to
identify therapeutic drugs. The Connectivity Map (CMAP)
database is a collection of genome-wide transcriptional
expression data from cultured human cells treated with
bioactive small molecules [3]. Lamb et al. findings showed
that genomic signatures in the CMAP database can be used
to identify potential new therapeutics, and signatures are
often conserved across diverse cell types [3]. Therefore, the
CMAP database can be used with whole-genome expression
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profiles to identify potential drugs for DN in the glomeruli
of patients. Using the CMAP database, Zhong et al. predicted
that the combination of an angiotensin-converting enzyme
(ACE) inhibitor and a histone deacetylase inhibitor would
maximally reverse the disease-associated expression of genes
in a mouse model of HIV-associated nephropathy (Tg26
mice), and the renoprotective effect of the combined use of
these inhibitors was proven in Tg26 mice [4]. It is feasible to
utilize gene expression profiles of tissues under normal and
physiopathological conditions to investigate potential ther-
apeutic drugs based on bioinformatics methods. However,
this kind of therapeutic drug identification in DN research
is lacking. In our study, we utilized the gene expression
profiles of microdissected glomeruli from DN patients and
explored potential therapeutic drugs using in silico screening
approaches.

2. Materials and Methods

2.1. Patients. The clinical study used a cross-sectional design.
The control and DN kidney samples were obtained from
leftover portions of diagnostic kidney biopsies. For the kidney
biopsies, informed consentwas obtained from the donors and
patients. All of the participants provided written informed
consent. The institutional review board of Jinling Hospital
specifically approved this study [5].

A total of 18 DN patients diagnosed by renal biopsy were
enrolled in the study. The baseline clinical characteristics of
the DN patients are listed in Table 1.

For each biopsy specimen, light microscopy, immunoflu-
orescence, and electron microscopy were routinely per-
formed. Sections for light microscopy were stained with
hematoxylin eosin, periodic acid-Schiff, Masson’s trichrome,
and periodic acid methenamine silver. All of the patients
were categorized based on the pathologic classification of the
Renal Pathology Society [5]. The glomerular classifications
were as follows: class I, glomerular basement membrane
thickening; class IIa, mild mesangial expansion; class IIb,
severe mesangial expansion; class III, nodular sclerosis; and
class IV, global glomerulosclerosis in >50% of glomeruli.
Interstitial fibrosis and tubular atrophy (IFTA) were scored
as follows: 0, absent; 1, <25%; 2, 25–50%; and 3, >50% of
the total area. Interstitial inflammation was scored as follows:
0, absent; 1, inflammation only in relation to IFTA; and 2,
inflammation in areas without IFTA. Arteriolar hyalinosis
was scored as follows: 0, absent; 1, at least one area of arteriolar
hyalinosis; and 2, more than one area of arteriolar hyalinosis.
Arteriosclerosis was scored as follows: NA, absence of large
vessels; 0, no intimal thickening; 1, intimal thickening less
than thickness of media; and 2, intimal thickening greater
than thickness of media. All of the specimens were scored
by the same pathologist (Dr. Feng Xu) who was blinded to
the clinical findings. In order to assess the reliability and
reproducibility of the classification, biopsy slides were scored
independently by another pathologist (Dr. Dandan Liang).
The pathologic characteristics of the DN patients are listed
in Table 1.

The DN patients were divided into 2 groups according
to the following criteria: early stage DN group (𝑁 = 6),

Table 1: The baseline clinical and pathologic characteristics of DN
patients.

Early stage Late stage 𝑃

𝑛 6 12 —
Age (years) 45.9± 6.4 51.0± 6.8 0.103
Sex (female, %) 3 (50%) 3 (25%) 0.344
Ethnicity Han Han —
BMI (kg/m2) 25.3± 1.5 24.9± 1.3 0.892
Serum creatinine (mg/dL) 0.63± 0.13 2.34± 0.74 0.000
eGFR (mL/min) 112.8± 8.1 32.9± 13.3 0.000
Proteinuria (g/24 h) 0.82± 0.47 5.18± 2.01 0.000
HbA1C (%) 8.4± 1.6 7.2± 1.9 0.146
BUN (mg/dL) 15.4± 4.8 35.8± 11.8 0.003
Glomerular lesions 0.000
Class I 3 0
Class IIa 3 0
Class IIb 0 0
Class III 0 7
Class IV 0 5

IFTA 0.006
0 2 0
1 4 2
2 0 4
3 0 6

Interstitial inflammation 0.004
0 2 0
1 3 1
2 1 11

Arteriolar hyalinosis 0.333
0 0 0
1 1 0
2 5 12

Arteriosclerosis 0.504
NA 0 0
0 2 1
1 1 2
2 3 9

BMI: bodymass index; eGFR: estimated glomerular filtration rate, calculated
using the EPI-CKD formula; HbA1C: glycated hemoglobin; BUN: blood urea
nitrogen. Values are presented as 𝑛 or means ± SD. 𝑃 values were obtained
using theWilcoxon rank sum test for continuous variables and Fisher’s exact
test for categorical variables.

glomeruli isolated from the renal tissue of early stage DN
patients who were identified with eGFR > 90mL/min; late
stage DN group (𝑁 = 12), glomeruli isolated from the
renal tissue of late stage DN patients with eGFR between
15mL/min and 60mL/min. Control samples (𝑁 = 6) were
obtained from living donor kidney biopsies. Control subjects
were defined as having an eGFR ofmore than 90mL/min, the
absence of proteinuria, normal serum creatinine, and BUN.

2.2. Tissue Handling and Microdissection. Tissues placed in
RNALater (SIGMA, St. Louis, MO, USA) were manually
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microdissected at 4∘C for glomeruli. In general, 10 glomeruli
were collected from each biopsy tissue and were placed into
cold RNeasy lysis buffer solution (Qiagen, Valencia, CA,
USA).

2.3. RNA Extraction and Amplification. Dissected glomeruli
were homogenized, and RNA was prepared using RNeasy
mini columns (Qiagen, Valencia, CA, USA), according to
the manufacturer’s instructions. RNA quality and quantity
were determined using the Laboratory-on-Chip Total RNA
Pico Kit Agilent Bioanalyzer. Samples without evidence of
degradation were further amplified using the Ovation RNA
amplification system kit (NuGEN, San Carlos, CA, USA).

2.4. Affymetrix Microarray Data and Preprocessing. The
Affymetrix microarray platform (Human U133 Plus 2.0) was
used to produce the whole-genome gene expression profile
data. Quality control and data processing were performed
using R [6] and Bioconductor [7]. The CEL source files
were processed into expression estimates, and background
correction and quartile data normalization were performed
using the RMA (robust multiarray average) algorithm [8].

2.5. Screening of Differentially Expressed Genes (DEGs). The
limma package [9] in R language was used to screen DEGs by
pairwise comparison between groups. The statistical method
implemented in the limma package is based on an approach
called linear models. We used the method proposed by
Benjamini-Hochberg (BH) for multiple testing correction.
The adjusted 𝑃 values were the false discovery rates (FDR).
The threshold criterion is a combination of FDR < 0.05 and
fold change> 1.5.TheDEGs between late stage and early stage
DN samples were chosen for DN drug identification.

2.6. Validation of Microarray Expression Data. The relative
mRNA levels of 10 genes were validated in new selected
glomerular samples. The clinical and pathologic characteris-
tics of these DN patients are listed in Table 2. The processes
used for patient screening, tissue handling, microdissection,
and total RNA were performed as previously described.
The mRNA levels of the target genes were analyzed by
quantitative real-time RT-PCR (qRT-PCR) using the Applied
Biosystems� 7900HT Fast Real-Time PCR System (Thermo
Fisher Scientific, Waltham, MA, USA). The qRT-PCR results
were normalized to 18S ribosomal RNA using the 2−ΔΔCT
method [10], and significance was set to 𝑃 < 0.05.

2.7. Drug Identification Using a Kolmogorov-Smirnov (KS)
Statistic Algorithm. From the CMAP database (http://
www.broadinstitute.org/cmap/), we downloaded the ranked
lists of probe tables.This table is freely available for download
and provides the ranks of all genes in the form of probes
based on the change of gene expression after approximately
6000 drug perturbation experiments. The table contains
22283 probes, which have 22277 common probes with
Human U133 Plus 2.0. Finally, we obtained a table containing
24 samples and 22277 probes. With the limma package in
R language, we obtained the 1000 largest changing probes

Table 2: The baseline clinical and pathologic characteristics of DN
patients for validation.

Early stage Late stage 𝑃

𝑛 5 4 —
Age (years) 43.1± 11.8 52.1± 7.3 0.226
Sex (female, %) 3 (60%) 2 (50%) 1
Ethnicity Han Han —
BMI (kg/m2) 25.5± 4.7 22.9± 2.3 0.342
Serum creatinine (mg/dL) 0.65± 0.15 1.76± 0.54 0.003
eGFR (mL/min) 112.3± 4.3 42.1± 17.4 0.000
Proteinuria (g/24 h) 0.50± 0.23 4.43± 0.41 0.000
HbA1C (%) 6.5± 0.9 7.3± 1.0 0.285
BUN (mg/dL) 14.2± 2.7 30.0± 6.8 0.002
Glomerular lesions 0.016
Class I 1 0
Class IIa 4 0
Class IIb 0 0
Class III 0 2
Class IV 0 2

IFTA 0.087
0 1 0
1 4 1
2 0 3
3 0 0

Interstitial inflammation 0.286
0 1 0
1 4 2
2 0 2

Arteriolar hyalinosis 1
0 0 0
1 0 0
2 5 4

Arteriosclerosis 1
NA 0 0
0 1 0
1 2 1
2 2 3

between the late and early stage DN samples, and the
upregulated probes and the downregulated probes were
saved in GRP files. The CMAP website provides a KS statistic
algorithm; we uploaded the GRP files as the query gene
signature, which was then compared to each rank-ordered
list to determine whether upregulated query genes appeared
near the top of the list and downregulated query genes near
the bottom (positive connectivity) or vice versa (negative
connectivity), yielding a connectivity score ranging from 1
to −1. A high negative connectivity score indicated that the
corresponding perturbagen reversed the expression of the
query signature and might have the potential to treat DN.

2.8. Drug Identification Using a Matching Algorithm [4]. The
IDs of the probe table downloaded from the CMAP database
were converted to Entrez gene symbols using the Affymetrix
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lookup table associated with the platform. If more than one
probe ID corresponded to the same gene, the gene rank
was condensed to the median of the probe ranks. Then,
we extracted the 500 top and bottom DEGs. Potential DN
drugs should reverse the DEGs of DN; genes upregulated in
DN should be downregulated by a potential DN drug and
vice versa. The DEGs (FDR < 0.05 and fold change > 1.5)
between the late and early groups were used to calculate the
reversing scores using formula (1). The perturbagen with the
highest reversing scores might have the potential to treat DN.
Consider

Score
𝑑𝑖
= [(up ∩ down

𝑑𝑖
) + (down ∩ up

𝑑𝑖
)]

− [(up ∩ up
𝑑𝑖
) + (down ∩ down

𝑑𝑖
)] ,

(1)

where Score
𝑑𝑖
indicates the reversing score for a drug in 𝑖th

experiment in the CMAP database; ∩ indicates the inter-
section between two sets; up indicates a list of upregulated
genes during disease; down indicates a list of downregulated
genes during disease; up

𝑑𝑖
indicates genes upregulated by

a drug in the 𝑖th experiment in the CMAP database; and
down

𝑑𝑖
indicates genes downregulated by a drug in the 𝑖th

experiment in the CMAP database.

2.9. Functional Enrichment Analysis. The functional enrich-
ment analysis of the screenedDEGs and the genes reversed by
potential drugs was performed via the GeneAnswers package
in R language [11]. The GeneAnswers package functionally
categorizes genes based on Fisher’s exact test with annotation
libraries of the gene ontology (GO) and the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG).

3. Results

3.1. DEGs in the Glomeruli of DN Patients. We separately
compared the samples in the 2 stages of DNwith the controls.
A total of 105 DEGs were identified between the early stage
DN samples and the controls, including 54 upregulated genes
and 51 downregulated genes; 2572 DEGs were identified
between the late stageDN samples and the controls, including
1626 upregulated genes and 946 downregulated genes.

Only 105 DEGs were identified between the early stage
DN samples and the controls, and the enrichedGO categories
were primarily involved in “response to stimulus.” These
results were in accordancewith themild pathological changes
in the glomeruli from early stage DN patients.

In contrast, 1065 DEGs were identified between the late
and early stages of DN samples, including 815 upregulated
genes and 250 downregulated genes.The heatmap in Figure 1
shows the expression levels of the top 100 regulated genes
across the 24 samples. As shown in Figure 2, the most
enriched GO categories of the DEGs were “extracellular
matrix,” “protein binding,” “cell adhesion,” and “immune
system process.” The most enriched KEGG pathways were
“ECM-receptor interaction,” “complement and coagulation
cascades,” “focal adhesion,” “cytokine-cytokine receptor
interaction,” and “PI3K-Akt signaling pathway.” These GO
categories and KEGG pathways are closely related to DN
progression [12, 13].

As shown in Figure 3, qRT-PCR analysis was performed
to confirm the degree and direction of the expression changes
in 10 genes. All 10 genes assayed by qRT-PCR were found
to be significantly differentially expressed in the microarray
analysis between the late and early stage DN samples. As
determined by qRT-PCR analysis, 10 out of the 10 selected
genes demonstrated a change in expression in the same
direction (i.e., up- or downregulated) (Figure 3(a)). Similarly,
the direction of the change in gene expression determined
by qRT-PCR analysis agreed with the directions obtained for
the genes that were found to be significantly differentially
expressed by microarray analysis between the early stage DN
samples and the controls (5 out of 5 genes, Figure 3(b)) and
between the late stage DN samples and the controls (10 out of
10 genes, Figure 3(c)).

3.2. Potential DN Drugs Predicted by the KS Statistic Algo-
rithm. To explore the potential drugs targeting themolecular
mechanisms of DN, we used the DEGs between the late
and early stages of DN. These genes were enriched for their
specific contribution to nephropathy because genes that are
differentially regulated in human diabetes per se, in the
absence of nephropathy, were excluded by this strategy. After
uploading 812 upregulated and 188 downregulated probe
IDs to the CMAP database, the top 20 drug perturbations
that most strongly reversed the DRGs are listed in Table 3.
Among these drugs,MG-132 [14] andMG-262 [15] are protea-
some inhibitors, piperlongumine inhibits PI3K/Akt/mTOR
signaling [16] and NF-𝜅B activity [17], 15d-PGJ2 (15-delta
prostaglandin J2) activates PPAR𝛾 [18], and vorinostat and
trichostatin A are histone deacetylase inhibitors (HDACIs).

3.3. Potential DN Drugs Predicted by the Matching Algorithm.
We further utilized a matching algorithm and the DEGs
between early and late stage DN samples to calculate the
reversing score for each drug in the CMAP database. The
top 20 drug perturbations that had the highest scores are
listed in Table 4. We clustered the drugs by the similarity
of reversed DEGs, and the drugs with similar pharmaco-
logical characteristics were clustered together (Figure 4). For
example, HDACIs, including vorinostat, trichostatin A, and
valproic acid, were clustered together. Among these drugs,
piperlongumine, 15d-PGJ2, vorinostat, and trichostatin A
were also identified by the KS statistic algorithm. Valproic
acid and parthenolide are also histone deacetylase inhibitors
[19], resveratrol inhibits cAMP phosphodiesterase [20], and
LY-294002 inhibits PI3K [21].

3.4. Functional Enrichment Analysis of the Drug-Reversed
Genes. Piperlongumine, 15d-PGJ2, vorinostat, and tricho-
statin A were identified by both algorithms. The genes that
could be reversed by these drugs are shown in Table 5. To
indicate the target molecular mechanisms of these drugs, we
conducted a functional analysis of these potentially reversed
genes in the glomeruli of DN patients (Figure 5). The genes
reversed by piperlongumine are mostly involved in the
“immune response,” “response to stimulus,” “complement
and coagulation cascades,” “NF-𝜅B signaling pathway,” and
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Figure 1: Heat map of the top 100 DEGs between glomeruli in the late and early stages of DN.
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Figure 2: GO category (cellular component, molecular function, and biological process) and KEGG pathways enriched in the DEGs between
glomeruli in the late and early stages of DN.

Table 3: Top 20 drug perturbations with high negative connectivity scores.

Rank Instance ID CMAP name Dose Cell Score Up Down
1 1274 Bepridil 10 𝜇M HL60 −1 −0.077 0.223
2 7063 MG-262 100 nM MCF7 −0.96 −0.163 0.125
3 7345 Alcuronium chloride 5 𝜇M MCF7 −0.953 −0.108 0.178
4 942 Prazosin 10𝜇M MCF7 −0.953 −0.111 0.175
5 1764 Piperlongumine 13𝜇M HL60 −0.94 −0.071 0.212
6 7022 Dyclonine 12𝜇M MCF7 −0.931 −0.104 0.175
7 3351 (±)-Catechin 14𝜇M MCF7 −0.923 −0.126 0.151
8 7017 Mesoridazine 7 𝜇M MCF7 −0.922 −0.101 0.176
9 909 HC toxin 100 nM MCF7 −0.921 −0.107 0.17
10 1694 Metformin 24𝜇M MCF7 −0.909 −0.102 0.17
11 1656 15d-PGJ2 10𝜇M MCF7 −0.901 −0.112 0.158
12 7020 Xylometazoline 14𝜇M MCF7 −0.898 −0.1 0.17
13 1058 Vorinostat 10 𝜇M MCF7 −0.898 −0.12 0.15
14 7178 Tetrandrine 6𝜇M MCF7 −0.897 −0.151 0.118
15 1069 15d-PGJ2 10𝜇M MCF7 −0.895 −0.12 0.149
16 1140 MG-132 21𝜇M MCF7 −0.884 −0.122 0.143
17 1112 Trichostatin A 100 nM MCF7 −0.882 −0.104 0.161
18 6936 Chlorpromazine 1 𝜇M MCF7 −0.88 −0.115 0.149
19 5310 Puromycin 7𝜇M MCF7 −0.874 −0.111 0.151
20 5304 Moroxydine 19𝜇M MCF7 −0.874 −0.125 0.137
Instance: a treatment and control pair and the list of probe sets ordered by their extent of differential expression between this treatment and control pair; instance
ID: the ID uniquely identifying each instance; CMAP name: the name given to a perturbagen; dose: perturbagen dose; cell: cell line; up: the up score, a value
between +1 and −1 representing the absolute enrichment of an up tag list in a given instance; down: the down score, a value between +1 and −1 representing
the absolute enrichment of a down tag list in a given instance; score: the connectivity score, a combination of the up score and the down score. A high negative
connectivity score indicates that the corresponding perturbagen reversed the expression of the query signature.
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Figure 3: qRT-PCR confirmation. qRT-PCR was performed to confirm the direction of the fold change in expression (shown as log
2
fold

change). The gene expression changes determined by qRT-PCR were compared with those obtained from the microarray analysis of late
versus early stage DN (a), early stage DN versus Ctrl (b), and late stage DN versus Ctrl (c). ∗𝑃 < 0.05.

“Toll-like receptor signaling pathway.” The genes reversed
by 15d-PGJ2 are primarily involved in “cell division,” “FoxO
signaling pathway,” and “cytokine-cytokine receptor inter-
action,” and the genes reversed by vorinostat are mostly
involved in the “immune response,” “response to stimu-
lus,” “signal transduction,” and “osteoclast differentiation.”
The genes reversed by trichostatin A are mostly involved
in the “immune response,” “response to stress,” “signal
transduction,” “cell migration,” and “osteoclast differentia-
tion.”

4. Discussion

Current clinical strategies to treat DN focus on the inten-
sification of glycemic control and the control of blood
pressure and blood fat. Renoprotective drugs based on the
molecular pathogenesis of DN are unavailable because the
molecular pathogenesis of DN is complicated. Recently,
high-throughput transcriptome technology has been used
to explore the molecular pathogenesis of complex diseases
[22, 23], and drug screeningmethods based on transcriptome
data have attracted increasing attention [4, 24].

Themost common kidney lesions in people with diabetes
are those that affect the glomeruli, and DN is characterized
by morphological and ultrastructural changes in the kidney,
including expansion of the molecular matrix and loss of the
charge barrier on the glomerular basement membrane [25].
The gene expression profiles of glomeruli microdissected
from DN biopsy samples will provide an excellent opportu-
nity to explore the molecular mechanisms of this complex
disease and to identify potential drugs.

In this study, we obtained the whole-genome transcrip-
tome profiles of glomeruli from DN patients and normal
controls. The glomeruli contain podocytes, endothelial cells,
and mesangial cells, whereas the CMAP database was built
upon four types of cultured human cell lines [3]. Because
the signatures of drugs are often conserved across diverse
cell types [3], we can utilize the CMAP database to identify
potential drugs for DN.

There were only 105 DEGs between early stage DN
samples and controls, mainly involving “response to stim-
ulus.” These results indicated that there was minimal gene
expression change involving molecular pathogenesis in the
early stage of DN.TheDEGs between the late and early stages
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Figure 4: The heat map and hierarchical cluster of effects of the top 20 drug perturbations. Each row indicates a drug perturbation, and
each column represents a gene. The blue vertical bars in the heat map indicate that the gene was reversed by the corresponding perturbagen,
whereas the red bars indicate that the gene was aggravated by the corresponding perturbagen. Drug perturbations having similar effects were
clustered together.

of DN samples were related to “extracellular matrix,” “cell
adhesion,” “immune system process,” “ECM-receptor inter-
action,” “complement and coagulation cascades,” “cytokine-
cytokine receptor interaction,” and “PI3K-Akt signaling
pathway” (Figure 2). These functional categories and path-
ways have been widely related to the pathogenesis of DN
[13]. Coexpression network analysis and association analysis
indicated that some DEGs between DN samples and controls
exhibit no correlation with the progression or prognosis of
DN (data not shown). These genes, which may be differ-
entially regulated in human diabetes per se, were excluded
from the comparison of the late and early stage DN samples.
Therefore, it is more suitable to use theDEGs between the late
and early stages to identify potential therapeutic drugs forDN
treatment.

A KS statistic algorithm and a matching algorithm were
applied in this study. However, using either algorithm, some
drugs among the top 20 are unlikely to have renal protection
on the basis of prior clinical and pharmacological knowledge.
Therefore, the results based on the two different algorithms
were combined to enhance the reliability of the potential

therapeutic drugs, which provided a good foundation for the
in vitro and in vivo studies.

Piperlongumine, 15d-PGJ2, vorinostat, and trichostatin
A were identified by both algorithms. The molecular mech-
anisms of the 4 drugs include inhibition of NF-𝜅B activity,
histone deacetylase (HDAC) activity, PI3K-Akt signaling
pathway, and the activation of PPAR𝛾. The transcription fac-
tor NF-𝜅B is induced by various cell stress-associated stimuli,
including growth factors, vasoactive agents, cytokines, and
oxidative stress. NF-𝜅B in turn controls the regulation of
genes encoding proteins involved in immune and inflamma-
tory responses. The activation and nuclear translocation of
NF-𝜅B in humanDNhave been demonstrated in the intrinsic
cells of the kidney [26]. Upregulation of HDACs has been
reported in the kidneys of patients with DN as well as in
type 1 and type 2 in vivo animal models of diabetes [27].
HDACIs have anti-inflammatory and antifibrotic effects in
the kidney and may prove to be a novel class of agents in
the treatment of diabetic nephropathy [27]. The PI3K-Akt
signaling pathway is directly related to cellular proliferation,
migration, differentiation, and survival. There are many
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Table 4: Top 20 drug perturbations with high reversing scores.

Perturbagen name-instance ID Score Reversed Aggravated

Vorinostat-6179 46 75 29

15d-PGJ2-1231 43 65 22

Piperlongumine-1764 36 55 19

Resveratrol-662 34 54 20

Ciclopirox-2456 33 67 34

Resveratrol-1715 32 59 27

LY-294002-6186 32 63 31

Valproic acid-410 31 53 22

Trichostatin A-1175 31 59 28

Ethoxyquin-3764 31 57 26

0173570-0000-7389 31 68 37

Parthenolide-1736 30 47 17

Ellipticine-1765 30 46 16

Etoposide-3241 30 73 43

Withaferin A-3819 30 68 38

Vorinostat-1161 29 57 28

Naproxen-2533 29 63 34

Rosiglitazone-2693 29 55 26

Monobenzone-3391 29 74 45

Alclometasone-5752 29 63 34
Perturbagen name: the name given to a perturbagen; instance ID: the ID
uniquely identifying each instance; score: the reversing score calculated using
formula (1); reversed: number of genes in the query signature, the expression
of these genes was reversed by the corresponding perturbagen; aggravated:
number of genes in the query signature, the expression of these genes was
aggravated by the corresponding perturbagen.

known factors that enhance the PI3K-Akt pathway, including
insulin, EGF, and IGF-1. In rat mesangial cells and db/db
mice, high-glucose decreased the expression of MNSOD
via the PI3K-Akt signaling pathway and further aggravated
oxidative stress [28]. The nuclear receptor PPAR𝛾 is located
in all three types of glomerular cells, with prominent expres-
sion in podocytes. PPAR𝛾 agonists, which have emerged
as promising candidates for treating DN, are effective in
delaying and even preventing disease progression.

Piperlongumine can inhibit both NF-𝜅B activation and
the PI3K-Akt signaling pathway [16, 17] and increase mRNA
levels of PPAR𝛾2 [29]. Piperlongumine is a main component
of the root of Piper longum, a plant used by some Indian
tribes to treat diabetes, digestive disorders, and obesity
[30]. In streptozotocin- (STZ-) induced diabetic rats, Piper
longum root aqueous extract can significantly decrease fasting

blood glucose levels and protect liver and kidney function
[30].

15d-PGJ2 is the endogenous ligand of PPAR𝛾 and can
regulate metabolism of adipose tissue and restrain insulin
resistance [18]. In rat mesangial cells, 15d-PGJ2 significantly
decreased alpha-smooth muscle actin (𝛼-SMA) expression,
a marker of mesangial cell dedifferentiation. In mouse
mesangial cells, 15d-PGJ2 repressed TGF-𝛽1-mediated 𝛼-
SMA, fibronectin, and plasminogen activator inhibitor-1
expression; induced HGF expression; and attenuated Smad
nuclear translocation in response to TGF-𝛽1 stimulation [31].
In rat renal interstitial fibroblasts, 15d-PGJ2 inhibited TGF-
𝛽1-induced renal fibroblast activation, CTGF expression,
and ECM synthesis through abrogating the TGF-𝛽1/Smad
signaling pathway [32].

Vorinostat and trichostatin A belong to the same group
of HDACIs based on their chemical structures (hydroxamic
acid).They are broad inhibitors of HDAC activity and inhibit
class I and class II enzymes [33]. Vorinostat is FDA approved
for use against refractory cutaneous T cell lymphoma [34, 35].
HDACIs have beneficial effects in diabetic nephropathy. In
cultured proximal tubule cells, vorinostat treatment reduced
EGFR protein and mRNA and attenuated cellular prolifera-
tion [36]. Daily treatment of diabetic rats with vorinostat for
4 weeks blunted renal growth and glomerular hypertrophy
[36]. In STZ-induced diabetic mice, long-term administra-
tion of vorinostat decreased albuminuria, mesangial collagen
IV deposition, and oxidative-nitrosative stress through an
eNOS-dependent mechanism [37]. In STZ-induced diabetic
rats, trichostatin A prevented extracellular matrix accumu-
lation and epithelial-to-mesenchymal transition in diabetic
kidney [38].

In addition to these four drugs, we have identified poten-
tial therapeutic drugs to treat DN. Proteasome inhibitors,
including MG-132 and MG-262, have anti-inflammatory and
antifibrotic effects [15]. MG132 alleviates kidney damage
by inhibiting Smad7 ubiquitin degradation, SnoN degrada-
tion, and TGF-𝛽 activation in STZ-induced DN rats [39,
40]. Valproic acid, another histone deacetylase inhibitor,
has beneficial effects on proteinuria, glomerulosclerosis,
and renal inflammation in Adriamycin-induced nephro-
pathic mice [41]. LY-294002, a PI3K inhibitor, prevented
the quantitative and distributional changes of CD2AP
induced by high-glucose and advanced glycosylation end
products in mouse podocytes [42]. In db/db mice, LY-
294002 decreased the levels of phosphorylated Akt and
phosphorylated FoxO3a, increased the level of MnSOD
expression, and further decreased oxidative stress [28].
Resveratrol, a phosphodiesterase inhibitor, improved diabetic
nephropathy in several animal models of types 1 and 2
diabetes through its antioxidative effects resulting fromdirect
radical scavenging or modulation of antioxidant enzymes
[43].

In summary, this study utilized the gene expression
profiles of glomeruli from DN patients to identify potential
drugs for DN using the CMAP database and bioinformatics
methods. Four drugs were identified by two different algo-
rithms, and therapeutic potential was shown to be promising
by literature analysis. Our study provides useful information
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Table 5: DEGs reversed by drug perturbations.

Drugs Direction Genes

Piperlongumine Decrease

CLEC5A, TNFAIP6, FCGR1B, C3, NEIL3, RNASE6, C3AR1, SAMSN1, CAPG,
CD86, TREM1, IRF8, EVI2A, PBK, FCGR2A, RGS13, KCNN4, GPR183, TLR2,
GINS2, CLEC7A, RRM2, RGS1, CD300A, CD14, CTSC, TMEM158, CDCA3, NCF2,
SYK, IL1B, GINS1, SLC43A3, PSRC1, MYC, FILIP1L, MYO1F, PLAUR, PFKP, CCR1,
HELLS, PLAU, PTPRE, MNDA, TNFAIP8, MAD2L1, CYP1B1, RASSF2, GALNT7,
ECT2, CD300C, CDC45

Increase HPS5, EAF2, RND1

15d-PGJ2 Decrease

MLPH, CXCL6, TOP2A, LPAR1, GPR39, DLGAP5, HMGA2, SCG5, CXCL1, PTX3,
INHBA, TNFRSF11A, COL5A2, TENM4, ASPM, KIF18B, CENPF, KIF20A, IL33,
SYTL2, CCNB2, CCNA1, HJURP, CDC20, CDH11, LMNB1, NCAPH, MKI67,
CDCA3, FST, TTK, NDP, GINS1, MTCL1, PSRC1, NEK2, HAS2, CDCA8, NPM3,
ETV1, KIF2C, FAM110B, PRSS23, CDK1, PLAU, MALL, P2RY6, AURKB, BNC2,
FJX1, CCNB1, TROAP, IGSF3, CYP1B1, ECT2, TK1, IRS1

Increase PRKCE, SLC16A10, ERVMER34-1, EAF2, RND1, EGF, ZNF804A, SERPINI2

Vorinostat Decrease

CLEC5A, PLA2G7, CTSG, FCGR1A, FCGR1B, VCAN, LAIR1, BCAT1, HP, PTAFR,
C3AR1, ADORA3, LILRB4, HGF, IGSF6, CCR2, NCF4, MS4A6A, CD33, MMP9,
GNA15, EVI2A, TLR1, ATP8B4, CACNA2D3, LILRB1, KCNN4, GPR183, ANXA3,
TLR2, CLEC7A, RRM2, RGS1, LMNB1, NINJ2, CD300A, CSF2RA, NCAPH, CD14,
INHBE, LILRA2, SIGLEC9, LAT2, SYK, SLC38A1, SLC43A3, MYC, GLIPR1,
PTENP1, MYO1F, PSTPIP1, PLAUR, CCR1, PLAU, DOK3, SELPLG, SASH3, P2RY6,
VAV1, PTPRE, MNDA, SPI1, DEF6, CYBRD1, CXorf21, CYP1B1, RASSF2, DOK2

Increase ACOX2, EXPH5, PRKAR2B, GDPD3, MLXIPL, RND1, CTSV

Trichostatin A Decrease

CLEC5A, FCGR1B, VCAN, LAIR1, RNASE6, C3AR1, HGF, IGSF6, NCF4, MS4A6A,
SLC7A11, EVI2A, KIF20A, ATP8B4, CACNA2D3, RGS13, KCNN4, GPR183,
ANXA3, CLEC7A, RRM2, RGS1, LMNB1, CD300A, CD14, INHBE, PYCARD,
LILRA2, SYK, SLC38A1, SLC43A3, PIK3CG, MYC, FILIP1L, PSTPIP1, PLAUR,
FOXM1, PLAU, SASH3, P2RY6, VAV1, MNDA, SPI1, CSF3R, CYBRD1, CXorf21,
MICAL1, CYP1B1, RCC1, P2RX1, ARRB2, RASSF2, GALNT7, DOK2, FAM129A

Increase PRKAR2B, CTNNBIP1, RND1, CTSV

for further animal experiments and clinical trials to confirm
both the safety and efficacy of these drugs.
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