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The hyperbolic geometry 
of financial networks
Martin Keller‑Ressel* & Stephanie Nargang

Based on data from the European banking stress tests of 2014, 2016 and the transparency exercise of 
2018 we construct networks of European banks and demonstrate that the latent geometry of these 
financial networks can be well-represented by geometry of negative curvature, i.e., by hyperbolic 
geometry. Using two different hyperbolic embedding methods, hydra+ and Mercator, this allows us 
to connect the network structure to the popularity-vs-similarity model of Papdopoulos et al., which 
is based on the Poincaré disc model of hyperbolic geometry. We show that the latent dimensions 
of ‘popularity’ and ‘similarity’ in this model are strongly associated to systemic importance and to 
geographic subdivisions of the banking system, independent of the embedding method that is used. 
In a longitudinal analysis over the time span from 2014 to 2018 we find that the systemic importance 
of individual banks has remained rather stable, while the peripheral community structure exhibits 
more (but still moderate) variability. Based on our analysis we argue that embeddings into hyperbolic 
geometry can be used to monitor structural change in financial networks and are able to distinguish 
between changes in systemic relevance and other (peripheral) structural changes.

Network models based on hyperbolic geometry have been successful in explaining the structural features of 
informational1, social2 and biological networks3. Such models provide a mathematical framework to resolve the 
conflicting paradigms of preferential attachment (attraction to popular nodes) and community effects (attraction 
to similar nodes) in networks4–6.

Just as the geometric structure of a social network determines the diffusion of news, rumors or infective 
diseases between individuals7, the geometric structure of a financial network influences the diffusion of financial 
stress between financial institutions, such as banks8–11. Indeed, the lack of understanding for risks originating 
from the systemic interaction of financial institutions has been identified as a major contributing factor to the 
global financial crisis of 200812. While many recent studies have analysed the mechanisms of financial contagion 
in theoretical or simulation-based settings, less attention has been payed to the structural characteristics and 
the geometric representation of real financial networks. Although evidence of hyperbolic structure has been 
uncovered for international trade networks13, no such analysis has been carried out for networks of financial 
institutions. Identifying a suitable geometric representation for such networks can help to monitor and quantify 
structural change, and—in the case of hyperbolic geometry—even distinguish structural change in terms of 
systemic importance from changes in the network’s peripheral structure. Moreover, a geometric representation 
can form the basis of analytic models of contagion processes and their optimal control in future research.

Here, we consider financial networks inferred from bank balance sheet data, as collected and made available 
by the European Banking Authority (EBA) within the European banking stress test and transparency exercises 
of 2014, 2016 and 201814,15. We show that these networks can be embedded into low-dimensional hyperbolic 
space with considerably smaller distortion than into Euclidean space of the same dimension, suggesting that 
the paradigm of latent hyperbolic geometry also applies to financial networks. In addition, we demonstrate that 
the hyperbolic geometric representation compares favorably to a degree-corrected stochastic block model16—a 
popular non-geometric network model. Furthermore—following Papadopoulos et al.4—we decompose the 
embedded hyperbolic coordinates into the dimensions of popularity and similarity and demonstrate that these 
dimensions align with systemic importance and membership in regional banking clusters respectively. Finally, 
the longitudinal structure of the data allows us to track changes in these dimensions over time, i.e., to track the 
stability of systemic importance and of the peripheral community structure over time.

Results
Inference of financial networks.  Contagion in financial networks is a complex process, which can take 
place through several parallel (and potentially interacting) mechanisms and channels17. These mechanisms 
include direct bank-to-bank liabilities18, bank runs19, and market-mediated contagion through asset sales17,20–22 
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(‘fire-sale contagion’); see also (French et al.12, p. 21ff). Here, we focus on the channel of fire-sale contagion, 
which has been singled out—both in simulation21 and in empirical studies20—as a key mechanism of financial 
contagion. Moreover, the propensity of fire-sale contagion can be quantified from available balance sheet data, 
using liquidity-weighted portfolio overlap (LWPO)22,23 as an indicator (see “Methods” for details).

Our inference of financial networks follows a two-stage mechanism: First, we construct a weighted bipartite 
network in which banks B = (b1, . . . , bn) are linked to a common pool of assets A = (a1, . . . , am) , which consist 
of sovereign bonds classified by issuing country and by different levels of maturity. In the second step we perform 
a one-mode projection of this network on the node set B, using the LWPO of two banks bi , bj ∈ B to determine 
the weight wij of the link between the corresponding nodes. For any of the years y ∈ {2014, 2016, 2018} , the result 
is an undirected, weighted network Ny of banks, in which two banks are connected if and only if they hold com-
mon assets. The link weight wij , normalized to [0, 1], represents the susceptibility of two banks bi , bj to financial 
contagion, quantified by their LWPO.

Network features.  The inferred networks are very dense (densities: ρ2014 = 0.86 , ρ2016 = 0.96 , 
ρ2018 = 1.00 ),   i.e., almost all pairs of banks hold some common assets. However, the distribution of weights is 
highly skewed (see Fig. 1A), with most of the connections exhibiting very small weights. In other words, the net-
works are dominated by a ‘sparse backbone’ of a few strong connections, which represent the dominant channels 
of potential contagion of financial distress. The same skew is present in the distribution of node strengths (see 
Fig. 1B) with a few strong nodes dominating over a majority of weaker nodes in all years. 

To extract more salient connectivity information from these highly connected networks, we also consider 
the ‘ p%-Backbone’ of each network, formed by the upper p%-quantile of highest-weighted edges (We have also 
considered disparity filtering24 as an alternative method for backbone extraction; see ‘Comparison of methods 
and robustness checks’ below.). Figure 2 shows the degree distribution and the local clustering coefficient (in 
dependence on node degree) for the 10%- and the 25%-Backbone. While there is no evidence of a scale-free 
degree distribution, the clustering coefficient displays an interesting pattern: It is highest for medium-degree 
nodes and then decreases with increasing node degree. This indicates that high-degree nodes (i.e. highly con-
nected banks) typically act as hubs between lower-degree nodes (i.e. ‘normal’ banks) without a direct link.

Latent network geometry.  Network representation methods.  Our next objective was to uncover the 
latent geometric network structure and to evaluate the suitability of a hyperbolic network model. (See “Meth-
ods” for background on hyperbolic geometry.) To this end, we applied four different network representation 
methods (one method embedding into two-dim. Euclidean space E2 , two methods embedding into two-dim. 
hyperbolic space H2 , and one non-geometric method) to the financial networks N2014,N2016 and N2018 and their 
p%-backbones for p = 10, 25, 50 . The first two methods, multidimensional scaling25 (MDS) and hydra+26,27, 
calculate stress-minimizing embeddings of the weighted network distances into Euclidean and hyperbolic ge-
ometry, respectively. The third method, Mercator28, is a connectivity-based method (i.e. ignoring network 
weights) and uses a mix of machine learning and maximum likelihood estimation to infer latent coordinates in 
a popularity-vs-similarity-model of hyperbolic geometry; see García-Pérez et al.28 for details. As non-geometric 
representation method, we used a degree-corrected stochastic block model (dSBM)16, as implemented in the R-
package randnet29, which aims to represent network structure by inferring communities and their connection 
probabilities; see Karrer and Newman16 for details. Since Mercator and dSBM are connectivity-based, they 
can only be meaningfully applied to the network backbones. MDS and hydra+, on the other hand, can also be 
applied to the full weighted networks and are directly comparable, since they minimize exactly the same objec-
tive function, but only differ in their target geometries. Figure 3 shows a comparison of the embedding quality 
of the different methods. For the full networks, we use stress (i.e. the root mean square error between network 
distances and embedded distances) as an evaluation metric, while for the backbones we use the AUPR (area 
under the Precision-Recall-curve) from a network reconstruction task (see “Methods” for details).

Figure 1.   Densities of edge weights (A) and of node strengths (B) in the EBA financial networks of 2014, 2016 
and 2018.
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Comparison of methods and robustness checks.  Our comparison shows that Mercator, based on hyperbolic 
geometry, outperforms all other methods in terms of network reconstruction performance, consistently over all 
three years of observation and independent of the threshold used for the extraction of the network backbone. 
The second hyperbolic embedding method, hydra+, yields results that are better or at least comparable to 
dSBM, while the Euclidean embedding method MDS performs worst. Also note that hydra+ and MDS are the 
only methods which can be directly applied to the full weighted network, in which case hydra+ clearly outper-
forms MDS in terms of embedding error.

Figure 2.   Degree distribution (I) and local clustering coefficients (II) in the 10%-backbone (a) and the 
25%-backbone (b) of the EBA financial networks of 2014, 2016 and 2018.

Figure 3.   Panel (A): Stress (i.e. root mean square error) of network embeddings produced by hydra+ 
(hyperbolic target space) and multidimensional scaling/MDS (Euclidean target space). Lower stress values 
indicate better embedding quality. Panels (B)–(D): Area-under-Precision-Recall-curve (AUPR) for the task of 
reconstructing network backbones based on network representations produced by Mercator and hydra+ 
(hyperbolic target space), dSBM (non-geometric), and MDS (Euclidean target space). Higher AUPR values 
indicate better reconstruction performance.
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To check the robustness of our results with respect to the method of backbone extraction, we have repeated 
the same analysis with backbones determined by disparity filtering24. The results are reported in supplemen-
tary Figure S1. While reconstruction quality deteriorates for all methods on the disparity filtered backbones, 
the advantage of the hyperbolic methods over the non-geometric and Euclidean methods becomes even more 
pronounced. Overall, we conclude that the latent geometry of the observed financial networks is—at least in low 
dimension—much better represented by negatively curved (hyperbolic) rather than flat (Euclidean) geometry. 
Moreover, the hyperbolic representations are superior even to the (non-geometric) degree-corrected stochastic 
block model in terms of network reconstruction quality.

Latent hyperbolic coordinates.  As a result of the hyperbolic embeddings we obtain for each bank node bi latent 
coordinates (ri , θi) in the Poincaré disc model of hyperbolic space (see “Methods”). This allows us to connect the 
network embedding to the popularity-vs-similarity model of Papadopoulos et al.4 and the S1-model of Ánge-
les Serrano et  al.28,30. The hyperbolic embedding of the full banking network of 2018 produced by hydra+ 
is shown in Fig. 4A. The embedding of the 10%-Backbone of the same network produced by Mercator is 
shown in Fig. 4D. Note that the hydra+-embedding attempts to give a faithful representation of all distances 
in the weighted network, whereas Mercator only encodes connectivity information and is harder to inter-
pret visually. This phenomenon is exacerbated by the laws of hyperbolic geometry, in which seemingly small 
differences in the radial coordinate can represent large differences in hyperbolic distance. With reference to 
Fig. 4A, the embedded network shows a clear core-periphery structure, in line with previous studies of financial 
networks31,32 and in agreement with the pattern exhibited by the local clustering coefficient in Fig. 2.

Structural analysis.  The popularity-vs-similarity model of Papadopoulos et al.4 and the S1-model of Ánge-
les Serrano et al.28,30 used by Mercator offer a direct interpretation of the latent hyperbolic network coordi-
nates in the Poincaré disc in terms of their popularity dimension (the radial coordinate r) and the similarity 
dimension (the angular coordinate θ ). In the context of financial networks, we hypothesized that the popularity 
dimension of a given bank aligns with its systemic importance, and that its similarity dimension is associated 
with sub-sectors of the banking system, e.g., along geographic and regional divisions. Also for the hydra+ 
embedding, a theoretical foundation for interpreting r as popularity dimension and θ as similarity dimension 
has been given27. However, due to the asymmetric distribution of banks within the Poincaré disc (Fig. 4A) for 
the hydra+ embedding, we calculate its geodesic polar coordinates (ri , θi) with respect to the network center-
of-weight, rather than the center of the Poincaré disc; see “Methods” for details (The fact that both approaches—
Mercator and re-centered hydra+—lead to qualitatively very similar results can be seen as a validation of 
this methodology.). For the Mercator method we directly use the coordinates (ri , θi) from the embedding of 
the 25%-backbone and perform no additional centering.

To test the first hypothesis—the association between radial coordinate r and systemic importance—we labelled 
a bank as systemically important in a given year, whenever it was included in the contemporaneous list of global 
systemically important banks (G-SIBs) as published by the Financial Stability Board33–35; see also Table 1. Using 
a Wilcoxon–Mann–Whitney test, we find a significant association between radial rank and systemic importance 
in all years and for both methods ( P2014 < .0001 , P2016 < .0001 for both methods, P2018 = .0038 for hydra 
and P2018 = 0.0001 for Mercator). In Table 2 we report the five top-ranked banks (most central in terms of 
r) for each year.

To test the second hypothesis—the association between similarity dimension θ and regional banking sub-
sectors—we assigned banks to the following nine regional groups:

Spain (ES), Germany (DE), France (FR), Italy (IT), UK and Ireland (UK/IE), Nordic Region (EE/NO/SE/
DK/FI/IS), Benelux Region (BE/NE/LU), Southern/Mediterranean (GR/CY/MT/PT), Central/Eastern 
Eur. (AT/BG/HU/LV/RO/SI).

These regions are reasonably balanced in terms of the number of banks included in the EBA panel. Using ANOVA 
for circular data (see “Methods”) we find a highly significant association between the angular coordinate θ and 
the regional group in all three years considered ( P < .0001 in all years for both methods). This indicates that the 
peripheral community structure (away from the network core) of the EBA financial network is indeed strongly 
aligned with geographic and regional divisions in Europe. We have highlighted two different regional groups in 
Fig. 4B,C to illustrate the association between angular coordinate and regional structure.

Network structure over time.  The longitudinal structure of the data set allows us to track changes in the 
network structure over the whole time span of observations from 2014 to 2018. Note, however, that the samples 
of banks included by the EBA vary substantially in size and—even when restricted to the smallest sample—
are not completely overlapping; see Table 3. Nevertheless, the embedding quality of the hyperbolic methods 
(reported in Fig. 3) is surprisingly stable over all years. This suggests that the hyperbolic model does indeed 
capture intrinsic qualities of the network, rather than relying on transitory structural artefacts.

We proceed to analyze the temporal changes in the latent radial coordinate r and angular coordinate θ , cor-
responding to changes in systemic importance and community structure. Note that the small sample of banks 
included in the 2016 stress test restricts the number of banks that are included in this longitudinal analysis, cf. 
Table 3. The scatter plots in Fig. 5 and the corresponding Pearson’s correlations of .678 (hydra+, P < .0001 ) 
and .892 (Mercator, P < .0001 ) between 2014 and 2016, and .569 (hydra+, P = .0001 ) and .502 (Merca-
tor, P = .0015 ) between 2016 and 2018 show a significant positive association between hyperbolic centrality 
in successive snap shots of the financial networks.
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In panel Ia of Fig. 5, Nordea bank can be identified as a clear outlier, moving from a very central position in 
2014 to a peripheral position in 2016. Interestingly, Nordea was one of just two banks (together with Royal Bank 
of Scotland) which were removed from the list of G-SIBs in the subsequent update in 2018 due to decreasing sys-
temic importance35. In the Mercator embedding (panel IIa) Nordea bank does not appear as an outlier, which 
is likely due to the fact that some structural information is lost when the full network is reduced to its backbone.

Figure 4.   Hyperbolic Embeddings of the EBA Financial Network of 2018. Nodes are labelled by country 
and bank ID and coloured according to region (see Table 1 for full names). Panel (A) shows the full network 
embedding produced by the hydra+ method. Also shown is the top decile of strongest links, i.e., the 
connections with the largest liquidity-weighted portfolio overlap. Banks labelled as systemically important by 
the Financial Stability Board (G-SIBs) are indicated by asterisks. The black cross marks the capital-weighted 
hyperbolic center of the banking network. In panels (B) and (C) the Central/Eastern and the Nordic regional 
groups are highlighted to illustrate regional clustering. Panel (D) shows the hyperbolic embedding of the 
10%-backbone of the same network, as produced by the Mercator method.
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ID Full name ID Full name

AT01 Erste Group Bank AG GR01 Eurobank Ergasias

AT08 BAWAG Group AG GR02 National Bank of Greece

AT09 Raiffeisen Bank Interna-
tional AG GR03 Alpha Bank

AT10 Raiffeisenbankengruppe 
Verbund eGen GR04 Piraeus Bank

AT11 Sberbank Europe AG HU01 OTP Bank Ltd

AT12 Volksbanken Verbund IE04 AIB Group plc

BE01 Belfius Banque SA IE05 Bank of Ireland Group plc

BE02 Dexia NV IE06 Citibank Holdings Ireland 
Limited

BE04 AXA Bank Europe SA IE07 DEPFA BANK Plc

BE06 KBC Group NV IS01 Arion banki hf

BE07 The Bank of New York 
Mellon SA/NV IS02 Íslandsbanki hf.

BE08 Investar IS03 Landsbankinn

BG01 First Investment Bank IT01 Intesa Sanpaolo S.p.A.

CY01 Hellenic Bank Public 
Company Ltd IT02 UniCredit S.p.A.*

CY04 Bank of Cyprus Holdings 
Public Limited Company IT03 Banca Monte dei Paschi di 

Siena S.p.A.

CY05 RCB Bank Ltd IT04
Unione Di Banche Italiane 
Società Cooperativa Per 
Azioni

DE01 NRW.Bank IT05
Banca Carige S.P.A. - 
Cassa di Risparmio di 
Genova e Imperia

DE02 Deutsche Bank AG* IT07
Banca Popolare 
Dell’Emilia Romagna - 
Società Cooperativa

DE03 Commerzbank AG IT09 Banca Popolare di Sondrio

DE04 Landesbank Baden-
Württemberg IT13 Mediobanca - Banca di 

Credito Finanziario S.p.A.

DE05 Bayerische Landesbank IT16 Banco BPM Gruppo 
Bancario

DE06 Norddeutsche Landes-
bank-Girozentrale IT17 Credito Emiliano Holding 

SpA

DE07 Landesbank Hessen-
Thüringen Girozentrale IT18

Iccrea Banca Spa Istituto 
Centrale del Credito 
Cooperativo

DE08 DekaBank Deutsche 
Girozentrale LU01 Banque et Caisse 

d’Epargne de l’Etat

DE09 Aareal Bank AG LU02 Precision Capital S.A.

DE10 Deutsche Apotheker- und 
Ärztebank eG LU03 J.P. Morgan Bank Luxem-

bourg S.A.

DE11 HASPA Finanzholding LU04 RBC Investor Services 
Bank S.A.

DE14 Landeskreditbank Baden-
Württemberg-Förderbank LU05 State Street Bank Luxem-

bourg S.A.

DE15 Landwirtschaftliche 
Rentenbank MT01 Bank of Valletta plc

DE16 Münchener Hypotheken-
bank eG MT02 Commbank Europe Ltd

DE20
DZ Bank AG Deutsche 
Zentral-Genossenschafts-
bank

MT03 MDB Group Limited

DE25 Deutsche Pfandbriefbank 
AG NL01 Bank Nederlandse 

Gemeenten N.V.

DE26
Erwerbsgesellschaft der 
S-Finanzgruppe mbH & 
Co. KG

NL02
Coöperatieve Centrale 
Raiffeisen-Boerenleen-
bank B.A.

DE27 HSH Beteiligungs Man-
agement GmbH NL03 Nederlandse Waterschaps-

bank N.V.

DE28
State Street Europe Hold-
ings Germany S.à.r.l. & 
Co. KG

NL07 ABN AMRO Group N.V.

DE29 Volkswagen Bank GmbH NL08 ING Groep N.V.*

Continued
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For the angular coordinate, we account for the circular nature of the variable and compute the circular cor‑
relation36 of the angular coordinates between successive years. Only moderate associations between successive 
years can be observed at absolute circular correlation values of 0.211 (hydra+, P = .1877 ) and 0.01 (Merca-
tor, P = .9442 ) between 2014 and 2016 and 0.225 (hydra+, P = 0.1385 ) and 0.383 (Mercator, P = .0196 ) 
between 2016 and 2018.

Discussion
Based on data from the EBA stress tests of 2014, 2016 and the transparency exercise of 2018, we have presented 
strong evidence that the latent geometry of financial networks can be well-represented by geometry of negative 
curvature, i.e., by hyperbolic geometry. Calculating embeddings into the Poicaré disc model of hyperbolic geom-
etry has allowed us to visualize this geometric structure and to connect it to the popularity-vs-similarity model of 
Papdopoulos et al.4 and the S1-model of Ángeles Serrano et al.28,30. We find that the radial coordinate (‘popularity’) 
is strongly associated with systemic importance (as assessed by the Financial Stability Board) and the angular 

ID Full name ID Full name

DK01 Danske Bank NL09 Volksholding B.V.

DK02 Jyske Bank NO01 DNB Bank Group

DK03 Sydbank NO02 SPAREBANK 1 SMN

DK05 Nykredit Realkredit NO03 SR-bank

EE01 AS LHV Group PL01 PKO BANK POLSKI

ES01 Banco Santander* PL07 Bank Polska Kasa Opieki 
SA

ES02 Banco Bilbao Vizcaya 
Argentaria PT01 Caixa Geral de Depósitos

ES03 Banco de Sabadell PT02 Banco Comercial Por-
tuguês

ES04 Banco Financiero y de 
Ahorros PT04 Caixa Central de Crédito 

Agrícola Mútuo, CRL

ES07 Caja de Ahorros y M.P. de 
Zaragoza PT05

Caixa Económica 
Montepio Geral, Caixa 
Económica Bancária SA

ES08 Kutxabank PT06 Novo Banco, SA

ES09 Liberbank RO01 Banca Transilvania

ES11 MPCA Ronda SE01 Nordea Bank AB (publ) †

ES12 Caja de Ahorros y Pen-
siones de Barcelona SE02 Skandinaviska Enskilda 

Banken AB (publ) (SEB)

ES15 Bankinter SE03 Svenska Handelsbanken 
AB (publ)

ES18 Abanca Holding Financi-
ero, S.A. SE04 Swedbank AB (publ)

ES19 Banco de Crédito Social 
Cooperativo, S.A. SE05 Kommuninvest - group

FI01 OP-Pohjola Group SE06 Länsförsäkringar Bank 
AB - group

FI02 Kuntarahoitus Oyj SE07 SBAB Bank AB - group

FR01 La Banque Postale SI02 Nova Ljubljanska banka 
d. d.

FR02 BNP Paribas* SI04 Abanka d.d.

FR03 Société Générale* SI05 Biser Topco S.à.r.l.

FR06 C.R.H. - Caisse de Refi-
nancement de l’Habitat UK01 Royal Bank of Scotland 

Group plc †

FR08 RCI Banque UK02 HSBC Holdings plc*

FR09 Société de Financement 
Local UK03 Barclays plc*

FR12 Groupe Crédit Mutuel UK04 Lloyds Banking Group plc

FR13 Banque Centrale de Com-
pensation (LCH Clearnet) UK05 Nationwide Building 

Society

FR14 Bpifrance (Banque Pub-
lique d’Investissement) UK06 Standard Chartered Plc*

FR15 Groupe BPCE*

FR16 Groupe Crédit Agricole*

Table 1.   IDs and full names of banks in the 2018 EBA Network. Banks marked by asterisk (*) were G-SIBs in 
all years (2014, 2016, 2018); banks marked by dagger ( † ) were G-SIBs in 2014 and 2016, but not in 2018.
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coordinate (‘similarity’) with geographic and regional subdivisions. A longitudinal analysis shows that—in the 
observation period from 2014 to 2018—systemic importance of banks within the European banking network has 
stayed rather stable and has been predominated by only gradual changes. The peripheral community structure 
has been more variable, but has remained strongly determined by geographical divisions in all years considered.

From a broader perspective, our results indicate that hyperbolic network representations could be important 
tools for regulators to monitor structural change in financial networks, as they are able to distinguish changes in 
the systemic importance (popularity) of financial institutions from ‘peripheral changes’ (similarity) which are less 
relevant from a regulator’s perspective. Furthermore, our research provides an empirical basis for using hyper-
bolic geometry as a model space for the modelling of contagion processes and their optimal control in financial 
(or other) networks. Instead of modelling such processes by simulation on individual networks, a geometric 
model space provides the opportunity of analytic models that provide deeper insights beyond a specific case.

Methods
Data preparation and inference of financial networks.  The financial networks were extracted from 
three different publicly available data sets stemming from the stress tests (in 2014 and 2016) and the EU-wide 
transparency exercise (in 2018) of the European Banking Authority (EBA)14,15. The data sets contain detailed 
balance sheet information from all European banks (EU incl. UK + Norway) included in the stress test/trans-
parency exercise of the EBA in the respective year. From these data sets we extracted the portfolio values of all 
sovereign bonds held by the banks, split by issuing country (38 countries) and three levels of maturity (short: 
0M-3M, medium: 3M-2Y, long: 2Y-10Y+), resulting in m = 38× 3 = 114 different asset classes.

For each year, this data was stored as the weighted adjacency matrix P (‘portfolio matrix’) of a bipartite net-
work. The n rows of P correspond to the banks in the sample, the m columns to the different asset classes, and 
the element Pik to the portfolio value (in EUR) of asset k in the balance sheet of bank i. To perform a one-mode 
projection of this bipartite network, we followed Cont and Wagalath23,37 as well as Cont and Schaanning22: We 
computed the liquidity-weighted portfolio overlap (LWPO) of bank i and bank j as

where dk is the market depth for asset k22. The LWPO measures the impact of a sudden liquidation of the port-
folio of bank i on the portfolio value of bank j and vice versa. Hence, it quantifies the risk of fire-sale contagion 
between the banks in a financial stress scenario. The market depth of asset k was estimated from P as its total 
volume held by all banks in the sample, i.e., as dk =

∑n
i=1 Pik . Writing D for the diagonal matrix of market depths, 

(1) can be succinctly written as matrix product L = PD−1P⊤ . Finally, we set the link weight wij between bank 
bi and bj in the one-mode projection N of the banking network equal to the normalized LWPO between banks 
bi and bj , i.e., wij := Lij/maxi,j Lij

(1)Lij =

m
∑

k=1

PikPjk

dk
,

Table 2.   For each year the five banks with the highest hyperbolic centrality (i.e., smallest r coordinate) are 
listed. The upper subtable corresponds to the hydra+ embedding of the full network and the lower subtable 
to the Mercator embedding of its 25%-backbone. Asterisks denote banks that are considered globally 
systemic relevant institutions (G-SIBs).

Rank (hydra+) 2014 2016 2018

1 Nordea* BNP Paribas* Groupe BPCE*

2 Royal Bank of Scotland* UniCredit* Barclays*

3 Barclays* ING Groep* Royal Bank of Scotland

4 Intesa Sanpaolo Deutsche Bank* Groupe Crédit Agricole*

5 UniCredit* Intesa Sanpaolo BNP Paribas*

 Rank (Mercator) 2014 2016 2018

1 Deutsche Bank* BNP Paribas* Royal Bank of Scotland

2 BNP Paribas* Deutsche Bank* BNP Paribas*

3 Groupe Crédit Agricole* HSBC* Société Générale*

4 Commerzbank ING Groep* Groupe Crédit Agricole*

5 UniCredit* UniCredit* Barclays*

Table 3.   Sample sizes of EBA data sets

2014 2016 2018

Number of banks (n) 119 51 128

Of which included in the subseq. year 43 41
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Background on hyperbolic geometry.  The hyperboloid model.  Hyperbolic geometry can be character-
ized as the geometry of a space of constant negative curvature, while the more familiar Euclidean geometry is 
the geometry of a flat space, i.e., a space of zero curvature. In the hyperboloid model of hyperbolic geometry38,39, 
d-dimensional hyperbolic space Hd is defined as the hyperboloid

In fact, Hd endowed with the Riemannian metric tensor ds2 = dx20 − dx21 − · · · − dx2d is a Riemannian manifold 
and dH (x, y) is the corresponding Riemannian distance38,39. The sectional curvature of this manifold is constant 
and equal to −1 . Thus, Hd is indeed a model of geometry of constant negative curvature.

The Poincaré disc model.  While the hyperboloid model is convenient for computations, a more preferable (and 
popular) model for visualizations in dimension d = 2 is the Poincaré disc model38, which also forms the basis of 
the popularity-vs-similarity model of Papadopoulos et al.4. To obtain the Poincaré disc model, the hyperboloid 
H2 is mapped to the open unit disc (‘Poincaré disc’) D =

{

z ∈ R
2 : z1

2 + z2
2 < 1

}

 , parameterized by hyper-
bolic polar coordinates as z1 = tanh(r/2) cos θ , z2 = tanh(r/2) sin θ , using the stereographic projection38

where atan′ is the quadrant-preserving arctangent (The quadrant-preserving arctangent atan′ (x2, x1) , well-
defined unless x1 = x2 = 0 , returns the unique angle θ ∈ [0, 2π) which solves tan θ = x2/x1 and points to the 
same quadrant as (x1, x2) . It is commonly implemented in scientific computing environments (e.g. in MATLAB 
or R) as atan2.). In the Poincaré disc model, the hyperbolic distance becomes

Hd =
{

x ∈ R
d+1 : x20 − x21 − · · · − x2d = 1, x0 > 0

}

equipped with distance dH (x, y) = arcosh
(

x0y0 − x1y1 − · · · − xdyd

)

.

(2)r = log

(

x0 +

√

x20 − 1

)

, θ = atan′ (x2, x1), x = (x0, x1, x2) ∈ H2,

Figure 5.   Changes in radial coordinate r (low values indicate high centrality) between 2014 and 2016 (a) and 
2016 and 2018 (b) for the hydra+-embedding (I) and the Mercator-embedding (II). Banks considered 
systemically relevant (G-SIBs) at the end of the time period are marked in red. Nordea bank is circled in the 
panel Ia and IIa; see text for background.
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and geodesic lines are represented by arcs of (Euclidean) circles intersected with D.

Stress‑minimizing embeddings and hyperbolic centering.  Stress‑minimizing embeddings.  Stress-
minimizing embedding methods aim to find—for each network node bi—latent coordinates xi in a geometric 
model space G, such that the geodesic distance between xi and xj in G matches—as closely as possible—a given 
dissimilarity measure dij (such as the weighted network distance) between nodes bi and bj . This is achieved by 
minimizing the stress functional

which measures the root mean square error between given network distances and the corresponding distances in 
the model space. For Euclidean geometry, this method is well-known as multidimensional scaling25,40, or—using 
a weighted stress functional—as Sammon mapping41. For hyperbolic space, i.e., when dgeomG = dH , several opti-
mization methods for (3) have been proposed26,27,42. We use the hydra+ method implemented in the package 
hydra for the statistical computing environment R43.

Hyperbolic centering.  For a point cloud x1, . . . , xn in Hd and non-negative weights w1, . . . ,wn summing to 
one, the hyperbolic mean36 or hyperbolic center of weight44 can be determined as follows: Calculate the weighted 
Euclidean mean x̄ =

∑

wix
i , and its ‘resultant length’ ρ =

√

(x̄0)2 − (x̄1)2 − · · · − (x̄d)2 , which is a measure 
of dispersion for the point cloud. The hyperbolic center c is then determined as c = x̄/ρ and is again an element 
of Hd . The point cloud can be centered at c by transforming each point as x̃i = T−cx

i , where Tc is the hyperbolic 
translation matrix (‘Lorentz boost’)

In dimension d = 2 , the stereographic projection (2) can then be applied to convert the centered coordinates x̃i 
to centered polar coordinates (ri , θi) in the Poincaré disc.

Application to financial networks.  For the hydra+ embedding, the described methods were applied 
to the financial networks inferred from the EBA data as follows: We converted the similarity weights wij (nor-
malized LWPO) to dissimilarities dij = 1− wij . We embedded these dissimilarities by minimizing the stress 
functional (3), using the R-package hydra. For the resulting network embeddings, we calculated the capital-
weighted network center c as the weighted hyperbolic mean with weights wi proportional to the total capital 
∑m

k=1 Pik of bank i invested in all assets a1, . . . am . After centering at the hyperbolic center c, we calculated the 
coordinates (ri , θi) by the stereographic projection (2).

For the Mercator embedding and the dSBM, we first extracted network backbones, both by simple thresh-
olding and by disparity filtering24. The resulting backbones were used as input for the methods provided at https​
://githu​b.com/netwo​rkgeo​metry​/merca​tor and the implementation of dSBM in the R-package randnet. Mer-
cator outputs latent coordinates (ri , θi) in the Poincaré disc, and the output of the dSBM method is a matrix 
of connection probabilities p̂ij for each node pair.

For multi-dimensional scaling (MDS) the same methodology as for hydra+ was used, except that Euclidean 
distance (instead of hyperbolic distance) was used as dgeomG  in the objective function (3).

Analysis of embedding results.  AUPR and network reconstruction.  To evaluate the embedding results 
of the network backbones, we used the following network reconstruction task: To each pair of nodes (bi , bj) , as-
sign the score dgeomG (xi , xj)

−1 , where dgeomG  is the geodesic distance in the geometric model space G, or—in case 
of the degree-corrected stochastic block model—the score p̂ij , where p̂ij is the estimated connection probability 
between nodes i and j. Based on these scores we predict whether an edge is present between nodes (bi , bj) or not, 
and construct the Precision-Recall(PR)-curve45 of this classifier. The area under the PR-curve (AUPR) measures 
the quality of this predictor, with an AUPR of 1.0 representing perfect prediction.

Wilcoxon–Mann–Whitney test.  The Wilcoxon–Mann–Whitney46 test is a non-parametric test to decide 
whether the distributions of two populations are identical without assuming them to follow the normal distribu-
tion. Let X be a sample of size m from the first population and Y be a sample of size n from the second popula-
tion. Consider the combined sample of size m+ n ordered from least to greatest and denote the ranks of Yi in 
this joint ordering by Si , i = 1, . . . , n . Then the test statistic W =

∑n
i=1 Si is the sum of the ranks assigned to the 

values of Y.

ANOVA for circular data.  With the Analysis of Variance for circular data36, we test for the equality of p mean 
directions from independent circular (i.e. taking values on the unit circle) populations with von-Mises (M) dis-
tribution and the same (unknown) concentration parameter κ . We test the null hypothesis H0 : µ1 = . . . = µp , 
where µi are the mean directions for the p populations following a M(µi , κ) distribution. For any circular obser-
vation θ , denote s = sin(θ) , c = cos(θ) and let s̄i , c̄i be the averages within the i-th population. Let ni be the 

dB((r1, θ1), (r2, θ2)) = arcosh (cosh(r1) cosh(r2)− sinh(r1) sinh(r2) cos(θ1 − θ2))

(3)Stress(x1, . . . , xn) =

√

√

√

√

1

n(n− 1)

∑

i,j

(

dij
network − d

geom
G (xi , xj)

)2
,

Tc =

(

c0 c̄⊤

c̄
√

Id + c̄c̄⊤

)

with c = (c0, c̄) = (c0, c1, . . . , cd).

https://github.com/networkgeometry/mercator
https://github.com/networkgeometry/mercator
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sample size, Ri =
√

s̄2i + c̄2i  the mean resultant length of the i-th population, and let n =
∑p

i=1 ni be the size of 
the combined sample and R the overall mean resultant length based on all n observations. The identity

has the approximate χ2 decomposition χ2
n−1 = χ2

n−p + χ2
p−1

36 and therefore, the test statistic F =
(
∑p

i=1 Ri−R)/(p−1)
∑p

i=1(ni−Ri)/(n−p)
 

can be derived. The null hypothesis is rejected for a given confidence level α , when F > Fp−1,n−p;α , where 
Fp−1,n−p;α is the α-quantile of the F-distribution with p− 1 and n− p degrees of freedom36.

Data availability
The data analysed during the current study are available from the website of the European Banking Authority at 
https​://www.eba.europ​a.eu/risk-analy​sis-and-data/eu-wide-stres​s-testi​ng and https​://eba.europ​a.eu/risk-analy​
sis-and-data/eu-wide-trans​paren​cy-exerc​ise/2018.
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