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Previous reports documented abnormalities in cognitive functions and decision-making
(DM) in patients with chronic pain, but these changes are not consistent across studies.
Reasons for these discordant findings might include the presence of confounders,
variability in chronic pain conditions, and the use of different cognitive tests. The present
study was aimed to add evidence in this field, by exploring the cognitive profile of a
specific type of chronic pain, i.e., chronic low back pain (cLBP). Twenty four cLBP patients
and 24 healthy controls underwent a neuropsychological battery and we focused on
emotional DM abilities by means of Iowa gambling task (IGT). During IGT, behavioral
responses and the electroencephalogram (EEG) were recorded in 12 patients and 12
controls. Event-related potentials (ERPs) were averaged offline from EEG epochs locked
to the feedback presentation (4000 ms duration, from 2000 ms before to 2000 ms after
the feedback onset) separately for wins and losses and the feedback-related negativity
(FRN) and P300 peak-to-peak amplitudes were calculated. Among cognitive measures,
cLBP patients scored lower than controls in the modified card sorting test (MCST) and the
score in this test was significantly influenced by pain duration and intensity. Behavioral IGT
results documented worse performance and the absence of a learning process during the
test in cLBP patients compared to controls, with no effect of pain characteristics. ERPs
findings documented abnormal feedback processing in patients during IGT. cLBP patients
showed poor performance in the MCST and the IGT. Abnormal feedback processing may
be secondary to impingement of chronic pain in brain areas involved in DM or suggest
the presence of a predisposing factor related to pain chronification. These abnormalities
might contribute to the impairment in the work and family settings that often cLBP patients
report.
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INTRODUCTION
Cognition indicates the brain’s acquisition, processing, storage and
retrieval of information, but is also used to describe integrative
neuropsychological processes such as mental imaging, problem
solving and perception, and is pertinent to emotion and affect
(Moriarty et al., 2011).

Among cognitive processes, decision making (DM) is a com-
plex process that encompasses a range of functions through which
motivational processes make contact with action selection mech-
anisms to express one behavioral output rather than any of the
available alternatives (Rogers, 2011). DM depends on a num-
ber of control functions, including selection and inhibition,
working memory, planning, emotion, estimation, and other
processes included in the domain of the executive functions
(EFs). Among these functions, choice evaluation, response selec-
tion, and feedback processing play a major role (Fang et al.,
2009). Feedback processing is pivotal, in that assigning a pos-
itive or negative valence to an option on the basis of previous

experience is the prerequisite for the evaluation and anticipa-
tion of action outcomes and for an efficient response selection
(Mapelli et al., 2014).

The anatomical substrate of DM is a complex network includ-
ing the prefrontal cortex (PFC), the anterior cingulate cortex
(ACC), the fronto-striatal and limbic loops, and some subcorti-
cal structures and DM abnormalities are common in patients with
lesions or diseases affecting these areas (Gleichgerrcht et al., 2010).

In an attempt to mimic real-life DM scenarios, Bechara et al.
(1994) developed the Iowa gambling task (IGT), which simu-
lates, in laboratory environment, DM strategy by factoring the
uncertainty of promises and outcomes, as well as reward and
punishment. Performance on the IGT is negatively affected by
neurological and psychiatric disorders (Brand et al., 2006; Dunn
et al., 2006; Mapelli et al., 2014), neurodegenerative changes affect-
ing the PFC (Ernst et al., 2002; Manes et al., 2002; Clark and Manes,
2004; Fellows and Farah, 2005), and deficits in working memory
(Manes et al., 2002) and fluid intelligence (Roca et al., 2009).
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Longstanding evidence indicate that chronic pain, i.e., pain per-
sisting for 3 months or longer (Merskey and Bogduk, 1994), may
have a negative impact on cognition (Moriarty et al., 2011), includ-
ing working memory, long-term memory and recognition (Grace
et al., 1999; Luerding et al., 2008), attention (Grace et al., 1999),
EFs, and DM (Weiner et al., 2006; Verdejo-Garcia et al., 2009).
Due to its biological salience, pain is an attention-demanding sen-
sory process, but cognitive changes cannot be simply attributed to
the attentional demand of ongoing pain.

Morphometric magnetic resonance imaging (MRI) demon-
strated gray matter atrophy in the dorsolateral PFC (Apkarian
et al., 2004a). Functional MRI showed that, in chronic pain
patients, experimental noxious stimuli cause decreased activity in
brain regions identified for acute pain (Peyron et al., 2000; Apkar-
ian et al., 2005) and increased activity in regions that are not part
of the spinothalamic pathway, mainly the PFC and related sub-
cortical structures (Apkarian et al., 2005). These findings indicate
that chronic pain is associated with reduced gain in brain regions
involved in acute pain and increased gain in areas outside the
classical pain matrix. They also suggest that chronic pain may
impinge the PFC and the related network and could be considered
a cognitive state that may compete with other cognitive abilities,
especially those utilizing the PFC, such as DM (Damasio, 1996;
Fuster, 2001).

It is important to exercise caution in interpreting these neu-
ropsychological data, because the majority of cognitive abnor-
malities have been documented in patients with fibromyal-
gia (Grace et al., 1999; Luerding et al., 2008; Verdejo-Garcia
et al., 2009) and cannot be generalized to other chronic pain
conditions. Studies in patients with chronic low back pain
(cLBP) yielded discordant findings, in that some of them doc-
umented reduced attention, visuospatial skills, and cognitive
flexibility (Weiner et al., 2006), but the cognitive profile was
nearly normal, except slight DM changes, in another report
(Apkarian et al., 2004b).

The goal of the present study was to add evidence in
this field, by exploring the cognitive profile of a specific
type of chronic pain, i.e., cLBP. cLBP patients underwent
a neuropsychological battery to explore different cognitive
functions and we focused on emotional DM abilities by
means of IGT. Abnormalities in different tests would indi-
cate reduced cognitive abilities secondary to the affective and
attentional load of pain. At variance, changes in single cog-
nitive functions would favor the hypothesis of specific mecha-
nisms associated with chronic pain. What’s more, focusing on

emotional DM might help understanding whether PFC changes
documented in neuroimaging studies do translate into cognitive
changes.

To explore the cortical correlates of DM, we measured behav-
ioral responses and recorded their neurophysiological cortical
correlates with electroencephalogram (EEG) and event-related
potentials (ERPs) during IGT in a subgroup of cLBP patients and
controls. The monitoring of feedback during DM task evokes a
large cortical response mainly localized over central electrodes,
which can be separated in a feedback-related negativity (FRN)
and a P300, with the former representing an early appraisal
of feedback on a binary classification of good vs. bad out-
come, and the latter resulting in a later top–down controlled
evaluation process that is related to both the valence and the mag-
nitude of the feedback (Gehring and Willoughby, 2002; Yeung
and Sanfey, 2004; Hajcak et al., 2006; Holroyd et al., 2006; Wu
and Zhou, 2009; Cui et al., 2013; Ferdinand and Kray, 2013;
Mapelli et al., 2014).

MATERIALS AND METHODS
SUBJECTS
We recruited 24 normal subjects, who volunteered as controls,
and 24 patients with cLBP (Merskey and Bogduk, 1994) and pain
duration >6 months (Table 1), for a total of 48 participants.
Baseline demographical conditions (sex, age, education) were not
significantly different between patients and controls. All partici-
pants gave signed informed consent prior to participation to the
study and the protocol had been explained in details to them.
The study was approved by the local ethics committee of the
Department of Neurological and Movement Sciences, University
of Verona.

The inclusion/exclusion criteria for patients and controls were:
age 18–70, normal or corrected to normal vision, absence of neu-
rological or psychiatric disease, no drugs with psychotropic or
neurological effects, mini mental state examination score (MMSE;
Folstein et al., 1975) >24.

Chronic low back pain patients had a mean pain duration of
72.9 ± 55.8 months (range: 12–180; median: 24). Average pain
intensity was rated before the neuropsychological and IGT eval-
uation and was 5.1 ± 2.7/10 (range: 2–10; median: 5) on a 0–10
numerical rating scale (NRS). At the time of the evaluation, none
of the patients was on chronic treatment, except non steroidal
anti-inflammatory drugs when needed, but none of them took any
painkiller on the day of testing. The mean score on Beck Depres-
sion Inventory (BDI) was 5.0 ± 3.5/39 (range: 1–14; median: 4)

Table 1 | Demographic variables in patients and controls.

cLBP patients (n = 24) Controls (n = 24) P value

Age (years) 47.7 ± 9.1, range 35–69 46.1 ± 17.5, range 23–71 0.70†

Gender (M/F) 10/14 15/9 0.25‡

Education (years) 12.1 ± 4.1, range 5–18 13.5 ± 5.2, range 5–21 0.31†

Continuous variables are expressed as mean ± SD, range. †P value from unpaired t-test (continuous variables). ‡P value from the Fisher’s exact test (dichotomous
variable). cLBP, chronic low back pain.

Frontiers in Psychology | Decision Neuroscience November 2014 | Volume 5 | Article 1350 | 2

http://www.frontiersin.org/Decision_Neuroscience/
http://www.frontiersin.org/Decision_Neuroscience/archive


Tamburin et al. Cognition and DM in cLBP

which indicated minimal depression, and anxiety score on the
State Trait Anxiety Inventory (STAI) Y2 was 45.1 ± 4.9/80 (range:
31–54; median: 46), which indicated mild anxiety.

COGNITIVE MEASURES
Neuropsychological status was assessed individually by experi-
enced neuropsychologists with a well-validated battery of five tests.
The assessment lasted 1 h, with each of the five tests being given
to the patients and controls one after the other in the same order.
The test list include:

Digit span
The digit span test, a subtest of the Wechsler memory scale
(Wechsler, 1945), is the format used most often for measuring
span of immediate verbal recall and working memory. The test
consists of seven (from 2 digits to 8 digits) pairs of random num-
ber sequences that the examiner reads aloud at the rate of one a
second. The patient’s task is to repeat each sequence exactly as it is
given.

Modified card sorting test (MCST)
This test is a shorter version (Caffarra et al., 2004) of the Wisconsin
card sorting test (Heaton et al., 1993) and assesses the ability to
solve problems in response to changing stimuli, the ability to shift
and maintain set, and to utilize feedback.

Stroop test
This test measures sustained attention and some aspects of EFs,
such as the ability to elaborate relevant and irrelevant dimensions
in parallel and to inhibit an automatic response while performing
a task based on conflicting stimuli (Stroop, 1935; Caffarra et al.,
2002).

Trail making test (TMT)
This test is divided in parts A and B and evaluates attention, motor
speed and EFs (Reitan, 1992).

Interference memory task (10 and 30 s)
This test is based on the Brown–Peterson paradigm (Brown,
1958; Peterson and Peterson, 1959) and is a subtest of the
neuropsychological battery esame neuropsicologico breve 2 (short
neuropsychological examination version 2; Mondini et al., 2011).
This test quantifies the objects that can be held in working
memory while preventing participants from using mnemonics or
other memory techniques separate from the working memory to
increase recall capacity.

IOWA GAMBLING TASK
Decision-making was assessed with the IGT (Bechara et al., 1994).
Even if it was originally designed in analogical mode, in our study
the IGT was implemented in a computerized version (Mapelli
et al., 2014). The experiment ran with the E-Prime 2 software
(Psychology Software Tools, Pittsburgh, PA, USA) installed on a
personal computer equipped with a 17-inch monitor.

The task consisted in the presentation, on a computer screen,
of four decks named A, B, C, and D. Each card in these decks can
bring a win or a loss: participants were requested to gain as more
as possible, choosing consecutively one card from any of the four
decks, until the task shuts off automatically after 100 cards. The

back of each deck looks the same, but decks differ in composition.
Decks A and B are considered disadvantageous, because they bring
big wins but also expensive losses, producing a net loss of 250€
every 10 cards. Decks C and D are considered advantageous ones
because they bring small wins, but smaller losses, causing a net gain
of 250€ every 10 cards. The instructions given to the participants
were the following: in this screen you can see four decks, two of
them are advantageous and two are disadvantageous. Each card of
these decks can bring a win or a loss: the goal of this task is to
win as much money as possible, and avoid losing money as much
as possible, starting from a virtual budget of 2000€. Participants
did not know the number of choices and, moreover, which were
the advantageous or the disadvantageous decks. Participants saw
on the screen the amount of money that they won or loose; this
amount was updated after each choice. The experimental flow of
the IGT task is shown in Figure 1.

The performance in the IGT test was measured using different
parameters. The total amount of money was the money at the end
of the test. The modal value of deck choices was explored by cal-
culating the mode of the distribution of the deck choices for each
subject of the two groups. The learning IGT score was calculated
according to previous reports (Bechara et al., 1994; Fukui et al.,
2005; Mapelli et al., 2014). To this aim, the 100 picks were divided
into five blocks of 20 cards. For each block, the difference between
the number of cards picked from advantageous decks (C and D)
minus those picked from disadvantageous ones (A and B) was cal-
culated. In this way, five learning IGT scores, one for each block,
were obtained for each subject, and the comparison between these
scores was considered as an index of learning. An increasing value
of the learning IGT score from the first to the last block indicates
a preference for advantageous decks and the learning of the right
pick strategy. Finally, the total IGT score was calculated by means of
the difference between overall advantageous choices minus overall
disadvantageous ones.

EEG RECORDING
Electroencephalogram and ERPs were recorded in a subgroup
of 12 controls and 12 cLBP patients. During the IGT, the EEG
was acquired from an array of 32 Ag/AgCl electrodes through a
Micromed electrode system. Electrodes were identified by brain
hemisphere (odd numbers = left, even numbers = right) and
general cortical zone (F = frontal, C = central, T = temporal,
P = parietal, and O = occipital) and they were mounted on an
elastic cap, according to the International 10–20 system (Oosten-
veld and Praamstra, 2001). The left and right mastoids served as
reference, while the vertical and horizontal eye movements were
recorded with two electro-oculogram (EOG) electrodes, placed
below and at the outer canthus of the left eye. The ground
electrode was located at POz channel. The rating sample was
512 Hz, electrodes impedance were <5 k�; a digital band-pass
filter (0.1–30 Hz) and notch filter (50 Hz) were applied off-line.

EVENT-RELATED POTENTIALS
Electroencephalogram data were processed offline using the
EEGLAB software (Delorme and Makeig, 2004). Epochs were
locked to the feedback presentation (4000 ms duration, from
2000 ms before to 2000 ms after the feedback onset), and the
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FIGURE 1 | Experimental flow of the IGT task.

averaging procedure was performed separately for positive and
negative feedbacks. Artifact correction was performed using base-
line correction in the −500–0 ms time window and independent
components analysis technique (Makeig et al., 1996; Delorme and
Makeig, 2004).

The FRN amplitude was calculated as the peak-to-peak ampli-
tude difference between the maximal positivity in the 150–250 ms
time window and the minimal negativity in the 250–310 ms time
window after feedback presentation in the Fz channel because FRN
is maximal in the fronto-central midline (Yeung et al., 2005; Hewig
et al., 2007; Li et al., 2009).

The P300 amplitude was calculated as the peak-to-peak ampli-
tude difference between the minimal negativity in the 250–310 ms
time window and the maximal positivity in the 310–450 ms time
window after feedback presentation, from Pz channel because
P300 is maximal at the parietal midline (Gehring and Willoughby,
2002; Cui et al., 2013; Mapelli et al., 2014).

STATISTICAL ANALYSIS
All tests were carried with the IBM SPSS version 20.0 statistical
package. For the comparison of baseline demographic conditions
(patients vs. controls), the unpaired t-test was used for continu-
ous variables and the Fisher’s exact test for dichotomous ones. For
continuous cognitive and IGT outcomes, we used the unpaired
t-test in case of normal distribution, otherwise the non paramet-
ric Mann-Whitney U test was applied. The dichotomous cognitive
variables and the modal distribution of deck choices were explored
with the Fisher’s exact test. The correlation between cognitive
and IGT measures and clinical variables (depression and anxi-
ety scores, chronic pain intensity, and duration) was analyzed
with the Pearson’s coefficient. Learning strategy in the IGT was
analyzed with a mixed model repeated-measures ANOVA (within-
subjects factor: block, 1 to 5; between-subject factor: group,
controls vs. patients) and post hoc t-test with Bonferroni’s correc-
tion. Homogeneity of variance was analyzed with the Levene’s test.
The data were transformed (logarithmic transformation) before

submitting them to ANOVA in case of an inequality in the vari-
ances. The FRN and P300 amplitudes were submitted to a mixed
model repeated-measures ANOVA (within-subjects factor: con-
dition, win vs. loss; between-subject factor: group, controls vs.
patients) and post hoc t-test with Bonferroni’s correction. Results
are reported as mean ± SD except when otherwise specified.
P < 0.05 (two-tailed) was taken as the significance threshold for
all the tests.

RESULTS
COGNITIVE MEASURES
Modified card sorting test right categories were significantly lower
(p = 0.02) and modified card sorting test (MCST) perseverative
errors were significantly higher in patients vs. controls (p = 0.03),
while the other cognitive scores did not significantly differ between
the two groups (Table 2). The number of MCST right categories
was negatively and significantly influenced by the intensity of pain
(Pearson’s coefficient = −0.76, p = 0.009). The number of per-
severative errors was significantly correlated with pain duration
(Pearson’s coefficient = 0.79, p = 0.007).

IGT BEHAVIORAL RESULTS
The total amount of money at the end of the IGT was lower
in cLBP patients (1492 ± 603€) vs. controls (2069 ± 893€;
p = 0.014). Depression score (BDI), anxiety score (STAI Y2),
duration and intensity of pain were not significantly corre-
lated with the total amount of money. The modal value of
deck choices significantly differed between patients and con-
trols, in that 54% of cLBP patients and 83% of controls
preferred advantageous decks (Fisher’s exact test: p = 0.012;
Table 3).

When analyzing the distribution of the picks across the exper-
imental blocks, normal controls showed an exploratory strategy,
in that at the beginning of the test they explored single blocks
and continued picking cards from the same block until they
learned whether the deck was advantageous or not and, once
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Table 2 | Cognitive measures in patients and controls.

cLBP patients (n = 24) Controls (n = 24) P value

Digit span forward 5.6 ± 0.5 6.1 ± 0.1 0.14

Digit span backward 3.4 ± 0.7 3.8 ± 0.4 0.13

MCST right categories 4.5 ± 1.9 5.8 ± 0.4 0.02*

MCST perseverative errors 4.0 ± 5.6 0.8 ± 1.1 0.03*

Stroop test time 19.2 ± 7.6 14.0 ± 5.8 0.08

Stroop test errors 1.4 ± 1.6 1.1 ± 1.4 0.57

TMT part A 29.7 ± 9.5 25.3 ± 7.3 0.20

TMT part B 92.1 ± 36.8 86.0 ± 23.2 0.59

Interference memory task 10 s 6.9 ± 2.5 8.4 ± 0.5 0.07

Interference memory task 30 s 7.0 ± 1.8 7.8 ± 1.2 0.23

Continuous variables are expressed as mean ± SD, range. *flags significant p values when comparing cLBP patients vs. controls. cLBP, chronic low back pain. MCST,
modified card sorting test; TMT, trail making test.

Table 3 |The modal value of deck choices in patients and controls.

cLBP patients Controls Total

Advantageous decks 13 20 33

Disadvantageous decks 11 4 15

Total 24 24 48

Here is reported the type of deck that was the preferred one in cLBP patients and
controls (i.e., the mode of the distribution of deck choices).There was a significant
difference between the two groups (Fisher’s exact test: p = 0.012). cLBP, chronic
low back pain.

learned, they preferred the advantageous decks. At variance, the
picks of the cLBP patients did not follow a clear strategy, but
they seemed to fluctuate randomly across advantageous and dis-
advantageous decks. Normal controls showed a learning process
during the task, in that the learning IGT score progressively ame-
liorated throughout the five blocks of the test. At variance, no
clear learning strategy was found in cLBP patients, whose learning
IGT score did not improve across different blocks and fluctuated
close to 0 (Figure 2). Repeated-measures ANOVA showed a main
effect of the factors block [F(4,184) = 13.01; p < 0.001], group
[F(1,46) = 6.11; p = 0.036] and a significant block × group inter-
action [F(4,184) = 2.84; p = 0.04] on the learning IGT score. Post
hoc analysis with Bonferroni’s correction showed that the learning
IGT score was significantly higher in controls vs. patients in blocks
3, 4, and 5 (Figure 2). To rule out any possible effect of concomi-
tant depression, patients were divided in those with and without
depression according to BDI (cut-off = 5/39) and the between-
subjects factor depression was submitted to repeated-measures
ANOVA, which documented that neither the factor depression
[F(1,22) = 0.8; n.s.] nor the block × depression interaction
[F(1,22) = 1.9; n.s.] significantly influenced the learning IGT
score.

Depression score (BDI), anxiety score (STAI Y2), duration and
intensity of pain were not significantly correlated with the total
IGT score.

FIGURE 2 | Learning strategy in the IGT. Here are shown the learning IGT
scores across the five different blocks of the IGT in cLBP patients and
controls. A learning process was present in controls, in that the learning
IGT score progressively ameliorated throughout the five blocks. No clear
learning strategy was found in cLBP patients, whose learning IGT score did
not improve across different blocks and fluctuated close to 0. Vertical error
bars equal 1 SEM. *p < 0.05 (after Bonferroni’s correction) for cLBP
patients vs. controls comparison. cLBP, chronic low back pain; IGT, Iowa
gambling task.

ERPs RESULTS
The subgroups of cLBP patients (n = 12) and controls (n = 12)
did not significantly differ for age, sex and education. Among
cognitive measures, the MCST right categories were significantly
lower (cLBP patients: 4.0 ± 2.0, controls: 5.6 ± 2.7; p = 0.02)
and MCST perseverative errors were significantly higher (cLBP
patients: 4.6 ± 4.5, controls: 1.4 ± 1.0; p = 0.04) in patients
vs. controls, while the other outcomes did not significantly
differ between the two groups. For IGT, the total amount of
money was lower in cLBP patients (1460 ± 692€) vs. controls
(2027 ± 571€; p = 0.04). Repeated-measures ANOVA showed
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a main effect of the factors block [F(4,88) = 7.32; p < 0.001],
group [F(1,22) = 4.45; p = 0.047] and a significant block × group
interaction [F(4,88) = 2.63; p = 0.04] on the learning IGT
score.

The grand-average ERPs in patients and controls are displayed
in Figure 3. There was a prevalence of the number of trials for
wins (controls: 73.8 ± 3.8, cLBP patients: 76.1 ± 3.8, n.s.) vs.
losses (controls: 17.9 ± 2.3, cLBP patients: 17.0 ± 2.7, n.s.), but
this was balanced between the two groups.

The FRN amplitude in the Fz channel was higher to wins
than losses in controls, while the opposite happened in patients
(Figure 4). Repeated-measures ANOVA showed a significant
condition × group interaction [F(1,22) = 4.8; p = 0.04],
while the factors condition [F(1,22) = 0.05; n.s.] and group
[F(1,22) = 1.0; n.s.] did not significantly affect FRN ampli-
tude. Post hoc analysis with Bonferroni’s correction showed that
the FRN amplitude was significantly higher to losses than wins
in patients. The FRN amplitude difference for the two types
of feedback (i.e., FRN amplitude to wins – FRN amplitude
to losses) was significantly different between the two groups
(controls: 1.1 ± 3.2; patients: −1.3 ± 1.9; unpaired t-test,
p = 0.04).

The P300 amplitude in the Pz channel was higher to wins than
losses in controls, while this difference was absent in patients,

being the P300 amplitude similarly high for both types of feed-
back (Figure 5). Repeated-measures ANOVA showed a significant
effect of the factor condition [F(1,22) = 9.6; p = 0.005] and
a significant condition × group interaction [F(1,22) = 4.7;
p = 0.04], while the factor group [F(1,22) = 0.5; n.s.] did
not significantly affect P300 amplitude. Post hoc analysis with
Bonferroni’s correction showed that the P300 amplitude was sig-
nificantly higher to positive than negative feedback in controls,
while no difference between the two types of feedback was found
in patients.

The P300 amplitude difference for the two types of feed-
back (i.e., P300 amplitude to wins – P300 amplitude to
losses) was significantly different between the two groups
(controls: 1.3 ± 1.5; patients: 0.2 ± 1.0; unpaired t-test,
p = 0.04).

Feedback-related negativity and P300 amplitude were not influ-
enced by depression score (BDI), anxiety score (STAI Y2), duration
and intensity of pain.

DISCUSSION
In the present study, we explored cognitive functions and DM in
cLBP patients and focused on emotional DM abilities by explor-
ing behavioral responses and their neurophysiological correlated
during IGT (Bechara et al., 1994). Our data documented that,

FIGURE 3 | Grand average ERPs in the Fz, Cz, and Pz channels to wins (green lines) and losses (red lines) in controls and cLBP patients. cLBP, chronic
low back pain; ERPs, event related potentials; FRN, feedback-related negativity.
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FIGURE 4 | FRN amplitude in the Fz channel. Vertical error bars equal 1
SEM. *p < 0.05 (after Bonferroni’s correction) for wins vs. losses
comparison. cLBP, chronic low back pain; FRN, feedback-related negativity.

FIGURE 5 | P300 amplitude in the Pz channel. Vertical error bars equal 1
SEM.*p < 0.05 (after Bonferroni’s correction) for wins vs. losses
comparison. cLBP, chronic low back pain.

among cognitive measures, cLBP patients scored lower than con-
trols only in the MCST and that pain duration and intensity were
significantly correlated with the degree of impairment in this test.
Behavioral IGT results documented worse performance and the
absence of a learning process in cLBP patients compared to con-
trols, with no effect of pain characteristics. ERPs findings suggested
abnormal feedback processing in patients during IGT.

Previous reports on cognitive functions in chronic pain
reported conflicting results, in that abnormalities were not con-
sistent and the tasks explored differed across studies (Moriarty
et al., 2011). What’s more, robust cognitive changes were mainly
documented in patients with fibromyalgia, a chronic pain condi-
tion that is nearly always associated with depression, which may
have biased the interpretation of the results. Our findings are in
keeping with this bulk of literature, as we found that, out of the
large battery of tests, only MCST scores were abnormal in cLBP
patients. A previous study documented normal score in Wisconsin
card sorting test in cLBP patients, but the very small sample (six
patients) might have reduced the power of the statistical analysis
(Apkarian et al., 2004b). MCST explores verbal feedback (right,
wrong) processing and set shifting. Set shifting appeared to be
preserved in our patients because of normal score in trail making
test (TMT) part B. We may thus speculate that the abnormalities

with MCST resulted from a difficulty in feedback elaboration in
the dorsolateral PFC.

We found that the intensity and duration of pain were signif-
icantly correlated to MCST scores. Pain duration and intensity
were quite variable among our patients and this may represent
a bias. However, based on our findings, we may hypothesize
that pain might represent a competing task leading to worse and
slower functioning of the dorsolateral PFC, which is involved in
MCST performance. This view is in keeping with morphologi-
cal MRI studies, which showed reduced size of the dorsolateral
PFC in chronic pain patients (Apkarian et al., 2004a), and that
the dorsolateral PFC shrinkage can be reverted by pain treat-
ment suggesting abnormal plasticity to continuous nociceptive
afferents (Rodriguez-Raecke et al., 2009, 2013; Seminowicz et al.,
2011). It may thus be speculated that intense chronic pain might
engage the dorsolateral PFC and cause the abnormalities in MCST,
while long pain duration could trigger pathological plastic changes
that may be more difficult to revert in patients with long-lasting
pain.

Depression and anxiety did not correlate to the MCST perfor-
mance in our patients, excluding a possible role of these factors.
A limitation of the present study is that we did not explore the
role of other factors, such as deprivation of social contacts, agility,
physical training and life style changes, which together might have
also contributed to the MCST abnormalities (Rodriguez-Raecke
et al., 2009, 2013).

Iowa gambling task data showed impairment of both the total
amount of money and the learning strategy. cLBP patients won
significantly less money than controls and their IGT score did not
change throughout the blocks indicating the absence of a learning
curve during the test. The IGT is a relatively difficult task, but
normal controls succeeded in keeping the initial amount of money,
while patients lost on average a quarter of the sum. The different
outcome in the two groups depended on the presence of a learning
strategy in controls, who explored the four decks in the first two
blocks of the test, then chose preferentially the advantageous ones.
At variance, patients choices appeared largely random ones, and
there was a higher number of disadvantageous picks in this group.
Depression, anxiety and pain characteristics (i.e., pain intensity
and duration) did not influence IGT performance.

To the best of our knowledge, only two studies explored IGT
in patients with chronic pain, namely in cLBP and complex
regional pain syndrome (Apkarian et al., 2004b) and in chronic
migraine (Biagianti et al., 2012). Both these previous reports found
that IGT performance were worse in chronic pain patients and
that this outcome was not or minimally influenced by depres-
sion, anxiety and pain characteristics. Our data differ from those
of Apkarian et al. (2004b), in that they found a learning strat-
egy, which was delayed in comparison to controls, in cLBP
patients. This difference might be ascribed to our IGT proto-
col, which was slightly different from the majority of previous
studies, in that we told the participants that two of the decks
were advantageous and two were disadvantageous (Bechara et al.,
2000).

The analysis of feedback-related ERPs offered some insight on
the brain mechanisms underlying the bad IGT performance in
our patients. To better explore the different stages of feedback
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processing, we analyzed two ERPs components, namely the FRN
and P300.

While FRN was slightly larger for positive vs. negative feed-
back in normal controls, the opposite happened in our patients,
who showed a significantly higher amplitude of this component
to losses than wins. The FRN reflects early feedback appraisal
on a binary good vs. bad classification, is an index of the viola-
tion of the expectations of the subject rather than of the absolute
valence of the feedback and is generated in the ACC (Gehring
and Willoughby, 2002; Holroyd et al., 2006; Oliveira et al., 2007;
Jessup et al., 2010; Alexander and Brown, 2011; Schuermann et al.,
2011). Our data suggest that cLBP patients seem to invert the cor-
rect placement of feedback according to the good vs. bad outcome
basic classification. However, this finding should be interpreted
with caution because of the absence of the FRN effect in con-
trols. The reasons for the absence of the FRN effect in our normal
subjects might include the relatively old age of some of the con-
trols (Hämmerer et al., 2011; West et al., 2014), the personality
profiles and/or genetic variables (Mueller et al., 2014), which were
not measured in the present study, or the experimental protocol
that differed from some of previous studies, in that the sub-
jects were told that two decks were advantageous and two were
disadvantageous.

Controls had a significantly larger P300 to wins than losses,
while this component was similarly large to both types of feed-
back and not significantly different between the two conditions
in our patients. The P300 is a more complex phenomenon that
reflects the valence of the feedback, contributes to performance
monitoring and behavioral adaptation (Schuermann et al., 2011;
Cui et al., 2013; Ferdinand and Kray, 2013) and is influenced by
attention and working memory updating (Donchin and Coles,
1988; Polich, 2007). The P300 typically shows the positivity effect
(i.e., a larger amplitude to positive than negative feedback), which
is supposed to reflect a positive feedback as more task rele-
vant, because it signals that the intended goal has been achieved
(Ferdinand and Kray, 2013). Similar P300 amplitude to both types
of feedback in cLBP suggests that patients are unable to differenti-
ate positive and negative outcomes even at this higher-order stage
of outcome processing and that they cannot use the information
from previous trials and errors for planning future decisions. The
abnormally high amplitude of P300 in both conditions might be
interpreted as some sort of ceiling effect due to difficulties in tun-
ing the amplitude of this ERPs component in relation to feedback
valence.

Behavioral and ERPs abnormalities in cLBP patients might be
explained in light of current knowledge of the functional anatomy
of DM, which involves a brain network including the amygdala,
the ventromedial and the dorsolateral PFC, the ACC, as well as
ventral and dorsal striatum (Delazer et al., 2009). IGT and MCST
impairment has been documented in many different clinical con-
ditions involving this network, (Bechara et al., 1996, 2000; Rahman
et al., 1999, 2006; Fellows and Farah, 2005; Torralva et al., 2009).
Healthy aging may also affect the performance in these two tests
(Finucane et al., 2002; MacPherson et al., 2002; Kovalchik et al.,
2005; Cauffman et al., 2010; Eppinger and Kray, 2011).

Two anatomo-functional hypotheses may be set forth to explain
the mechanisms underlying our ERPs findings. Activity in the

ventromedial PFC was found to be associated with the fluctuations
of pain intensity in cLBP (Baliki et al., 2006; Foss et al., 2006). It
may be hypothesized that pain-related activity in the ventromedial
PFC might have resulted in an imbalance between ventromedial
and dorsolateral PFC leading to the present ERPs abnormalities.

Sensitivity to negative stimuli has been associated with the func-
tion of the amygdala (Bechara et al., 1999), which is involved in
processing the affective dimension of pain (Giesecke et al., 2005)
and influences descending inhibitory pain control through the
periaqueductal gray matter (Neugebauer et al., 2004). Based on
MRI findings of decreased gray matter bordering the amygdala
in patients with cLBP (Ung et al., 2014), we may speculate that
continuous nociceptive barrage to the amygdala in patients might
cause a dysfunction of this brain structure leading to alteration in
feedback processing.

The neuropharmacology of the anatomical network subserv-
ing DM points to dopamine (DA) and serotonin. DA is the main
neuromodulator of the fronto-striatal loop, and plays a key role
(Assadi et al., 2009; Rogers, 2011) in reward processing during
reinforcement learning (Schultz, 2002; Frank et al., 2004) and
in learning and outcome monitoring (Hämmerer and Eppinger,
2012). Patients with Parkinson’s disease, which is characterized
by brain DA reduction and DA manipulation by treatment, show
an impairment in DM abilities (Hämmerer and Eppinger, 2012;
Mapelli et al., 2014). It may be speculated that changes in DA
levels might have blocked the physiological dopaminergic bursts
and dips (Frank et al., 2004), which together shape the behav-
ioral responses to positive and negative feedbacks. This view is in
keeping with a rodent model, which explored an IGT-like task
in rats with pain, and documented that rats performed simi-
larly to our patients and that DA levels were reduced in their
ventromedial PFC and amygdala (Pais-Vieira et al., 2009). This
model would fit well with the ERPs abnormalities in cLBP patients
along with the difficulties in learning a strategy during IGT. Sero-
tonin plays also a relevant role in DM (Gleichgerrcht et al., 2010).
Some of our patients showed mild levels of depression, but the
absence of any significant effect of depression on IGT findings
seems to rule out a possible contribution of the serotoninergic
dysfunction.

In contrast to MCST results, IGT abnormalities were not related
to any pain variable. We hypothesize that they may represent a pre-
disposing factor for pain chronification and in predicting those
patients, who are at risk for developing chronic pain after a futile
peripheral tissue damage. Studies on pain chronification have
recently shifted from peripheral nerve and spinal cord mechanisms
to cortical and limbic phenomena (Baliki et al., 2012). Future
prospective studies assessing cognitive functions, including IGT,
in patients with acute pain and correlating eventual chronification
to their impairment should better explore this hypothesis.

The present IGT abnormalities are similar to those found in
pathological gamblers (Goudriaan et al., 2005), as well as in a wider
spectrum of neuropsychiatric conditions that share the presence
of impulse control disorder and include borderline personality
disorder (Schuermann et al., 2011), attention-deficit/hyperactivity
disorder and bipolar disorder (Ibanez et al., 2012), and prob-
lem gambling (Oberg et al., 2011). Chronic pain patients often
have to decide whether to take an analgesic or to change their
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habits to manage pain. Pain killers have an advantage in the short
term (high reward) but, in the long term, they might result in
adversive consequences such as side effects or addiction (higher
punishment). Otherwise, alternative choices, such as physical
activity, cognitive-behavioral therapies or combined treatment
(low reward) might result more advantageous in the long term
(lower punishment). The IGT impairment in cLBP patients might
have an important influence on the selection between various
therapeutic options. None of our patients presented symptoms
of medication overuse or dependency-like behavior, but explor-
ing IGT changes in patients with drug abuse might be interesting
and assessing whether IGT may predict the excessive use of pain
killer would have an important role in avoiding this frequent
complication of chronic pain.

In conclusion, we documented that cLBP patients show poor
performance in DM, as assessed with MCST and IGT. These abnor-
malities might contribute to the impairment in the work and
family settings that often cLBP patients report. Future studies
should explore whether these changes may predict the functioning
in everyday life.
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