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Abstract: In the last decade, the gastrointestinal microbiota has been recognised as being essential
for health. Indeed, several publications have documented the suitability of probiotics, prebiotics,
and symbiotics in the management of different diseases such as diabetes mellitus (DM). Advances in
laboratory techniques have allowed the identification and characterisation of new biologically active
molecules, referred to as “postbiotics”. Postbiotics are defined as functional bioactive compounds
obtained from food-grade microorganisms that confer health benefits when administered in adequate
amounts. They include cell structures, secreted molecules or metabolic by-products, and inanimate
microorganisms. This heterogeneous group of molecules presents a broad range of mechanisms and
may exhibit some advantages over traditional “biotics” such as probiotics and prebiotics. Owing
to the growing incidence of DM worldwide and the implications of the microbiota in the disease
progression, postbiotics appear to be good candidates as novel therapeutic targets. In the present
review, we summarise the current knowledge about postbiotic compounds and their potential
application in diabetes management. Additionally, we envision future perspectives on this topic. In
summary, the results indicate that postbiotics hold promise as a potential novel therapeutic strategy
for DM.

Keywords: postbiotics; diabetes mellitus; bacteria-derived factors; bioactive compounds; functional
foods; health benefits; lactic acid bacteria; gut microbiota; probiotics; paraprobiotics

1. Introduction

Since ancient times, our forefathers were aware of the importance of fermented foods
and fermenting microorganisms for well-being, and in particular for intestinal health [1]. At
present, the evidence for the role of the gastrointestinal microbiota (GM) in the host’s health
is robust, and this is because of the endocrine, digestive, and defensive functions achieved
by our microbes [2–4]. Perturbations of the GM (dysbiosis) have been identified in several
pathological states, including different forms of diabetes mellitus (DM), inflammatory
bowel diseases, cancer, neurological diseases, psychiatric disorders, and even allergies,
conditions in which the GM seemed to contribute, to some extent, to the disease onset
and progression [5–8]. Moreover, a large number of investigations have demonstrated that
strategies aimed at modulating the GM composition or activity, for instance, employing
probiotics or prebiotics supplementations, are particularly useful for the restoration of the
intestinal microbial environment and therefore for the host’s health condition [9–11]. Probi-
otics and prebiotics are undoubtedly the most studied GM modulators. Probiotic refers to
alive microorganisms that provide health benefits to the host through several mechanisms,
including improvements of the intestinal barrier function, protection against pathogens,
and the modulation of the immune response [12,13]. The most commonly used are species
belonging to the genera Lactobacillus, Bifidobacterium, Streptococcus, and Lactococcus among
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bacteria and Saccharomyces among yeasts [14–16]. Prebiotics are non-living digestive mi-
crobial stimulants that are selectively fermented by our resident microbiota [17]. Hitherto,
the term was used in essence for non-digestible fibres; however, the current definition also
extends to bioactive compounds of different origin, such as polyunsaturated fatty acids
and polyphenols [18].

In addition to the unquestionable beneficial effects of probiotics and prebiotics, emerg-
ing concepts are opening the door to new microbiome-based approaches. Figure 1 high-
lights the major historical milestones in microbiology, the biotics family, and health, along
with other significant landmarks. Thanks to technological process in the last decades,
tremendous advancements have taken place regarding the study, classification, and char-
acterisation of the different probiotic-related concepts. Additionally, relevant is the foun-
dation of The International Scientific Association for Probiotics and Prebiotics (ISAPP),
which helps in the definition of the emerging concepts by providing expert consensus,
among other activities. In addition to the new biotics terms, the notion of postbiotics has
to be emphasised, which is a term first coined in 2012 by Tsilingiri and colleges [19] and
recently updated in the ISAPP expert consensus document [20]. Experimental studies have
indicated that microbial components can exhibit different bioactivities than their viable
counterparts (probiotic) [21], which is why they present an attractive area for research.
The category of postbiotics has gained significant interest; in fact, more than 87% of total
scientific publications on this topic have been carried out in the past three years (according
to Pubmed.gov, cosulted in June 2021).
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1.1. Postbiotics

Postbiotics refer to probiotic-derived products obtained from food-grade microorgan-
isms that confer health benefits when administered in adequate amounts [22]. They include
cell structures and secreted products or metabolic by-products that are discharged by viable
microbial cells or that are collected and isolated after the cell lysis [23]. Most postbiotics are
derived from bacteria, commonly Lactobacilli and Bifidobacterium members; however, fungal
origin postbiotics are also investigated [24]. The newly published ISAPP postbiotic defini-
tion [20], “preparation of inanimate microorganisms and/or their components that confers
a health benefit on the host”, also includes inanimate microorganisms. At present, there are
some commercial postbiotics, in the form of supplements or incorporated in food matrices,
that are mostly intended for their use in gastrointestinal or immune-related pathologies [21].
Findings from previous studies are encouraging, and the future of postbiotics in other
clinical applications, including different forms of DM [25,26], seems promising and is the
subject of this review.

Pubmed.gov
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1.1.1. Characteristics of Postbiotics

The growing interest regarding postbiotics is partially explained by the advantages
they provide, which are summarised in Figure 2. Briefly, (i) they are quite safe; (ii) they are
well-tolerated and associated with reduced risk for adverse effects in vulnerable individu-
als (pregnant women, premature children, old adults, subjects immunocompromised or
presenting an impaired immune function or intestinal barrier) [27–30]; (iii) they have no
risk for transferring antibiotic-resistant genes to pathogenic or commensal bacteria [31];
(iv) their effectivity is independent of the cell viability, which ensures longer stability and
improved shelf-life [20]; (v) they present an easy industrial (large-scale) production [32];
(vi) they show interesting technological properties (i.e., rheological properties of exopolysac-
charides (EPS) in the food industry as a stabiliser [32,33] or bio-preservative effects of LAB
bacteriocins [34]). Other properties include (vii) the wide range of health-promoting effects
they provide (See Figure 3), some of which can be reinforced in comparison with the
effect of intact viable microbial cells [35]. Another very interesting feature of postbiotics is
that, due to their nature, (viii) it appears feasible that they could be used with concurrent
administration with antibiotic and antifungal agents.
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1.1.2. Classification

The group of postbiotics covers a plethora of compounds. First, we find microbial-
derived metabolites, such as enzymes, proteins, peptides, organic acids, vitamins, minerals,
bacteriocins, antimicrobial peptides, and extracellular vesicles (EVs) [31,34], along with
other excreted molecules such as EPS [36]. Second, we find other molecules that shape
the cell structure, including cell wall components, such as the polymers teichoic acids
(lipoteichoic and wall teichoic acids), peptidoglycans, peptidoglycan-derived muropep-
tides, pili-type forms, and cell surface fractions (i.e., S-layer protein, mucus binding pro-
tein, fibronectin-binding protein) [23,32]. Third, other postbiotics are defined as cell-free
extracts and lysates, culture supernatants, or biosurfactants (cell-wall-associated or intra-
cellular) [24,31]. Last, as previously mentioned, inanimate microorganisms may also be
considered in the postbiotic category [20,37].

The techniques utilised for the extraction and purification of postbiotics are many
and varied. They must engage the microbial membrane and disturb the cell integrity
to collect the intracellular content [21]. To mention some examples, solvent extraction,
deproteinisation and precipitation, separation by electrophoresis and analysis with liquid
chromatography or sonication, and hydrophobic gradient chromatography are among
the applied techniques (reviewed in detail in [32]). Regarding microbial inactivation,
different procedures or techniques can be used, including heat, high pressure, irradiation,
or sonication [37,38].
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1.1.3. Health Benefits of Postbiotics

Since the concept of postbiotic involves a broad range of compounds and substances
diverse in nature and content (mentioned above), very different biological effects have
been described (Figure 3). Some of these effects are restricted to the intestinal tract, for
example, establishing a healthier GM [21,23], exerting prebiotics effect [36], or controlling
the gut permeability [39,40]. Despite this, other effects not only affect the epithelial barrier
but also cause systemic effects [24]. Collectively, the current evidence indicates that postbi-
otics can exert anti-inflammatory, antioxidant, immunomodulatory, pathogen inhibitory,
anti-obesogenic, anticancer, antitumor, antiproliferative, antibiofilm, anti-adhesion, antihy-
pertensive, hypocholesterolaemic, hepatoprotective, cardioprotective, anti-atherosclerotic,
and anti-ulcerative effects (previously reviewed in [23,24,31,32]).
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It is important to emphasise that, similar to probiotics [18], it is likely that postbiotics
properties are species- and strain-specific and depend on the microbial progenitor utilised
for their formulation [21,41]. In addition to this, the type and activity of the resulting
postbiotic will also depend on the substrate or matrix where the postbiotic compounds are
produced [42].

The GM is probably the major source of postbiotic constituents. Our resident microbes
release a myriad of products, including metabolites and also cell components (reviewed
in detail in [43]), that behave as messengers in the microbiota–host interactions and are
of major significance to the host [44,45]. In the present review, however, we focus on the
potential of exogenous factors that are orally administered.

Finally, in addition to their use in the food industry and clinical applications, postbi-
otics have also been exploited in activities as varied as their use in animal health [46,47] or
sport performance [48].

1.2. Lactic Acid Bacteria

Lactic acid bacteria (LAB), such as Lactobacillus, Bifidobacterium, and Pediococcus spp., are
without doubt the most important bacteria group in the food industry. They can be homofer-
mentative or heterofermentative, depending upon their carbohydrate metabolism [36].
LABs have a long history of safe use [49] and are widely used in food processing, where
they play important roles [50,51]. They act as cell factories and produce a plethora of poten-
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tially bioactive compounds including functional EPSs [33,52], enzymes [53], vitamins [54],
anti-inflammatory substances [55], peptides [42], and antimicrobial products [34]. All of
them show interesting technological attributes for food production and preservation, as
well as exerting beneficial effects on human health, as described below.

1.3. Microbiotherapy for Diabetes Mellitus Management

Diabetes mellitus is a chronic disease characterised by elevated blood glucose levels
(hyperglycaemia), originated by an autoimmune β-cell destruction (type 1 diabetes mellitus,
T1DM) or a progressive loss of pancreatic function due to inadequate insulin secretion by
the β cells as a consequence of insulin resistance exerted by peripheral tissues such as liver,
muscle, and adipose tissue (type 2 diabetes mellitus, T2DM) [56]. The epidemiological
evidence indicates that DM’s prevalence is reaching worrisome levels, and this scenario
is exacerbated by poor diet quality, sedentarism, obesity pandemic, and the growing
population aging, among other factors. The picture is alarming since DM is a major cause
of death worldwide, and diabetes-specific complications are a leading cause of disability,
particularly cardiovascular complications [57,58].

During recent years, evidence has accumulated to support that the resident GM
is among the set of environmental factors implicated in DM development and progres-
sion [59,60]. Possible explanations include the symbiotic relationship between the host and
their intestinal microorganisms. The role of the resident microbes in the host’s energy bal-
ance, metabolism, inflammation, and immunity is widely accepted [4,61–63]. The former
are particularly interesting in the case of T2D, the latter is more involved in T1D develop-
ment, and inflammation is a common factor between both forms of DM [64]. Additionally,
the GM can also influence the host’s homeostasis through other functions such as nutrient
absorption, intestinal permeability, or controlling gene expression [65]. In connection with
DM, findings from experimental studies suggest that specific bacterial components could
foster (LPS) [66] or protect (peptidoglycans) [67] from its onset or development. Further-
more, certain bacteria groups have been associated with improved glucose metabolism [66]
or have been correlated with fasting blood glucose, HbA1c, or even insulin levels [67].
Moreover, some GM derived-metabolites (i.e., bile acids, indole, short-chain fatty acids
(SCFAs)) could either directly or indirectly modulate energy homeostasis and glucose
metabolism [67].

Findings from cross-sectional and animal studies have shown that diabetic GM
presents an unfriendly composition and activity, and some features are shared among T1D
and T2D patients [68]. This “diabetic microbiota” includes a loss of butyrate-producing
species, enrichment of opportunistic microorganisms, an overall lower gene count (abun-
dance) associated with metabolic impairments, changes in nutrients’ transport, enzymatic
activity, and metabolism, all of this affecting SCFA concentrations and oxidative stress
response, among others [66,67,69]. Moreover, diabetic patients commonly present gas-
trointestinal alternations (i.e., alteration of the bowel movement frequency) and have an
increased risk for giving some gastrointestinal disorders [70]. DM has been linked to altered
intestinal permeability, and a leaky gut has been reported in both T1D [71] and T2D [72].
This context favours the occurrence of metabolic endotoxemia [73] and bacteraemia [74],
which, through an inflammatory response, influences insulin sensibility and, consequently,
DM and metabolic complications.

Given the above, it is clear that a suitable GM and intestinal function is key for health
maintenance and diabetes prevention, and it seems promising to tackle the diabetic disease
through changes in GM composition and activity. In this light, a great number of studies
have highlighted the therapeutic potential of microbiota-modulating dietary interventions
in different forms of DM [75,76]. Although probiotics [77,78], prebiotics [79], and fermented
foods [80–82] have served as a reference for microbiome-based interventions, postbiotics
are emerging potential agents for DM prevention or management. Good evidence for this
can be found in experimental studies in different models of diabetes mellitus [83,84] and
few human trials [85], as discussed below.
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2. Objectives and Search Strategy

The number of scientific articles examining postbiotic products for diabetes treatment
or prevention is growing, which illustrates a considerable scientific interest in the topic.
Nevertheless, to date, there is no review summarising the knowledge about this research
topic. For this reason, the main objective of the present review was to provide insights
into the currently available information on postbiotics in the context of DM, comprising
microbial structures, metabolites, and inanimate microorganisms.

To perform a comprehensive review, we adopted the formalities of a systematic litera-
ture review. We conducted a search literature in MEDLINE (through PubMed) and Cochrane
Library (CENTRAL) using key terms for postbiotic compounds (“bacteriocin”, “biosurfac-
tant”, “cell-free extract”, “conjugated fatty acid”, “dead probiotic”, “enzyme”, “exopolysac-
charides”, “extract”, “extracellular vesicles”, “flavonoid”, “GABA”, “gamma-aminobutyric
acid”, “ghost probiotic”, “inactivate probiotic”, “lipoteichoic acid”, “muropeptides”, “neuro-
transmitter”, “oligosaccharides”, “paraprobiotic”, “peptide”, “peptidoglycan”, “phenolic”,
“postbiotic”, “protein”, “SCFA”, “short-chain fatty acid”, “supernatant”, “s-layer protein”,
“teichoic acid”, “terpenoid”, and “vitamin”) combined with terms for diabetes mellitus (“dia-
betes mellitus”, “type 1 diabetes”, and “type 2 diabetes”). Reference lists of included articles
were also hand searched. We excluded faecal material transplants and other compounds or
strategies that do not fit exactly with the postbiotic definition.

3. Results

Since a specific molecule may exert different physiological effects, we considered
it appropriate to present and discuss findings according to their organic structures. In
the following sections, we provide information regarding cell components, secreted com-
pounds, and inanimate probiotics. In accordance with the new postbiotic definition [20],
neither purified substances nor filtrates where cell components were removed could be
classified as postbiotics. Nevertheless, the current literature available lacks enough studies
for postbiotics in diabetes prevention or management, and we decided to include a few
studies revolving around GABA and EVs.

3.1. Exopolysaccharides (EPSs)

EPSs are usually divided into homopolysaccharides (dextran, levan) or heteropolysac-
charides (kefiran) made up of one or more types of monosaccharides, respectively [86].
Despite their being originally membrane components and participating in cell adhesion
and protection, they differ from other membrane structures since they can be released
to the environment and exert different functions [36] (reviewed in [52]). Microbial EPS
has been extensively studied, especially in the food industry, where they significantly
impact food properties (texture or stability), provide new sensory attributes, and improve
the nutritional value of food [36]. Outstanding among the many beneficial properties
associated with EPS is their prebiotic effect [36,52].

Our search yielded a total of six preclinical cross-sectional studies involving microbial
EPS and diabetes models, and no human trials were found (Table 1). All the animal studies
were performed on T1D models (alloxan or streptozotocin induced rodents), and a further
work used an insulin-resistant HepG2 cell model, which is a human hepatocellular carci-
noma cell line often used in diabetes research [87]. With the exception of one study [88],
a decreased glucose level in the blood (blood fasting glucose, FBG) or supernatant was
reported, and two studies [26,89] also observed an increase in insulin levels and an im-
proved lipid profile. One study [83] reported that EPS from B. licheniformis was effective in
counteracting oxidative stress and prevented diabetic complications by protecting key tis-
sues and organs. One EPS from L. plantarum S1S2L2 resulted in the inhibition of pancreatic
α-amylase in vitro [90], which is a treatment option contemplated for DM management.
Other observed findings in this study include the upregulation of genes involved in glucose
metabolism, the reduction of some metabolic end-products, and the increase of hepatic
glycogen reservoirs.



Foods 2021, 10, 1590 7 of 21

Table 1. Experimental studies on microbial exopolysaccharides in diabetes mellitus.

Type of Research Bioactive Component Source/Origin Model System Main Findings Study

Animal

Levan Bacillus licheniformis Wistar rats induced T1D with alloxan
(150 mg/kg BW)

↓Glycaemia, ↑glycogen level, ↓AST, ALT,
bilirubin, creatinine, and urea levels Dahech et al., 2011 [83]

Levan Bacillus subtilis (Natto) Wistar rats induced T1D with STZ
(65 mg/kg BW)

No hypoglycaemic effect. No improvement of
diabetes symptoms Bazani et al., 2012 [88]

Exopolysaccharide (unspecified) Bacillus subtilis Sprague-Dawley rats induced T1D
with STZ (65 mg/kg BW)

↓FBG, ↑serum insulin levels, ↓TC, LDL, VLDL
and TG, ↑HDL in treated vs. control rats Ghoneim et al., 2016 [89]

Selenium-enriched
exopolysaccharide Enterobacter cloacaceae Z0206 Female ICR mice induced T1D with

alloxan (190 mg/kg)

↓FBG, ↑serum insulin level, ↓glycosylated
serum protein, ↑BW, ↓TC and TG in treated

vs. control mice
Jin et al., 2012 [26]

Exopolysaccharide (unspecified) Sorangium cellulosum NUST06 Mice (Kunming strain) induced T1D
with alloxan (250 mL/kg BW)

↓FBG in both healthy and alloxan-induced
diabetic mice Ding et al., 2004 [91]

Cell line Exopolysaccharide (unspecified) Lactobacillus plantarum H31-2 In vitro, insulin-resistant HepG2 cells

↓Supernatant glucose concentration of
insulin-resistant HepG2 cells, inhibition of
pancreas α-amylase, upregulation of the
expression of GLUT-4, Akt-2, and AMPK

Huang et al., 2020 [90]

ALT: alanine aminotransferase; AST: aspartate aminotransferase; BW: body weight; FBG: fasting blood glucose; ICR: Institute Cancer Research; HDL: high-density lipoprotein; LDL: low-density lipoprotein; STZ:
streptozotocin; TC: total cholesterol; TG: triglyceride; T1D: type 1 diabetes; VLDL: very-low-density lipoprotein. ↑means increase, ↓means decrease.
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While some EPSs caused a hypoglycaemic effect, another study failed to demonstrate
any hypoglycaemic effect [88]. This illustrates the specific effect of postbiotics and evi-
dences the need to indicate the characteristics of the studied molecule and the identity
of the progenitor microorganism. Still, some studies did not specify the probiotic strain
used [83,88,89], and this slows the progress of science. In addition, none of the studies
mentioned above analysed the possible changes of the microbiota.

Although we searched for other cell membrane elements, we did not identify any study
involving oligosaccharides, s-layer proteins, teichoic acids, peptidoglycan, or muropeptides
on DM.

3.2. GABA

GABA is a neurotransmitter and neuromodulator produced by β cells [92] that can
also be produced by certain bacteria [93,94]. In addition to its important inhibitory effect
in the central nervous system, increasing evidence has indicated that GABA can induce
insulin production (insulinotropic effect), enhance glucose tolerance and insulin sensitivity,
control the β cells mass, and exert anti-inflammatory and immunomodulatory effects, all
of which are interesting in DM [92,95–97]. Indeed, an elegant study demonstrated that
GABA signalling is compromised in T2D [98]. All this explains the growing interest in
GABA in DM.

We identified two experimental studies examining the ability of GABA synthesised by
probiotics to improve glucose metabolism and control glycaemia in rodent models of T1D
and T2D (Table 2). The supplementation with yogurt fermented with a GABA-producing
probiotic (S. thermophiles fmb5) in high-fat diet (HFD) and STZ-induced T2DM mice led
to improved glucose tolerance and insulin sensitivity, probably due to a preserved pan-
creatic function and normalised organ function [95]. Besides the experimental product
included remnants of probiotic cells, the beneficial properties were attributed to the GABA
content.This intervention was ineffective in reducing FBG that, by contrast, was observed
with a mung bean extract fermented with Mardi rhizopus 5351 [84]. This mould displayed
important antihyperglycaemic and antioxidant properties and also improved some compo-
nents of the lipid profile in glucose- and alloxan-induced hyperglycaemic mice. Although
GABA represents a promising approach, the existing literature does not indicate a strong
antidiabetic or hypoglycaemic effect for this neuromodulator. We observed an important
dose–response effect, and a greater effect was found with the highest GABA doses [84,94].
This feature must be considered in future studies.

3.3. Extracellular Vesicles (EVs)

EVs are spherical particles secreted by bacteria and other microorganisms, which
discharge their cellular content, including proteins, polysaccharides, enzymes, and toxins
among others. They enable the dialogue between microbial cells. Additionally, they
can communicate with the host through microbe- and pathogen-associated molecular
patterns (MAMP and PAMP, respectively), leading to an immunomodulatory action. The
GM is a good source of EVs that move beyond the intestine and disseminate to other
organs and tissues [44,99]. Furthermore, host cells also secrete EVs and recent evidence
suggests that they could also play a role in the development and progression of T1D and
T2D [100,101]. We identified a single study on EVs in which EVs from A. municiphila
showed to improve the intestinal barrier function and glucose tolerance in HFD-induced
T2D mice [40] (Table 2), and such effect was probably because of the observed changes in
tight junction proteins, which prevented or reduced the risk of metabolic endotoxaemia.
This study also demonstrated that EVs enhanced the barrier function in vitro experiments
with Caco2 cells.
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Table 2. Experimental studies on the effects of GABA and EVs in diabetes mellitus.

Compound Source/Origin Model System Main Findings Study

GABA

GABA-containing
fermented mung bean

extract with Mardi rhizopus
5351 inoculums, low and

high doses

T1D Balb/c induced T1D
with high doses of alloxan

(100 mg/kg BW) and
glucose-induced
hyperglycaemic

Balb/c mice

Glucose-induced mice: ↓FBG
Alloxan-induced mice: ↓ Reduced

FBG, ↑insulin serum levels, ↓ TC and
TG serum levels (vs. nonfermented),

restored antioxidant status
(↓MDA and NO)

Yeap et al., 2012 [84]

Yogurt fermented with
Streptococcus thermophiles
fmb5, low and high doses

C57BL/6 mice induced
T2D with low doses of
STZ (100 mg/kg BW)

Low and high doses: No
hypoglycaemic effect, ↑HOMA-β,
improved glucose tolerance and
insulin resistance, normalised fat,

kidney and liver coefficients, ↓serum
urea nitrogen, no effect on HbA1c

nor BW.
High doses: Normalised pancreatic

histology, preserved islet cells
function, ↓ TC and LDL, HDL

Li et al., 2020 [95]

EVs Akkermansia muciniphila
ATCC BAA-835

C57BL/6 mice induced
T2D with HFD

In vivo: Reduced BW, attenuated
intestinal damage following HFD,

increase expression of tight junction
proteins, improved glucose

tolerance (OGTT)
In vitro: Enhanced barrier function

in Caco-2 cells

Chelakkot et al., 2018 [40]

AUC: area under the curve; BW: body weight; EVs: extracellular vesicles; FBG: fasting blood glucose; GABA: γ-aminobutyric acid; GIP:
gastric inhibitory polypeptide; GLP-1: glucagon-like peptide-1; GM: gut microbiota; HFD: high fat diet; HOMA: homeostasis model
assessment-β; LDL: low-density lipoprotein; MDA: malondiadehyde; NO: nitric oxide; OGTT: oral glucose tolerance test; PYY: peptide YY;
STZ: streptozotocin; TC: total cholesterol; TG: triglyceride; T1D: type 1 diabetes; T2D: type 2 diabetes. ↑ means increase, ↓ means decrease.

3.4. Supernatants, Extracts, and Surfactants

Our search yielded several studies on microbial supernatants, extracts, and surfactants,
mainly on Lactobacillus and Bacillus probiotic species (See Table 3). Half of them were
in vitro experiments and the other half animal studies in T1D- and T2D-induced mice.
Controls varied from tap water [102] to phosphate-buffered saline [103] or commercial
antidiabetic drugs [104,105].

Alpha-glucosidase inhibitors (AGI) are a group of antidiabetic drugs whose main
function is reducing carbohydrate catabolism and thus minimising glucose availability and
controlling glycaemic levels [106]. One study analysed the α-glucosidase inhibitory activity
of five different L. plantarum strains’ cell-free supernatants, all of which demonstrated the
ability to reduce glucose degradation, especially L. plantarum CCFM0236. The authors
could confirm the beneficial effects of live L. plantarum CCFM0236 in a T2D murine model,
resulting in a hypoglycaemic effect, improved insulin resistance and antioxidant capacity,
preserved pancreatic function, and reduced inflammation [107]. Another study included
eight LABs isolated from commercial water kefir grains, and the authors also evaluated
cell-free extracts [108]. A similar study focused on the dipeptidyl peptidase IV (DPP-IV)
inhibitory activity and the antioxidant activity of fourteen Lactobacillus strains isolated from
traditional fermented foods [109]. DPP-IV is another pharmacological target for diabetes
treatment [110]. The in vivo beneficial properties widely varied among the Lactobacillus
strains, reinforcing the need to independently analyse each of the strains. The last work was
conducted to investigate the antidiabetic effects of a soybean extract previously fermented
with B. subtilis MORI [102]. The supplementation with a postbiotic derived from this
microorganism prevented hyperglycaemia and oxidative stress in T1D animals but had no
significant effects in healthy non-diabetic animals.
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Table 3. Experimental evidence on the effects of microbial supernatants, extracts, and biosurfactants in diabetes mellitus.

Type of
Research Component Bioactive Molecule(s) Source/Origin Model System (If Apply) Findings Study

Animal

Supernatant Supernatant Lactobacillus rhamnosus GG
C57BL/6J induced metabolic
dysfunction with HFFD and

intermittent hypoxia

↓ FBG (vs. baseline values), ↑insulin sensitivity, ↑ energy
expenditure, improved body composition (fat and

muscle mass), ↓ TC and TG, ↑ NEFAs, ↑ total faecal
SFCAs, ↓ proinflammatory cytokines expression,

downregulated lipogenesis, upregulated lipid oxidation

Liu et al., 2020 [103]

Extract
Fermented soybean extracts

(served dried with corn starch),
low and high doses

Bacillus subtilis MORI/Isolated from
Chungkookjang

Wistar rats induced T1D with
STZ (55 mg/kg)

Low and high doses (vs. diabetic controls): ↑ BW,
attenuated rise in FBG, ↓ food and water intake, ↓MDA

serum levels, ↑ CAT and GSH-Px activity, improved
vascular function

High doses (vs. diabetic control): ↑serum insulin levels
and SOD levels

Lim et al., 2012 [102]

Biosurfactant
Biosurfactant (served as crude

lipopeptide preparation)
Bacillus subtilis SPB1/Isolated from

Tunisian soil

Wistar rats induced T1D with
alloxan (150 mg/kg)

↓ FBG and α-amylase activity in the plasma, ↓ TC, TG,
and LDL levels, ↑ HDL levels, protected tissues
(pancreatic b cells, liver, intestine, and kidney)

Zouari et al., 2015 [104]

Wistar rats induced T2D with
HFFD

↓FBG, improved glucose tolerance (OGTT), normalised
serum α-amylase activity Zouari et al., 2017 [105]

In vitro Supernatant

CFS
Five Lactobacillus plantarum strains:
CCFM0236, CCFM 12, CCFM 10,

CCFM0311, and CCFM 23
- α-glucosidase inhibitory activity (%): from 14.5 to 32.2 Li et al., 2016 [107]

CFE and CFS

8 LAB isolates (K1, K8, K16, K19,
K29, K35, K45, K96, and

LGG)/Isolated from commercial
water kefir grains

- α-glucosidase inhibitory activity (%): from 5.2 to 39.4 in
CFS, from 2.3 to 15.5 in CFE Koh et al., 2018 [108]

CFE, CFS and CFES 14 Lactobacillus spp. strains/Isolated
from traditional fermented products -

DPP-IV inhibitory activity (%): from 0 to 55.4 in CFE,
from 0 to 7.13 in CFES/reducing activity (mmol of

cysteine): from 73.3 to 189.7 in CFS, from 53.0 to 159.7 in
CFE/DPPH free radical-scavenging activity (%): from
36.8 to 62.1 in CFS, from 12.9 to 34.5 in CFE/hydroxyl

radical scavenging activity: from 13.7 to 68.6 in CFS; from
15.9 to 38.8 in CFE/superoxide anion radical scavenging
activity (%): from 2.6 to 16.2 in CFS; from 12.2 to 43.3 in

CFE/lipid peroxidation inhibiting capacity (%): from 1.5
to 18.5 in CFS; from 5.9 to 31.4 in CFE.

Yan et al., 2020 [109]

BW: body weight; CAT: catalase; CFS: cell-free supernatant; CFE: cell-free extract; CFES: cell-free excretory supernatants; DPP-IV: dipeptidyl peptidase IV; DPPH: 1,1-Diphenyl-2-Picryl-Hydrazyl; FBG: fasting
blood glucose; GSH-Px glutathione peroxidase; HFFD: high-fat fructose diet; MDA: malondialdehyde; NEFAs: non-esterified fatty acid; OGTT: oral glucose tolerance test; SCFA: short-chain fatty acids; SOD:
superoxide dismutase; UCP-1: uncoupling protein 1. ↑means increase, ↓means decrease
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Biosurfactants are surface-active compounds with low or high molecular weight that
help in a number of vital functions for cell homeostasis. Examples include lipoproteins
and lipopeptides, glycolipids, fatty acids, lipopolysaccharides and heteropolysaccharides,
and polymeric biosurfactants. Due to their properties, they present many technological
applications (food industry, cosmetics, home care products, etc.) and could offer health
benefits [111,112]. We found two studies evaluating the antidiabetic effect of B. subtilis SPB1
biosurfactant in T1D [104] and T2D [105]. The biosurfactant displayed hypoglycaemic effect
and normalised serum α-amylase activity in both models, improved glucose tolerance in
T2D animals, and improved the lipid profile and organ functions in T1D animals. These
findings suggest that B. subtilis SPB1 biosurfactant may be a promising therapeutic agent
for ameliorating different forms of DM. Finally, we identified one study that evaluated
the in vivo effect of L. rhamnosus GG surfactant in a model of metabolic disorders [103].
The findings revealed that the treatment improved insulin sensitivity, protected from
hyperlipidaemia, and also prevented hepatic steatosis in the animals.

In the above-mentioned studies, the in vitro assays were performed with the purpose
of identifying the strains that would, theoretically, exert the greatest hypoglycaemic effect
in vivo and thus be regarded as antidiabetic probiotic candidates. Despite most of these
supernatants and preparations not being intended for use as postbiotics, they exerted
interesting antidiabetic effects, and more studies are needed to validate these findings.

With our search, we were able to identify a large number of research works performed
on microbial-derived compounds, such as cell-wall muramyl-peptide [113], conjugated
linoleic acids [114,115], or SCFAs [116–118], that were not obtained from a specific bacteria
culture but were purchased commercially as a laboratory reagent. Although many of these
products probably have a microbial origin, we decided not to include these scientific works
since they do not contemplate the source and, as previously suggested, the identity of the
producer microorganism has a significant influence on postbiotic functional properties.

3.5. Inanimate Microorganisms

Inanimate microorganisms, formerly referred to as paraprobiotics or ghost probiotics,
have been extensively studied. They can be achieved by very different methods that will
strongly determine their functional properties [119]. Although they are known to exert
important immunomodulatory activities, they demonstrated benefits in very different
conditions [37]. Our search yielded four experimental cross-sectional studies in murine
models and two human trials (Table 4). The inactivation methods included heat, pressure,
irradiation, and ohmic treatments. Only two studies [25,85] confirmed the absence of viable
microbial cells in the preparations with inanimate preparations by culture-based analysis
(plate count), and only two studies described changes in the GM [25,120]. A first study
evaluated a live and inanimate multi-species probiotic and observed that both formulas
were effective in reducing FBG, improving glucose tolerance, protecting pancreatic cells,
and altering the intestinal tract modifying enteroendocrine cells, intestinal microbiota,
and SCFA levels [25]. The authors brought together all the findings and concluded that
the live probiotic was certainly more competent than the inanimate version, and it was
hypothesised to be due to important changes in the intestinal environment, involving the
inflammatory tone and the microbiota composition. In a second study, non-viable B. longum
BR-108 presented a hypoglycaemic effect, reduced body weight gain and adiposity, and
improved lipid profile in genetically obese mice [121]. The authors suggested that the inani-
mate probiotic could have provoked a hepatoprotective activity that explains such findings.
Another study was performed in healthy rats fed with pasta enriched with either live or
inanimated B. animalis subsp. lactis Bb-12 [120]. Both versions showed hypoglycaemic and
hypocholesterolaemic effects as compared with the control group. The inanimation method
(irradiation) barely changed the probiotic activity, and the only differences between the
active and inanimate probiotic were related to the intestinal microbiota composition. The
authors emphasised that the food matrix influences the action of the inanimate microor-
ganism in a very significant manner, and therefore this aspect must be considered when
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discussing and extrapolating findings. The last study used the pasteurisation method to
inactivate A. muciniphila and demonstrated that the postbiotic retained the beneficial effects
described for the probiotic. Moreover, the pasteurised A. muciniphila improved certain
parameters such as IR index, goblet cell density, normalisation of adipocyte diameter, and
leptin levels in C57BL/6J mice fed with HFD diet [122].

Table 4. Experimental and clinical studies on the effects of inanimate probiotics in diabetes mellitus and health.

Type of
Research Microorganism Inactivation Method Model System Main Findings Study

Animal

Lactobacillus casei
CCFM419,

L. plantarum X1,
L. rhamnosus Y37,

L. brevis CCFM648, and
L. plantarum CCFM36

Heat treatment (80 ◦C
for 30 min)

C57BL/6J mice induced
T2D with STZ

(100 mg/kg BW)

Inanimate probiotic: ↑ Serum IL-6
levels and faecal acetic levels

Live probiotic: Improved insulin
tolerance, normalised serum IL-10,

TNF-α and IL-6 levels, ↑faecal
acetic and butyrate levels, ↑faecal

Lactobacillus, Akkermansia, and
Bifidobacterium genera,
↑faecal actinobacteria (%)

Both: ↓ FBG, normalisation of
HbA1c and leptin levels, ↑ileum L

cell levels, ↑faecal
Firmicutes/Bacteroidetes ratio

Both with stronger effect with live
probiotics: Improved glucose

tolerance, protection of pancreatic
histological characteristics

Li et al., 2016 [25]

Bifidobacterium longum
BR-108; low, medium,

and high doses

Heat and pressure
treatment

(autoclaved at 105 ◦C
for 20 min)

Tsumura Suzuki obese
diabetes (TSOD) mice

(genetically obese mice)

All the doses: ↓BG gain (vs. control
mice), ↓adipose tissue

accumulation, no differences in
food consumption, ↓serum

creatinine levels
Medium and high doses: ↓FBG,
↓NEFAs, ↓creatinine urine levels

Medium dose: ↓TC
High doses: Improved glucose

tolerance (OGTT), ↓TG

Ben Othman et al.,
2019 [121]

Bifidobacterium animalis
subsp. lactis Bb-12,

incorporated in
wheat pasta

Irradiation
(gamma-irradiation on

ice, at 2.5 Kilogray)
Healthy Wistar rats

Control and paraprobiotic pasta:
↓FBG and TC (vs. control diet), no
differences in food consumption

and BW, TG, HDL, AST, ALT, and
microbiota alpha-diversity indexes

Paraprobiotic pasta: Differential
microbiota composition (vs. control

diet and control pasta)

Almada et al., 2021 [120]

Akkermansia muciniphila Pasteurised (70 ◦C for
30 min)

C57BL/6J mice (normal
chow or high-fat diet)

↓ IR index, ↑ faecal caloric content,
↑ goblet cell density, normalisation
of adipocyte diameter and ↓leptin

levels (vs. live microorganism)

Plovier et al., 2017 [122]

Human
Lacticaseibacillus casei 01;

in whey-grape
juice drink

Ohmic heating (8 V/cm,
95 ◦C/7 min, 60 Hz)

In vitro experiments;
healthy volunteers

(n = 15)

Preliminary in vitro experiments:
Live and inanimate probiotic had
α-glucosidase and α-amylase

inhibitory activities
Postprandial glucose levels in

healthy volunteers: Accelerated
increase in PBG with the probiotic
and inanimate probiotic drinks (vs.
control) due to differences in sugar
content with the control (water), no

differences in AUC values,
inanimate probiotic had a similar

effect to control.

Barros et al., 2021 [85]

Akkermansia muciniphila Pasteurised

Volunteers with excess
body weight

(overweight or obese),
insulin resistance and a

metabolic syndrome

↓ insulin levels, improved insulin
sensitivity index, fasting glycaemia
and HbA1c were not modified (vs.

placebo group)

Depommier et al.,
2019 [123]

ALT: alanine aminotransferase; AST: aspartate aminotransferase; AUC: area under the curve; BW: body weight; FBG: fasting blood glucose;
HbA1c: glycated haemoglobin; HDL: high-density lipoprotein; IR: insulin resistance index; NEFAs: non-esterified fatty acid; OGTT: oral
glucose tolerance test; PBG: postprandial blood glucose; STZ: streptozotocin; TC: total cholesterol; TG: triglyceride; T1D: type 1 diabetes;
T2D: type 2 diabetes.

We identified two human trials. The first study was a randomised and controlled
crossover study, and it was performed in a reduced sample of healthy individuals; the
findings indicate that the intake of live or inanimate Lacticaseibacillus casei 01 in a whey-
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grape juice with white bread can attenuate the glucose response expected [85]. Both
formulas had an impact similar to the control drink (water), especially the inanimate
probiotic preparation. These findings sustain the hypoglycaemic effect that was previously
confirmed in a preliminary in vitro experiment. The second trial was a randomised double-
blind placebo-controlled proof-of-concept and feasibility study using alive or pasteurised A.
municiphila. Individuals with excess body weight (overweight or obese), insulin resistance,
and a metabolic syndrome were enrolled and received placebo, live, or pasteurised A.
municiphila (1010 bacteria per day) for 3 months. No adverse effects were observed, and
the main results obtained were reduced plasma insulin levels, no differences in fasting
blood glucose, and improvement of the insulin sensitivity index compared with the placebo
group [123].

4. Discussion

The scientific literature examining the effects of postbiotics in DM is scarce compared
with the number of publications focusing on probiotics, prebiotics, or fermented foods.
Additionally, the majority of the included studies were published in the last ten years, and
this may indicate that this research field is still in its infancy and that much knowledge
remains to be discovered. Most eligible studies investigated compounds from probiotic
bacteria, including Gram-positive (Lactobacillus, Bacillus, Bifidobacterium, and Streptococcus)
and Gram-negative species (Enterobacter, Sorangium, and Akkermansia), and only one study
evaluated a mould (Rhizopus) [84]. None of the studies considered postbiotics obtained
from probiotic yeasts, even though they elicit many biological effects as well [24]. Although
there were studies in different models of DM, studies on T1D outnumber studies on T2D.

The type of outcome measured widely differed among the different types of postbi-
otics. This is an expected result since several effects can be observed depending on the kind
of molecule analysed. For example, according to previous study, it is likely that extracellu-
lar components exert metabolic activities, while cell components perform protective and
antimicrobial functions [53]. Many studies have focused on key enzymes implicated in car-
bohydrate breakdown and metabolism. Previous studies on probiotics have demonstrated
that some strains present an inhibitory effect on α-glucosidase activity [77,124], and the
same was confirmed in EPS and cell-free supernatant. In the same line, supernatants from
LABs also exhibited DPP-IV inhibitory activity, which was also described in fermented
products [125]. At this point, scientists must consider postbiotics as a potential line of
research for the development of natural AGI and DPP-IV inhibitors. In this sense, in a previ-
ous study one probiotic strain was genetically manipulated to produce β-lactoglobulin that
included peptides with DPP-IV-inhibiting activity [126]. In the same line, another study
modified one E. coli strain to synthesise N-acylphosphatidylethanolamines that showed
protection against obesity-associated complications such as insulin resistance, adiposity or
hepatosteatosis in animals [127]. This opens new opportunities for genetically modified
organisms able to produce large amounts of compounds with biological effects that may
be beneficial for DM management.

As introduced above, DM is frequently associated with leaky gut and gastrointestinal
complications. Thus, other potential areas for future research may focus on intestinal per-
meability and integrity, as previously described in EVs from A. municiphila [40], intestinal
peptides produced by modified probiotic bacteria [128], or soluble proteins such as p40
or p75 [20]. For example, one study identified a functional peptide from S. epidermidis JA1
supernatant that enhanced glucagon-like peptide-1 in NGN3-Human intestinal enteroid
cells [129]. When the active bacteria was tested in vivo in HFD mice, it showed protection
against metabolic disease. SCFAs, such as butyrate, propionate, and acetate, also have im-
portant stimulating effects in the intestine, where they nurture epithelial cells, contribute to
mucin production, and participate in permeability regulation [3]. Indeed, they also induce
the release of hormones and gastrointestinal peptides such as GLP-1, which aid in con-
trolling glycaemia and glucose tolerance, mostly due to its insulinotropic effect [130,131].
One experiment showed the production of GLP-1 by a genetically modified Lactococcus
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lactis subsp. Lactis strain, and these novel bacteria demonstrated an insulinotropic effect in
in vitro and in vivo experiments [128]. Similarly, a protein secreted from one A. muciniphila
strain has been shown to induce GLP-1 secretion that resulted in improved metabolic
condition in HFD mice [132]. Along the same line, Amuc_1100, a protein from the outer
membrane of A. muciniphila MucT, improved the intestinal barrier function in the same
model and is thought to mediate beneficial effects of the probiotic strain [122].

Inflammation is a common underlying factor in different forms of DM [64], and
controlling intestinal and systemic inflammation is another alternative way to control
DM. Since microbes and enteral immune cells coexist side by side, there is a very inti-
mate connection between the GM and the immune system. Although mucosa tolerance
is highly regulated, intestinal disturbances can drive a proinflammatory response, and
today it is widely accepted that such activation can be instigated by PAMPs, such as
LPS, above mentioned, and other cell components, such as peptidoglycans, flagellin, sur-
face layer proteins, lipoproteins, or lipopolysaccharides, that are recognised by specific
pathogen recognition receptors [77,133,134]. Accordingly, some postbiotic compounds
likely exert immunomodulatory effects [37]; however, this has been less investigated in
DM studies. Microbial-derived particles such as SCFAs could aid in controlling inflam-
mation in DM by acting as immune regulators. Previous probiotic studies have shown
that probiotics can drive benefits in diabetes and metabolic alternations by changing SCFA
production [107,135,136]. The included studies, however, did not examine inflammatory
markers, and only two studies, one on supernatants [103] and another on inanimate probi-
otics [25], evaluated cytokine levels and reported improvements in the inflammatory tone.
Consequently, further studies should evaluate the effects of SCFAs and other postbiotic
molecules on the immune and inflammatory response and diabetes progression. Lastly,
postbiotics such as SCFAs [137] or EPSs [23] can modify the local microenvironment and
lead to compositional and functional changes in the GM, which could improve glucose
metabolism and control inflammation, thus causing benefits in DM.

In the future, researchers must provide a mechanistic basis for the effects of a given
postbiotic, and the clinical benefits will ultimately be shown by well-designed double-blind,
randomised, placebo-controlled trials. Human data on postbiotics and DM are lacking,
and we identified only one trial on this topic in healthy adults [85]. It is likely that ethnic
group [138,139], sex [140], and the time course of DM [141] influence the GM response to
postbiotic treatments, and these aspects should be contemplated in human studies. Many of
the included studies did not analyse the changes in the GM following the interventions, and
this would provide valuable information about the underlying mechanisms. In addition,
the long-term effects of postbiotics and whether a chronic exposition must be ensured to
preserve their beneficial effects remains to be studied. Probably, this will vary among the
different postbiotic compounds.

The lack of adverse events is a clear advantage over classic pharmacological antidi-
abetic drugs that normally have side effects [142]. Nevertheless, we do not know yet
whether postbiotics can provide the same benefits as current antidiabetic strategies or if
they could be used in combination with classic antidiabetic drugs. As mentioned above,
the identity (up to strain level) of the progenitor microorganisms, as well as the production
conditions used for the postbiotic manufacturing, strongly impact postbiotics’ properties.
This limits the ability to compare different experiments and to generalise the findings. In
our review, we found many articles that ignored the strain of the microorganisms used in
the experiments, and we invite other research teams working on postbiotics to carry out a
detailed characterisation of the microbial strains they are working on. In the same line, the
different delivery matrices (yogurt [95], pasta [120], liquid solution [89]), may have a key
impact on postbiotics’ biological effects.

To date, very little research has focused on the antidiabetic effects of SCFAs, phenolic
compounds, vitamins, peptides, or bacteriocins, and therefore there is no information about
their effects on DM, and future studies are warranted. Along the same line, we did not
detect any investigation on vitamins or phenolic-derived postbiotics. A previous in vitro
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study indicated that tannic acid exerts α-glucosidase and α-amylase inhibitory effects and
could therefore offer health benefits in DM [143]. Regarding the bacteriocins, we found
one bio-gel prepared with the bacteriocin nisin as an antimicrobial compound, which
was effective in alleviating diabetic food infections along with conventional antibiotic
treatment [144]. Finally, although less conventional, faecal material transplants have
provoked intense interest [145], and human studies have demonstrated improvements
in insulin resistance and in faecal metabolites that were attributed to changes in GM
composition and activity [146,147]. Thus, they also offer promising opportunities for
DM management.

5. Conclusions

To the best of our knowledge, this is the first review attempting to summarise the
evidence for postbiotics’ effects on DM. Although expertise in this area is still rather limited
and there are inconsistencies between the results of the studies, the available literature
suggests that this new entity in the -biotics field opens the door to new therapeutic and
preventive approaches for DM and other metabolic diseases. The analysed literature focuses
on how aspects such as the progenitor microorganism, the matrix, and the fermentation
conditions, affect the biological effects of postbiotics in a relevant manner. The lack of
adverse events and the interesting outcomes reported in the included studies should
encourage further studies on postbiotics for the prevention and alleviation of DM. This new
field of research represents a great opportunity for researchers, doctors, biotechnologists,
and food technicians to join forces in the use of postbiotics as novel therapeutic candidates
for the treatment of diseases such as DM.
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