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Abstract: Selective regulation of gene expression by means of RNA interference has revolutionized
molecular biology. This approach is not only used in fundamental studies on the roles of particular
genes in the functioning of various organisms, but also possesses practical applications. A variety
of methods are being developed based on gene silencing using dsRNA—for protecting agricultural
plants from various pathogens, controlling insect reproduction, and therapeutic techniques related to
the oncological disease treatment. One of the main problems in this research area is the successful
delivery of exogenous dsRNA into cells, as this can be greatly affected by the localization or origin of
tumor. This overview is dedicated to describing the latest advances in the development of various
transport agents for the delivery of dsRNA fragments for gene silencing, with an emphasis on
cancer treatment.

Keywords: RNA interference; exogenous dsRNA; cancer; oligonucleotides; delivery agents

1. Introduction

RNA interference is a natural mechanism for gene silencing. It is achieved by cleaving
a large double-stranded RNA (dsRNA) precursor into small fragments (21–25 base pairs in
length) that act as end effectors through their complementarity to mRNA. The resulting
complex is degraded with endonucleases, leading to a reduction in the target mRNA level
and a reduction in a synthesis of the corresponding protein. Endogenous siRNAs have
not been found in mammals including humans. However, they could be derived from
precursor dsRNA (~500 base pairs in length) and small hairpin RNAs (shRNAs) after a
cleavage with Dicer or RNAse III (Figure 1). The exploration of this mechanism has made
a revolution in the biomedical field. Currently, this approach is used to selectively regulate
the activity of specific genes in animals, plants, and humans; as of the beginning of 2020, at
least 10 oligonucleotide-based medications have received FDA approval for the treatment
of various diseases, including Duchenne muscular dystrophy, spinal muscular atrophy,
and cytomegalovirus retinitis [1]. Moreover, gene therapy has other advantages over the
conventional treatment. Firstly, it can be administered locally, thereby providing local
delivery of a high therapeutic dose without the risk of systemic side effects. Secondly,
as most gene therapies are applied on a one-off basis, it can be cost-effective in the long
term [2].

RNA interference is applied in many areas of fundamental and practical science
including tumor biology. Using a selective knockdown of specific genes (for example,
vascular endothelial growth factor (VEGF), c-myc, c-fos), researchers have been able to
study the roles of each of them in oncogenesis, and to reveal new factors, which promote
or suppress oncogenic cell transformation. The treatment of tumor diseases by RNA
interference-mediated therapies also seems to be a very promising approach, as it can be
used to selectively knock down almost any gene, thus enabling treatments that account
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for the patient’s genetic characteristics. Moreover, owing to Watson–Crick pair formation,
siRNAs have a significant advantage over the use of monoclonal antibodies or artificially
synthesized macromolecules aimed at the recognition of the complex spatial structure of
proteins. The latter type of interaction imposes a significant limitation on the use of medica-
tions based on antibodies or small molecules, as it is often impossible to identify the target
molecule with high activity, affinity, and specificity [1,3]. However, the siRNA method also
has its shortcomings: small RNAs degrade quickly under in vivo conditions owing to the
abundance of nucleases and phosphatases, a situation that current efforts are endeavoring
to solve with chemical modification of oligonucleotides and using various delivery systems
based on viral particles, lipids, peptides, exosomes, and inorganic nanoparticles [4–12].

Figure 1. Short scheme of RNAi in cells.

This overview describes the main approaches to the delivery of small dsRNA into
cancer cells, and discusses the advantages, disadvantages, and prospects of these method-
ologies in clinical practice (Table 1). Unfortunately, despite a great potential of RNAi
application for the therapy of cancer, currently, there are no universal pipelines for a tar-
geted delivery of exogenously synthetized RNA into cells. All of the approaches have
multiple limitations such as delivery technique (local vs. systemic), tumor type (solid vs.
ascites), and tumor origin (for some tumors, such as hepatocarcinoma, rather effective
delivery techniques have been developed).

Currently, a large variety of delivery methods and their modifications have been de-
veloped, and there are also a considerable number of target genes to knock down via RNAi.
In our review, we attempted to elucidate several common features in already published
works within the field of cancer treatment using RNA with a similar object/subject, while
it is extremely important in terms of knowledge systematization.
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Table 1. Short summary of methods for exogenous RNA delivery.

Type of Delivery Advantages Disadvantages

1. Viral particles

- lentiviruses High delivery efficiency, speed, and low cost DNA integrating into the host cell genome

- adenoviruses Adenoviruses do not integrate their DNA into
the host cell genome

Low transfection efficiency, the presence of antibodies
that are highly likely to destroy the viral particle before it

reaches the target cells

2. Nanoparticles

- lipid-based nanoparticles

Can be used for the systemic administration of
medications owing to the high

biocompatibility, can be applied for the
treatment of both solid and diffuse tissues

Low tissue selectivity of drug delivery and the low
transfection of cancer cells

- gold nanoparticles Very precise control over the size, shape and
surface properties Low transfection efficiency as siRNA delivery agents

- polymeric nanoparticles Possibilities for their chemical composition
and modification are practically unlimited

Low tissue selectivity of drug delivery and relatively low
transfection of cancer cells

- silicon nanoparticles Silicon encapsulation of dsRNA protects them
from the degradation

The amount of siRNA that can be loaded into silicon
nanoparticles is significantly affected by the

concentration of salts and urea

3. Exosomes and exosome-mimetic
nanovesicles High biocompatibility Relatively low yield in any cell culture system and

currently complicated purification processes

4. Peptides
Flexibility in design, simple compositions and

formulations, diverse physicochemical
functions

Peptide agents are very sensitive to proteases, which
imposes restrictions on the use of this methodology

when peptides are administered systemically

5. Conjugates High biocompatibility and low toxicity Low tissue selectivity of drug delivery and the low
transfection of cancer cells

2. Viral Particles
2.1. Lentiviruses

Lentiviral vectors have the highest transfection efficiency among all viral systems [13].
Being mammalian viruses, lentiviruses can be effectively used to transfer genes into
cells [14]. Compared with traditional non-viral delivery vectors, they have many ad-
vantages such as high delivery efficiency, speed, and low cost [15]. To date, many viral
vectors have been developed for ex vivo and in vivo cell transfection.

In studies on gene silencing in cancer cells, there are many targets for lentiviral, and it
is worth mentioning the studies on VEGF (vascular endothelial growth factor) knockdown.
Several of them have demonstrated that the inactivation of this gene decreases the rate
of cancer cell division in culture, as well as significantly reduces tumor development,
angiogenesis, and in vivo invasion in nude mouse xenograft models [16–20].

Diverse microRNA signaling molecules may also be a promising target for inhibition
via RNAi by viral delivery systems. MicroRNAs play an important role in the modulation
of gene expression as endogenous regulators. Thus, the researchers were able to enhance
the apoptosis significantly [21], reduce angiogenesis in tumors [22], diminish the rate of
metastasis formation [23], and accelerate differentiation [24].

Also noteworthy is the lentiviral system for efficient overexpression of mutant-template
human telomerase RNA [25]. This intervention leads to a significant lengthening of telom-
eres in cancer cells, which leads to suppression of growth and induction of apoptosis in
cancer and precancerous cells. Unfortunately, this method is promising for telomerase-
positive cells; no similar effects were observed in telomerase-negative cells.

2.2. Adenoviruses

Another system for the delivery of target fragments for dsRNA synthesis is the use
of adenoviruses (Figure 2), and these have a number of advantages as compared with
lentiviruses.
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Figure 2. Mechanism of action of adenoviral particle transfection.

First, the majority of cells in the human body express primary adenovirus receptors
and secondary integrin receptors, thus making the adenovirus one of the most effective
vehicles for in vivo gene delivery. Secondly, adenoviruses do not integrate their DNA into
the host cell genome. Thirdly, despite the safety concerns, adenovirus-based genetic vectors
have now been widely used in clinical practice, and currently, safe dosages and injection
techniques are already well established. Fourth, adenovirus-based vectors represent a
universal platform for the virus capsid modification for the optimization of targeting
specificity and other therapeutic characteristics [26].

There has been a concern that their use could be very limited owing to the frequent
contact of humans with adenoviruses, resulting in the presence of antibodies that are
highly likely to destroy the viral particle before it reaches the target cells. However, there
are clinical studies in which oncolytic adenoviruses have avoided destruction by the
immune system and successfully reached tumors [27,28]. There are also efforts aimed at
the protection of the adenoviral constructs from antibodies and degradation through the
use of silicon coating [29]. Such encapsulation of the virus particles significantly improves
their distribution and effects in tumor inhibition.
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As with lentivirus, search queries reveal a great number of studies covering a wide
range of gene targets that were silenced by means of RNA interference. For example, the
growth of hepatocellular carcinomas has been significantly inhibited using adenoviral
constructs containing fragments able to form short hairpin RNA and miRNA, resulting in
a subsequent suppression of the corresponding genes, with the inhibition of cancer cell
growth being demonstrated in both cell cultures and in vivo models [30–33].

There is still a concern about the safety of viruses as vectors for the gene therapy
of human diseases. Primarily, the genome regions responsible for the replication of the
viral particles are obligatorily deleted from the constructs for safety reasons. However,
lentiviruses, for example, typically insert themselves into the genome of the host cell as
proviruses, and this can pose a risk of the cell transitioning into a cancerous form. However,
these concerns have not been confirmed in any studies to date [34,35]. A hepatotoxic effect
has been demonstrated for adenoviruses in the case of intravenous administration, owing
to sequestration of the viral particles by the liver, followed by transaminitis and vascular
disruption [36,37]. However, no serious adverse effects have been reported in the case of
oral adenovirus administration [38]. In general, it should be noted that the local use of
viral vectors in gene therapy is preferable to systemic administration, being both a safer
and a more effective technique [39].

3. Nanoparticles
3.1. Lipid-Based Nanoparticles

Lipid-based nanoparticles are used as delivery agents in the first FDA-approved
human medication, patisiran (Onpattro®), which is used to treat amyloid polyneuropathy.
Its biologically active substance is a small fragment of modified dsRNA that works via
RNA interference. In addition to amyloid polyneuropathy, this delivery method has also
been approved for cancer treatment, including combined treatments using dsRNA and
chemotherapy [40]. Compared with the viral vectors, this method of siRNA delivery can be
used for the systemic administration of medications owing to the high biocompatibility of
the lipid-based nanoparticles [41], thus it can be applied for the treatment of both solid and
diffuse tissues. This type of nanoparticles usually consists of phospholipids with inlaid by
conjugation lipids, which can be modified with various ligands.

It should be noted that lipid-based nanoparticles bear the advantage of being the
least toxic for in vivo applications, and significant progress has been made in the area of
RNA delivery using lipid-based nanoassemblies. However, this approach has a significant
disadvantage of the low tissue selectivity of drug delivery and the low transfection of
cancer cells.

First, it is very important to note that glycotargeting, the main method of hepatocyte-
targeting, was developed using lipid-based nanoparticles. Targeting unique markers of
hepatocytes, asialoglycoprotein receptors, allows to achieve very high results of transfection
and inhibition of growth rate in hepatocarcinoma cell lines [42,43]. Moreover, one of the
main modifications of nanoparticles is aimed specifically at solving these problems. For
example, in hepatocarcinoma therapy, cationic lipid-based nanoparticles can successfully
deliver the shNUPR plasmid to suppress the corresponding NUPR1 gene (which is involved
in hepatocellular carcinoma growth and chemoresistance), by protecting the plasmid from
DNase I action [40], while building an apolipoprotein crown onto the particle significantly
increases its transfection and selectivity to hepatocytes [41]. The same study noted the key
roles of both the length of the PEG-conjugated (polyethylene glycol) lipid chain and the
amount of PEG in the nanoparticle needed for successful RNA interference therapy of the
solid tumors.

Specific modifications in the structure of antibodies have also been used to increase the
selectivity of lipid-based nanoparticles for certain types of cells. For example, this approach
has worked well with delivering siRNA to lymphocytes, which are normally particularly
difficult to transfect with RNA, because they are resistant to traditional transfection reagents
and are distributed throughout the body, hindering successful delivery by a systemic
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administration [44]. In addition to this, a high concentration of reactive oxygen species
(ROS) is used as a marker of cancer cells. It facilitates the selective decomposition of the
lipid-based carrier to nanoparticles in the cancerous cells [45].

Combined therapy, which includes both a standard cytostatic agent and dsRNA, for
silencing a specific gene, within lipid-based nanoparticles, is also a promising approach
to the treatment of resistant tumors. An example is the combined delivery of cisplatin
together with siRNA, targeting the endonuclease xeroderma pigmentosum group F (XPF),
a key of nucleotide excision repair component in mammals. The lipid-based nanoparticles
can efficiently encapsulate both cytostatic agents and molecules of siRNA in a specified
ratio. Both components are effectively transported into the cells and released therein. As a
result, the cisplatin damages the DNA, while the siRNA specifically suppresses the levels of
both mRNA and the corresponding XPF protein to enhance the action of the cisplatin, thus
leading to increased levels of expression of apoptosis markers and increased cytotoxicity in
both cisplatin-sensitive and -resistant cells [46].

3.2. Gold Nanoparticles

Gold nanoparticles are also used for stable and safe delivery of various medications,
including siRNA. They can be synthesized in a wide range of sizes with diverse surface
functionalities. Tunability in size and surface characteristics makes them promising can-
didates as drug delivery vehicles. Moreover, there is an opportunity for a very precise
control over the size, shape, and surface properties of such gold nanoparticles and of their
functionalization using various biomolecules [47]. For example, oligopeptides have been
used to develop siRNA-delivery systems for the treatment of glioblastomas and breast
cancer [48,49]. Unmodified gold nanoparticles possess low transfection efficiency as siRNA
delivery agents. However, in vitro experiments have demonstrated a positive role for the
incorporation of cations onto the delivery agent surface in order to enhance the uptake of
exogenous RNA by cells, for example, functionalizing them with arginine Fe3O4 [50–53].
Indeed, for some modifications, the transfection frequency was higher than that seen with
the commercial reagent Lipofectamine 2000. Despite this, in vivo experimental results are
not so optimistic; that is, systemic administration of cationic delivery systems without
biological stabilizing fragments results in their non-specific binding to negatively charged
serum proteins, leading to the aggregation and opsonization of the particles. Therefore,
PEGylated nanoparticles, having a practically neutral charge, seem more promising for
cancer disease therapy [54].

3.3. Polymeric Nanoparticles

Polymeric nanoparticles are probably the most diverse category of delivery agents
owing to the availability of various polymeric materials. Unlike the abovementioned
nanoparticles, the possibilities for their chemical composition and modification are prac-
tically unlimited. Moreover, modern materials permit the creation of a 3D nanoparticle
structure with the siRNA embedded in it, either throughout the particle or comprising
part of its layers. Some materials (especially chitosan-based) are highly promising as oral
delivery agents for targeted RNAs. Unlike lipid-based nanoparticles, these delivery agents
have no adverse effects on the liver [55].

Various polymeric materials (gelatin-based, poly(lactic-co-glycolic) (PLGA-modified),
cationic amphiphilic) were developed in a series of studies and proved themselves effective
as siRNA delivery agents in in vitro systems directed against breast cancer, hepatoma,
and myeloid leukemia [56–60]. Despite the fundamentally different nature of the polymer
material for the nanoparticles in these studies, they all have the common feature of being
positively charged at their surfaces owing to various functional groups aimed at increasing
transfection effectiveness. As mentioned above for gold nanoparticles, a positive charge
can be a significant disadvantage in the case of systemic administration because of the
interaction with serum proteins. In 2018, the first study was published that demonstrated
the effect of systemically administered siRNA on nonhuman primates in combination with
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a 7C1 polymer (Figure 3), low-molecular weight, ionizable polymer that forms nanopar-
ticles [61]. The study provided an extensive histochemical analysis of tissues, showing
there were no toxic effects, while the control of cytokines in the blood serum suggested that
there were no inflammatory effects in the body. Biochemical blood tests and analysis of the
liver function before and after treatment confirmed that the concentrations of proteins and
enzymes remained within their normal ranges. The obtained data indicate that the 7C1
complex is a promising siRNA delivery system for systemic administration.

Figure 3. Chemical structure of a 7C1 repeat unit.

A chitosan-based galactose-modified polymer has also been developed for the oral
delivery of siRNA medications [62]. The level of VEGF gene silencing was investigated in
mice hepatoma cells, characterized by increased galactose uptake, and thus expected to
accumulate an increased concentration of the anti-VEGF siRNA. As a result of the study,
significant suppression of the corresponding gene expression, an increase of apoptosis, and
an inhibition of angiogenesis have been demonstrated.

Both polymeric nanoparticles and gold nanoparticles are used for combined cancer
therapy; for example, when using photocontrolled toxicity to fight cancer cells [63]. In
one of the studies, the system of photosensitive polymer nanoparticles included the Pt(IV)
prodrug and si (c-fos), thus the release and activation of these components were irradiation-
dependent. During exposure to blue light (430 nm), the material was stimulated to release
the active components, resulting in cell death. Selective phototherapeutic agents are the
basis of an emerging and rapidly developing industry and the use of such medications
seems very promising within anti-cancer and anti-bacterial treatment schemes; however,
there is a concern related to their photoactivation inside the body because of the low
penetrating ability of the radiation used.

3.4. Silicon Nanoparticles

Silicon nanoparticles provide an alternative approach to address the maintenance
of siRNA integrity while delivering it in the quantities required. The authors previously
mentioned the silicon encapsulation of viruses to protect these from the immune system, yet
using silicon as an independent delivery agent is much less popular. The main characteristic
of silicon that allows it to be considered as a potentially effective siRNA delivery agent is
its porosity—in this case, such encapsulation of the RNA molecules protects them from
degradation in the body. As with other materials used in nanoparticles, silicon allows for
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a variety of modifications to enhance uptake selectivity, specifically by cancer cells. For
example, it provides for the use of additional peptide or lipid coatings [64]. It has been
demonstrated that the amount of siRNA that can be loaded into silicon nanoparticles is
significantly affected by the concentration of salts and urea in solution, so this must be
taken into account in vivo [65].

4. Exosomes and Exosome-Mimetic Nanovesicles

Exosomes (also called “extracellular vesicles”) are natural, nanoscale vesicles that can
interact with cell membranes owing to the presence of various adhesive proteins on their
surfaces, thus exosomes are considered promising delivery vehicles, also because they are
highly biocompatible. This feature provoked many attempts to apply these lipid structures
in medicine, and especially in gene therapy for siRNA transport [66]. For example, exo-
somes were used for silencing of the RAD1 gene, which is one of the main therapeutic
targets in cancer treatment [67]. The application of exosomes also enabled to reduce prema-
ture ovarian failure, an irreversible effect that women can face after chemotherapy, where
anti-apoptotic miRNAs are essential for the restoration of granulosa cells in the follicles.
Amniotic fluid can be used as a source of the corresponding exosomes [68].

Taking into account that the cells of multicellular organisms secrete enormous quan-
tities of exosomes, their targeted delivery for gene silencing in cancer tumors is a critical
issue. Viral modification of exosomes, as a targeting method, has been approved for RNA
delivery in vivo [69]. The main obstacle in the therapeutic application of exosomes is
their relatively low yield in any cell culture system and currently complicated purification
processes [70].

An alternative to natural exosomes can be artificial exosomes; for example, cell-derived
mimetic nanovesicles are a potentially promising alternative to exosomes for clinical
applications, demonstrating higher yield without incumbent production and isolation
issues [71]. Mimetic nanovesicles could be derived from any cell type. They possess
comparable characteristics to exosomes and could be used instead of them. The main
source of mimetic nanovesicles is mesenchymal stem cells [72,73]. Firstly, the issues with
using mesenchymal stem cells directly are due to their poor engraftment rate, and secondly,
there are certain safety problems with their use in humans. Therefore, as an alternative
devoid of these shortcomings, mimetic nanovesicles based on exosomes began to be utilized.
Artificially synthesized analogs of exosomes have another advantage—their membrane
can be modified synthetically in order to obtain optimal physical and chemical properties
for purification and release of the contents.

The literature describes the preparation of mimetic nanovesicles using macrophages
or macrophages fused with mesenchymal stem cells [72–75]. Using this technique, it was
possible to significantly reduce the proliferation rate of cancer cells in the case of RNAi
of the c-Myc gene, one of the key regulators of cell proliferation [70,76,77]. In addition
to mimetic nanovesicles, the study also used Lipofectamine 2000 and native RNA non-
associated with any transport agent as controls. It was shown that the capture of the target
RNA occurs equally efficiently with both Lipofectamine 2000 and mimetic nanovesicles,
which indicates that they are promising as RNA deliveries for RNAi. It is also worth
noting that, when the native RNA was introduced without any delivery system, no RNA
interference was detected, suggesting that transport systems are absolutely necessary to
protect RNA from degradation.

The complications of the techniques for obtaining nanovesicles are similar to those for
exosomes, which are effective delivery vehicles of dsRNA for RNAi. In this regard, it is
worth mentioning another study, where researchers proposed to make exosome analogs
without the use of cells and to synthesize mimetic nanovesicles completely artificially,
in vitro [78]. Using such a methodology, mimetic nanovesicles were obtained based on
chitosan nanoparticles covered with a lipid layer that mimics exosomes. Owing to elec-
trostatic interaction, RNA molecules adhered to chitosan particles, while the bilipid layer
provided interaction with cells for successful delivery of dsRNA and its protection from
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degradation. The low toxicity of the developed delivery method is another great advan-
tage, in addition to the possibility of obtaining a large number of mimetic nanovesicles
Notably, the toxicity is more than four times lower compared with Lipofectamine 2000.
Low transfection efficiency is among the disadvantages of the developed system (lower
than lipofectamine). Despite this, the mimetic nanovesicle-mediated delivery system can
be very promising for gene therapy thanks to its safety. However, additional research is
required for its improvement.

5. Peptides

Peptides as siRNA delivery agents may be another promising platform in gene therapy
for cancer. They possess flexibility in design, simple compositions and formulations,
and diverse physicochemical functions [79]. This delivery system also has drawbacks—
peptide agents are very sensitive to proteases, which imposes restrictions on the use of
this methodology when peptides are administered systemically. Local administration
is preferred for peptide delivery vehicles, however, it is not optimal in the treatment of
solid tumors.

First, it is worth noting dendrimers—tree-like polypeptides with a large number of
branches. Their branchy structure allows solving several problems at once—part of the
molecule is responsible for protecting siRNA from enzymatic degradation, the other part
can be functionalized for targeted delivery of RNA molecules to a specific cell type (for
example, using antibodies), and additional modifications can be introduced to improve
transfection effectiveness. Amphiphilic phospholipid peptide dendrimers successfully
delivered siRNA into castration-resistant prostate cancer PC-3 cells [80]. The Hsp27 gene
(heat shock protein 27), one of the main therapeutic targets for the treatment of castration-
resistant prostate cancer, was selected to be knocked down. The delivery system had a
hydrophobic part based on natural lipids and responsible for interaction with the cell
membrane and capture of the vector, and the hydrophilic part consisted of dendritic l-lysin,
capable of compacting siRNA into nanoparticles to protect it from enzymatic degradation.
In this study, a balance between the hydrophobic and hydrophilic parts of the vector has
been achieved, which is reflected in a sufficiently high level of transfection of target cells
by the siRNA. In another equally outstanding work, the dendrimer was based on a flexible
triethanolamine-core with a polyamidoamine dendritic structure [81]. Here, the researchers
applied dual targeting by modifying the dendrimer with additional proteins, interacting
with integrin and neuropilin-1 receptors, which led to improved cell penetration, gene
silencing, and anticancer activity for the prostate cancer model.

To protect peptides from proteases, an approach using D-isomer amino acids was
proposed [82]. The amphipathic peptides created with this methodology demonstrated not
only high resistance to proteases, but a capability of self-assembly with siRNA molecules.
The researchers note the retention of the basic biophysical characteristics of the retro-
inverse form of the protein in comparison with its L-parent homologue. Treatment of cells
with the developed complex also produced an effective knockdown of the target gene
through RNAi.

Nanocarrier based on aminated poly (α) glutamate was chosen as another promising
agent for the systemic use of polypeptides as siRNA delivery technology against solid
tumors [83]. The RNA molecules interacted electrostatically with the carrier, leading to the
formation of a complex extremely stable in plasma/blood. This approach was approved for
systemic administration in vivo against solid tumors—ovarian cancer and lung carcinoma.
As a result, a reduction in the expression of the target gene Rac1 was achieved by 33 and
38%, respectively. The tumor size decreased by 73% and 87%, which indicates the high
efficiency and future potential of this approach for the treatment of solid tumors.

6. Conjugates

Among the conjugates for targeted delivery of oligonucleotides, givosiran is currently
the standard. It is the second drug after patisiran approved by the FDA for the treatment of
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acute hepatic porphyria [84]. Givosiran is a small interfering RNA (siRNA) directed toward
the 5-aminolevulinic acid synthase, an important enzyme in the production of heme part
in hemoglobin. It is covalently bound to a ligand containing three N-acetylgalactosamine
residues that facilitate uptake into hepatocytes via asialoglycoprotein receptors, which are
highly expressed on the cell surface of hepatocytes and are selective for glycoproteins con-
taining N-acetylgalactosamine residues [85]. It is worth highlighting N-acetylgalactosamine
as a very promising molecule for the delivery of siRNA to hepatocytes; in addition to the
already approved givosiran, there are another seven conjugates in registrational review
or phase 3 trials and at least another 21 conjugates at earlier stages of clinical develop-
ment [86]. Additional enhancements, such as hexopyranose chemical modification altriol
nucleic acid within siRNA, significantly enhanced the protection of the oligonucleotide
against 5’-exonuclease degradation [87]. Studies on the targeted delivery of siRNA through
modifications using N-acetylgalactosamine residues are sufficient for a separate full review;
in this review, only a small part of them is considered.

An example of a successful approach can be the conjugation of siRNA with docosanoic
acid to target myostatin, a key determinant of muscle loss and cachexia in cancer, in skeletal
and cardiac muscle cells [88,89]. The siRNAs delivered in this way provided more than 55%
of gene silencing in muscle cells and about 80% in cardiac cells, increasing tissue volume
by more than half.

Conjugation of siRNA with cholesterol allows to neutralize the negative charge of RNA
and, consequentially, the impermeability of the cell membrane for it. In one of the studies,
356 cholesterol-conjugated siRNA molecules with various additional modifications were
tested, and an algorithm that effectively predicts the activity of miRNA was developed
based on linear regression approach [90]. As a result, conjugates were obtained that
effectively transfect cancer cells, the chemical modifications of which were predicted by
the algorithm. This approach eliminates the need for stochastic screening and optimizes
the development of delivery systems.

7. Conclusions

This overview is an attempt to summarize the main trends in siRNA delivery in the
field of cancer disease therapy. Taking into account the rapid development of gene therapy
in general, and the possibilities for individual gene regulation using RNA interference, the
authors identified a great number of studies from which it was extremely difficult to draw
general conclusions to produce a coherent overview.

Summarizing the work performed in this field, the authors can declare that RNA
interference has a promising future in cancer treatment, and that the number of approaches
to the targeted delivery of siRNA will only increase. The limitations of the existing ap-
proaches will eventually be overcome, enabling the selection of optimal delivery systems
for exceptionally effective gene therapy of oncological diseases.
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Abbreviations

dsRNA double-stranded RNA
siRNA small interfering RNA
RNAi RNA interference
shRNA short hairpin RNA
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