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Background. Autism spectrum disorder (ASD) is a chronic developmental disability caused by differences in the brain. The gold
standard for the diagnosis of this condition is based on behavioral science, but research on the application of neurological
detection to diagnose the atypical nervous system of ASD is ongoing. ASD neuroimaging research involves the examination of
the brain’s structure, functional connections, and neurometabolic. However, limited medical resource and the unique
heterogeneity of ASD have resulted in many challenges when neuroimaging is utilized. Objective. This bibliometric study is
aimed at summarizing themes and trends in research on autism spectrum disorder neuroimaging and at proposing potential
directions for future inquiry. Methods. Citations were downloaded from the Web of Science Core Collection database on
neuroimaging published from January 1, 2012, to December 31, 2021. The retrieved information was analyzed using
Bibliometric.com, CiteSpace.5.8. R3, and VOS viewer. Results. A total of 1,363 papers were published across 58 regions. The
United States was the leading source of publications. The League of European Research Universities published the largest number
of articles (171). Burst keywords from 2018 to 2021 include identification and network. The clusters of references that continued
into 2020 included graph theory, functional connectivity, and classification, which represent key research topics. Conclusions.
Imaging data is being used to identify neuro-network models with higher accuracy for ASD discrimination. Functional near-
infrared imaging is advantageous compared to other neuroimaging. In the future, research on systematic and accurate computer-
aided diagnosis technology should be encouraged. Moreover, the study of neuroimaging of ASD in different psychological and
behavioral states can inspire new ideas about the diagnosis and intervention training of ASD and should be explored.

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder that manifests itself in infancy. Its primary symp-
toms are social communication and communication disor-
ders, as well as repetitive stereotyped behavior [1]. Owing
to the limited availability of accurate prenatal screening
tools, early diagnostic biomarkers, and effective treatment
methods, the prevalence of ASD has been increasing annu-

ally [2]. The results of the survey and monitoring points of
the American Autism and Developmental Disorder Moni-
toring Network (ADMN) published in 2020 and 2021
revealed that in 2016, the overall prevalence of ASD in
four-year-old children was approximately one in 64, and
there was one ASD child in every 59 for this age group in
the United States in 2018 [3, 4]. Standardized assessment
and diagnostic methods are the gold standard for clinical
diagnosis of ASD [5–7]. Although there is no complete
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description of the etiology and pathogenesis of ASD,
research on the application of neurological detection to
describe the atypical nervous system of ASD is ongoing.

ASD neuroimaging research examines the brain from a
variety of perspectives including brain structure, functional
connections, and neurometabolic [8–10]. Structural magnetic
resonance imaging (sMRI) is a technique for examining the
anatomical structure of the brain. Several sMRI studies have
proved that there are structural abnormalities in the frontal
lobe, temporal lobe, hippocampus, amygdala, and striatum
of ASD subjects [11–16]. Functional neuroimaging of ASD
brains mainly includes functional magnetic resonance imag-
ing (fMRI), magnetic resonance spectroscopy (MRS), posi-
tron emission tomography (PET), single positron emission
computed tomography (SPECT), diffusion tensor imaging
(DTI), and functional near-infrared spectroscopy (fNIRS).
These techniques are frequently used to investigate brain
functional connectivity, metabolite content, nerve receptor
distribution, and brain activation. fMRI studies involve the
measurement and analysis of the changes in the degree of
oxygenation in the local cerebral blood flow of subjects during
a task state or resting state [17–19]. fNIRS measures the
hemodynamic characteristics of the cerebral cortex via near-
infrared spectroscopy to detect neural activity, which is a
promising method for the early identification of quantitative
biomarkers in autism sites [20, 21]. MRS can detect molecular
behavior abnormalities associated with ASD [22]. As amolec-
ular nuclear medicine imaging technology, SPECT and PET
facilitate the study of cerebral blood perfusion, glucose
metabolism, and protein metabolism by detecting the distri-
bution of different radioactive tracers [23, 24]. DTI is a mag-
netic resonance imaging (MRI) technique that can reflect the
burden of nervous system diseases [25].

Neuroimaging studies of ASD involve a variety of imag-
ing methods and subgroups. However, a bibliometric analy-
sis of this field has not been performed. The purpose of this
study is to summarize themes and trends in research on
autism spectrum disorder neuroimaging and to propose
potential directions for future inquiry. We used bibliometric
methods to analyze scientific citation index (SCI) papers in
the field. The data included the references of countries,
regions, institutions, journals, research categories, keywords,
and references. In addition, as the core of this study, we
established a visual and unbiased method for exploring the
areas of high research activity and the frontiers of ASD neu-
roimaging research. The research methods, distribution, and
influence of these published works are discussed. The future
development space and potential challenges of ASD neuro-
imaging are also discussed. This report can serve as a refer-
ence for doctors, neuroimaging experts, and researchers in
this field.

2. Data Sources and Research Methods

2.1. Data Sources. The Web of Science Core Collection
(WoSCC) database was chosen as the literature source for
this study. Two authors (YL and WY) independently verified
this work. The search formula was TS= (“structural mag-
netic resonance imaging” or sMRI or “functional magnetic

resonance imaging” or fMRI or “magnetic resonance spec-
troscopy” or MRS or “diffusion-tensor imaging” or DTI or
“functional near-infrared spectroscopy” or fNIRS or
“single-photon emission computed tomography” or SPECT
or “positron emission tomography” or PET) and (autism∗
or ASD or autistic or “Kanner Syndrome” or Asperger∗).
The period was 2012–202, the language was English, and
the document was published articles. We excluded book
chapters, data papers, early access papers, and proceedings.
The retrieval time was April 24, 2022. A total of 1956 English
literatures were obtained. In addition, we manually screened
the retrieved literature to avoid biased analysis results. Inclu-
sion criteria are as follows: (1) research on ASD neuroimag-
ing and (2) the research object can be human or animal.
Exclusion criteria are as follows: (1) the study disease did
not include ASD, (2) no imaging technology was used, and
(3) the study sites were nonbrain body parts. Finally, the
Web of Science (WoS) literature output function and the
CiteSpace deduplication algorithm yielded 1363 effective
literature. The detailed search and analysis processes are
depicted in Figure 1.

3. Research Methods

Using the WoS data analysis module in CiteSpace5.R3 to
visually analyze the collected data, the number of articles
published each year, the country of origin, publishing orga-
nization, study categories, keywords, and references were all
used to objectively assess the research status of ASD neuro-
imaging. The materials and methods section should contain
sufficient detail so that all procedures can be repeated. It
may be divided into headed subsections if several methods
are described. https://bibliometric.com/app was used to
show the volume of documents and the cooperation
between countries.

4. Results and Discussion

4.1. Distribution of Articles by Publication Year. To some
extent, the number of articles published in academic journals
on a particular topic reflects the level of interest in the
research area. The annual publishing data, as well as their
growth rate, can show the evolution of the field over time
and the change in its level of importance. Figure 2 depicts
an overall increasing trend for the number of papers
published from 2012 to 2021, with an average annual
increase of approximately 14 articles. The popularity of
ASD neuroimaging research is increasing. COVID-19 may
have an impact on the number of papers published in 2021
compared to 2020. In addition, at present, some articles pub-
lished in 2021 have not been included in the database.

4.2. Countries or Regions. The 1363 publications on ASD
neuroimaging included in the analysis originated from 58
nations or regions. Figure 3 uses https://bibliometric.com/
app to describe the number of documents submitted by each
country and the cooperation between countries. The size of
the areas with different colors indicates the number of
documents submitted by the country represented by the
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label. The connection between regions indicates the exis-
tence of cooperative relationships among connected coun-
tries. For example, it is evident that the United States has
the largest number of documents. Research that originated
in the United States and the United Kingdom cooperates
more closely with other countries. Figure 4 shows the
national cooperation network using the VOSviewer, which
shows that the primary country in this field is the United
States. Table 1 quantifies the main findings. The default
parameters of the CiteSpace program were used to generate
centrality among them. The higher the centrality value, espe-
cially if it is larger than 0.1, the more essential the role. The
United States (0.41), England (0.19), Germany (0.19), New
Zealand (0.17), and the Netherlands (0.17) are the coun-
tries with the highest centrality among the top ten coun-
tries in terms of document volume (0.11). The h-index
was derived from the WoS database search report and
shows the article’s influence. The two countries with the
highest h-index are the United States (73) and the England
(40). China has a large number of publications, but the
centrality and h-index are small.

Records identified through Web of Science Core Collection
Topic=(‘‘structural magnetic resonance imaging ‘‘or SMRI or ’’functional

magnetic resonance imaging ‘‘or fMRI or ’’magnetic resonance spectroscopy
‘‘or MRS or ’’diffusion-tensor imaging ‘‘or DTI or ’’functional near-infrared

spectroscopy ‘‘or fNIRS or ’’single photon emission computed tomography "or
SPECT or ‘‘positron emission tomography’’ or PET) AND

(autism or ASD or autistic or ‘‘Kanner Syndrome’’ or Asperger’’)
Search period: 2012-2021; Languages: English; Document types: Article

(n = 2,0029)

n = 1,956 articles were
screened manually

References KeywordsSubject
categories

n-553 articles were removed
�e reasons are as follows:
I) the study disease did not include ASD,
2) no imaging technology was used.
3) non-brain bodily parts were used as
research subjects.

n = 1,363 publications included in
quantitative and visualization-based

bibliomeric analyses

n = 73 full-tex: papers excluded, with reasons:
1.

Paper, Early Access, Proceedings Paper
Document types are Book Chapter, Data

2. Unpublished papers

Citing
Journals

Institutions
Countries/

regions

General
data

Figure 1: A frame flow diagram showing the detailed selection criteria and bibliometric analysis steps of neuroimaging of ASD.
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Figure 2: Trends in the number of publications on neuroimaging
of ASD from 2012 to 2021.
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4.3. Institutions. The number and location of the top ten
institutions are shown in Table 2. Their total number of doc-
uments accounts for 59.5% of all documents. Six American
institutions are represented among these organizations: the
University of California system (126 articles), Harvard Uni-
versity (86 articles), the University of North Carolina (55
articles), the University of Cambridge (53 articles), the Uni-
versity of North Carolina Chapel Hill (53 articles), and Yale
University (51 articles). The number of documents issued by
these institutions accounts for 52.28% of all documents
issued by the top ten institutions. Furthermore, all of the
top ten institutions are from developed countries.

4.4. Journals and Research Categories. We used CiteSpace to
analyze citing journals and cited journals. Figure 5 shows the
citing and cited journals in different research fields. On the
left is the research field of citing journals, which represents
the research frontier. On the right is the research field of
cited journals, which represents the knowledge base. The
colored lines represent a research discipline for which

research in a specific field is often cited. It is evident from
the lines shown in Figure 5 that articles published in journals
in the research field of molecular/biology/genetics are prob-
ably cited by journals in the research field of molecular/biol-
ogy/immunology/psychology/education/health. Articles
published in journals in the research field of psychology/
education/social are usually cited by journals in the research
field of molecular/biology/immunology/neurology/sports/
ophthalmology. Tables 3 and 4 list the top ten citing journals
and cited journals, respectively. It was determined that the
knowledge base of ASD neuroimaging research is mostly
neuroscience articles. Based on the research field of the cit-
ing journals, it is evident that genetics in neuroimaging of
ASD has become a research frontier.

Figure 6 shows the top ten research categories with cita-
tions analyzed using the CiteSpace software. Each circular
node represents a research category. The area generation size
of the node table shows the number of research categories.
The purple ring represents centrality, which identifies and
measures the publication’s importance. A node with a high
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Figure 3: The cooperation of countries or regions that contributed to publications on neuroimaging of ASD from 2012 to 2021.
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centrality was considered to be a pivotal point in the publi-
cation [26]. The number of each study category was derived
using the WoS citation analysis function and is shown in
Table 5. Both Figure 6 and Table 5 show that neuroscience
has the largest number of studies, whereas psychology is
the most influential research category.

4.5. Keywords. CiteSpace was used to analyze the keywords
that emerged over time, which is depicted in Figure 7. The
red block represents the period of emerging keywords. Year
per slice was set to 2. In order to extract the top 10% key-
words in each time period, we set the top n% to 10%. And

the minimum duration was set to 2. The keywords that
emerged during the period from 2012 to 2015 were Asperger
syndrome, diffusion, corpus callosum, white matter, sen-
tence comprehension, connectivity MRI, hippocampus,
diagnostic interview, and high functioning autism. The
keywords that emerged from 2012 to 2017 were sense com-
prehension and task. From 2018 to 2020, the emergent key-
words were event-related fMRI, resting-state fMRI, and
pattern, whereas the emerging keywords from 2018 to
2021 included identification and network.

4.6. Citing Articles and References. Table 6 lists the 10 most
frequently cited studies in the literature. fMRI was used in
all these studies. The main challenges and limitations of
these studies include the lack of description of the changes
in global brain functional connectivity in ASD patients
with age. The subjects were not representative, and there
were instances of limited age groups and high-function
autism. In addition, the selection of a control group is a
challenging problem.

The frequently cited literature had an important influ-
ence on their respective fields. We use the default setting of
CiteSpace and a pruning algorithm to cluster the references.
Indexing terms were used as the display of the clustering
labels. Figure 8 shows the active topics over time. The influ-
ence of the cluster to which the references belong is arranged
from top to bottom. The cluster tags are “#0 graph theory,”
“#1 functional connectivity,” “#2 coherence,” “#3 diffusion
tensor imaging,” “#4 classification,” and “#5 infant.” The

Figure 4: The cooperation of countries or regions that contributed to publications on neuroimaging of ASD from 2012 to 2021.

Table 1: The top 10 countries or regions with publications on
neuroimaging of ASD from 2012 to 2021.

Rank Countries or regions Count Centrality h-index

1 USA 718 0.41 73

2 People’s Republic of China 202 0.05 28

3 England 177 0.19 40

4 Japan 122 0.01 30

5 Canada 115 0.05 28

6 Germany 115 0.19 29

7 Italy 66 0.01 26

8 Netherlands 65 0.11 20

9 Switzerland 65 0.17 26

10 France 59 0.04 21

5Disease Markers



bold timeline in Figure 8 indicates the active topic. The
popular reference clusters that lasted until 2015 include
coherence and diffusion tensor imaging. The active topic

from 2013 to 2019 is infant, and the actively investigated
fields that remained popular until 2020 include graph theory
and functional connectivity.

Table 2: The top 10 institutions with publications on neuroimaging of ASD from 2012 to 2021.

Rank Institutions Country Count
% of
1,363

1
League of European Research

Universities
Britain, Ireland, France, German, Italy, Sweden, Switzerland, Spain, Belgium,

Finland, Denmark, Netherlands
171 12.546

2 University of California system America 126 9.244

3 University of London England 93 6.823

4 Harvard University America 86 6.31

5 King’s College London England 68 4.989

6 University of North Carolina America 55 4.035

7 University of Toronto Canada 55 4.035

8 University of Cambridge America 53 3.888

9
University of North Carolina

Chapel Hill
America 53 3.888

10 Yale University America 51 3.742

Figure 5: The dual map overlay of journals that contributed to publications on neuroimaging of ASD from 2012 to 2021.

Table 3: The top 10 citing journals of publications on neuroimaging of ASD from 2012 to 2021.

Rank Citing journals Research fields Count 2020 journal impact factor

1 Autism Research Medicine/behavioural science 73 5.216

2 NeuroImage: Clinical Medicine/neuroimaging 64 4.881

3 Frontiers in Human Neuroscience Medicine/neuroscience 51 3.169

4 Human Brain Mapping Medicine/neuroimaging 47 5.038

5 Journal of Autism and Developmental Disorders Psychology, developmental 47 4.291

6 Cerebral Cortex Medicine/neuroscience 44 5.357

7 Translational Psychiatry Medicine/psychiatry 42 6.222

8 Molecular Autism Medicine/genetics 40 7.509

9 Frontiers in Neuroscience Medicine/neuroscience 39 3.59

10 PLOS One Multidisciplinary science 37 3.24
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5. Discussion

5.1. Overall Results. It is evident from the above results that
the number of documents exhibited an overall stable rising
trend from 2012 to 2021. As shown in Figure 2, the average
annual growth is 13.5 articles. The number of literature in
2021 was lower compared to 2020, probably because of the
challenges introduced due to COVID-19 in terms of
research on ASD [37].

In terms of the number of national documents, the
United States ranks first in the number and centrality of
the documents and has the highest h-index. This shows that
this country is in a leading position in this research field. In
addition, the research of developed countries such as
England, Germany, Switzerland, and the Netherlands has a
strong central position and influence. In terms of the distri-
bution of documents, the top ten research institutions are
concentrated in the United States, the United Kingdom,
Canada, and several developed countries in Europe, which
corresponds to the analysis results of national distribution.
The number of articles published by the League of European
Research Universities (LERU) ranks first and accounts for
approximately 12.5% of the total number of studies. LERU

is a University Alliance of 23 research universities located
in 12 countries in Europe [38]. Based on its strong academic
potential and professional knowledge, it has an important
impact on European research, innovation, and higher educa-
tion policies [39]. It is evident that the number of documents
issued is related to the strength of interagency contacts.
Further, when the institutions are more closely linked,
researchers can obtain more research resources and more
integration between various professional disciplines, pro-
moting the growth of the field.

In addition to neuroimaging, it is evident from the
research direction of the top ten cited journals that most of
the articles involve behavioral science, neuroscience, psychi-
atry, psychology, and genetics. The top three research direc-
tions include neuroscience, psychiatry, and psychological
development, which account for approximately 81% of the
total. Therefore, we can see that ASD neuroimaging com-
bines the research on psychological and behavioral develop-
ment. In addition, the change in research hotspots can be
estimated from the emerging keywords over time. From
2012 to 2017, the research focused on a certain brain region
of high-function autism and the relationship between brain
function and psychological and behavioral development.

Table 4: The top 10 cited journals of publications on neuroimaging of ASD from 2012 to 2021.

Rank Cited journals Research fields Count
2020 journal impact

factor

1 NeuroImage Medicine/neuroscience 1203 6.556

2 Journal of Autism and Developmental Disorders
Psychology,

developmental
1005 4.291

3 Biological Psychiatry Medicine/neuroscience 902 13.382

4 Brain
Medicine/clinical

neurology
892 13.501

5 Human Brain Mapping Medicine/neuroimaging 892 5.038

6 Cerebral Cortex Medicine/neuroscience 872 5.357

7 Journal of Neuroscience Medicine/neuroscience 845 6.167

8
Proceedings of the National Academy of Sciences of the United States of

America
Multidisciplinary

sciences
835 11.2048

9 PLOS One
Multidisciplinary

sciences
766 3.24

10 Neuron Medicine/neuroscience 697 17.173

Figure 6: The network map of research categories for publications on neuroimaging of ASD from 2012 to 2021.
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From 2018 to 2020, functional magnetic resonance imaging
was used to perform brain imaging of autism in different
states. From 2018 until recently, research on autism recogni-
tion and brain networks has been a research hotspot. The
importance of magnetic resonance imaging in neuroimaging
research of autism is evident based on the emerging key-
words and top 10 citing articles. From the analysis of the
cited literature, it is evident that the knowledge base of
current research is also focused on the classification and
brain function connection of ASD patients. From the
research limitations and challenges of the top ten cited liter-
atures, it can be concluded that the research still has limita-
tions. The more prominent limitations are that the subjects
are not representative enough, and the image signal is likely
to be disturbed. Future studies need to include subjects of
different ages and disease grades. Imaging techniques that

are less susceptible to interference and appropriate for
ASD subjects must be prioritized.

In general, research institutions should strengthen
contacts and promote new research. Functional magnetic
resonance imaging had a significant influence in the field
of neuroimaging of ASD. In recent years, the research has
focused on the identification of diseases and the functional
connectivity of brain networks.

5.2. Research Hotspots

5.2.1. Identification. At present, the gold standard for the
diagnosis of ASD is based on behavioral science [40].
Research on the pathogenesis of ASD based on neuroimag-
ing has been conducted, but this has not yet produced prac-
tical clinical applications [41].

2012 2012 20159.19

2012 2012 20156.99

2012 2012 20156.99

2012 2012 20135.41

2012 2012 20155.02

2012 2012 20154.68

2012 2012 20134.15

2012 2012 20154.14

2012 2012 20153.88

2012 2012 20153.65

2012 2014 20173.5

2012 2016 20193.4

2012 2018 20215.41

2012 2018 20194.28

2012 2018 20213.37

Keywords Year  Strength Begin End

asperger syndrome

diffusion

corpus callosum

white matter

sentence comprehension

connectivity mri

hippocampus

diagnostic interview

high functioning autism

diagnosticinterview

event related fmri

resting state fmri

pattern

network

2012 - 2021

identification

Figure 7: The keywords with the strongest citation bursts of publications on neuroimaging of ASD from 2012 to 2021.

Table 5: The top 10 research categories for publications on neuroimaging of ASD from 2012 to 2021.

Rank Research categories Count % of 1,363 Centrality

1 Neurosciences 1203 46.809 0.17

2 Psychiatry 1005 19.369 0.08

3 Psychology developmental 902 14.6 0.25

4 Neuroimaging 892 13.94 0.00

5 Behavioural sciences 892 9.244 0.01

6 Clinical neurology 872 8.437 0.04

7 Psychology 845 8.217 0.25

8 Radiology nuclear medicine medical imaging 835 7.924 0.03

9 Multidisciplinary science 766 6.163 0.00

10 Psychology experimental 697 6.016 0.00
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Table 6: The top 10 citing articles on neuroimaging of ASD from 2012 to 2021.

Rank Title of citing documents DOI
Times
cited

Imaging
technology

Interpretation of the
findings

Research limitations or
challenges

1

“The Autism Brain
Imaging Data Exchange:
Towards a Large-Scale

Evaluation of the
Intrinsic Brain

Architecture in Autism”
[27]

10.1038/mp.2013.78 782 fMRI

This study found that the
internal functional

connectivity of the whole
brain of ASD exhibited the

coexistence of high
connectivity and low
connectivity. The

dysfunction sites of ASD
lie in the middle and rear
of the insula, the posterior
cingulate gyrus, the cortex,

and the thalamus.

(1) It is necessary to study
the dynamic changes in
brain function and age
development of autism
(2) Researchers should
focus on standardized

phenotypes, including an
extended diagnostic
assessment, and

comprehensively describe
the brain-behavior

relationship of dimensions
(3) Physiological

measurements that can
index ASD related brain
dysfunction should be

considered

2

“Differences in White
Matter Fiber Tract

Development Present
from 6 to 24 Months in
Infants with Autism”

[28]

10.1176/
appi.ajp.2011.11091447

415 MRI

This research established
that longitudinal data are
essential for categorizing
the dynamic age-related

brain and behavior
changes at the core of this

neurodevelopmental
disorder. In the first year

of life, abnormal
development of white
matter pathways may

precede the manifestation
of autistic symptoms.

(1) In this study, only
high-risk ASD siblings
were included, and the
absence of a low-risk

control group limited the
interpretation of results
beyond ASD family

background
(2) Follow-up evaluation

provides a positive
guarantee for the
diagnostic results

3

“Single Subject
Prediction of Brain

Disorders in
Neuroimaging: Promises

and Pitfalls” [29]

10.1016/
j.neuroimage.2016.02.079

375 MRI

This study shows that
neuroimaging data have

great potential in
predicting various diseases

in a single subject. At
present, the limited sample
size is a problem, which
can be solved by the
modern data sharing
model discussed in this

paper.

(1) This review examined
limited diseases

(2) Some potential
problems in the research
were covered in this

review, such as
experimental design, the

influence of head
movement, and other

factors on fMRI research

4

“Brain Hyperconnectivity
in Children with Autism
and Its Links to Social

Deficits” [30]

10.1016/
j.celrep.2013.10.001

293 fMRI

This study found that the
brains of autistic patients
are highly connected in
function, leading to their

social dysfunction.

ASD subjects do not fully
represent the

characteristics of this
group

5

“Identification of Autism
Spectrum Disorder Using
Deep Learning and the
ABIDE Dataset” [31]

10.1016/
j.nicl.2017.08.017

253 fMRI

This study objectively
identified the functional
connection patterns of
ASD participants from

fMRI data.

This study failed to
provide an overall

assessment of autism
classification. The use of
resting-state fMRI data

does not meet the
biomarker criteria
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Table 6: Continued.

Rank Title of citing documents DOI
Times
cited

Imaging
technology

Interpretation of the
findings

Research limitations or
challenges

6

“Deriving Reproducible
Biomarkers from Multi-
site Resting-State Data:

An Autism-Based
Example” [32]

10.1016/
j.neuroimage.2016.09.038

241 fMRI

This study proved the
feasibility of using fMRI to

classify the
neuropsychiatric states of

autism.

(1) There is a deviation in
the representativeness of

the study samples
(2) The predictive
indicators of the

classification model only
use accuracy and do not
use additional criteria,
such as sensitivity and

specificity
(3) Limitations of data sets

included in the study

7

“Altered Functional and
Structural Brain Network
Organization in Autism”

[33]

10.1016/
j.neuroimage.2016.10.045

240 fMRI

Children and adolescents
with ASD demonstrated

typical age-related
modifications in the

balance of local and global
efficiency between

structural and functional
networks. And this

imbalance was related to
the severity of ASD
individuals’ socio-
communicative
deficiencies.

(1) This study was limited
to ASD high functioning
children and adolescents

(2) More imaging
acquisition, more
adaptable modeling

methods, and large-scale
collaborative mechanism

research will be
encouraged

(3) The comparison with
other neurological diseases
and the study of potential

mechanisms such as
genetic risk factors are very

important for the
description of brain

network abnormalities in
autism

8
“Fractionation of Social
Brain Circuits in Autism
Spectrum Disorders” [34]

10.1016/
j.nicl.2012.11.006

213 fMRI

This study found reduced
connectivity between
social brain regions. In
addition, the connections

between the regions
supporting language and
sensory-motor processes
and limbic-related brain
regions were also selective.

(1) The subjects’ ASD
symptoms were
underrepresented
(2) Selecting an

appropriate control group
was a challenging task

9

“Impaired
Thalamocortical

Connectivity in Autism
Spectrum Disorder: A
Study of Functional and

Anatomical
Connectivity” [35]

10.1093/brain/aws160 200
fMRI and

DTI

Compared with matched
participants with normal

development, the
anatomical connectivity

and functional
connectivity of ASD

children and adolescents
were generally reduced.

(1) The subjects included
in this study are
underrepresented
(2) The correlation

between ASD thalamic
connectivity index and the
neuropsychological score
is affected by variability
(3) The specificity of the
connection between the
narrower specialized

region and the thalamus,
and any abnormality may

not be found
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One possible reason is that the recruited subjects are not
fully representative of the ASD population in terms of symp-
toms and number [33, 35]. The complexity of brain connec-
tions and the heterogeneity of ASD hinder efforts to identify
abnormal neurobiological signals [42, 43]. The combination
of Autism Brain Imaging Data Exchange I (ABTDE I) and
Autism Brain Imaging Data Exchange II (ABIDE II) pro-
vides researchers with a cross-sectional data set that allows
for the selection of samples for scientific research [44]. Bi
et al. proposed a cluster classifier with 100% accuracy to clas-
sify ASD patients and typical controls in the ABIDE data-
base [45]. Dominic et al. used the four-dimensional
resting-state fMRI obtained from ABIDE I to prove the
detectability of ASD neuroimaging markers [46]. Eslami
et al. designed a data enhancement strategy and used brain
imaging data from 17 different brain imaging centers to
generate the synthetic data set required to train a machine
learning model to distinguish between the fMRI data of
ASD. Finally, 82% classification accuracy was obtained
[47]. Li et al. used ABIDE data set to evaluate a functional
diagram discrimination network for ASD classification,
which proved that this method can effectively distinguish
between ASD patients and healthy controls [48].

In addition to the existing neuroimaging database, task
state and resting-state ASD neuroimaging data can also
identify atypical neurophysiological signals. Pretzsch et al.
used fMRI analysis to determine that individuals with
autism spectrum disorders have low functional connectivity
(FC) between the ventral striatum and the frontal and peri-
central regions (related to emotional, motor, and visual
processing). In addition, they had higher striatum FC and
higher putamen FC, and the temporal region involved
speech and language [49]. A study conducted in Japan using
fNIRS and a fragrance pulse injection system found that
ASD participants with lower odor sensitivity presented
reduced activity of the right dorsolateral prefrontal cortex
in response to odor stimuli compared to a TD control group
[50]. Several studies have also demonstrated that ASD has
atypical features of FA and FC when performing language
judgment, facial difference recognition, and memory tasks
[51–53]. Neuroscience research on early identification of
ASD or people at high risk for ASD has been emphasized
[54, 55]. Earlier studies have established that the atypical
development of ASD is related to the abnormal whole-
brain connection, which may be congenital [56]. Padilla
et al. studied the relationship between the MRI of infants

Table 6: Continued.

Rank Title of citing documents DOI
Times
cited

Imaging
technology

Interpretation of the
findings

Research limitations or
challenges

10

“Default Mode Network
in Childhood Autism:
Posteromedial Cortex
Heterogeneity and

Relationship with Social
Deficits” [36]

10.1016/
j.biopsych.2012.12.013

197 fMRI

The precuneus showed
hypoconnectivity with the
visual cortex, basal ganglia,
and locally within the
posteromedial cortex in

ASD children. The severity
of social impairments in

ASD was linked to
abnormal posterior
cingulate cortex

hyperconnectivity, but
precuneus

hypoconnectivity was
unrelated to social deficits.

(1) The age of the subjects
selected in the study of the

coordinate definition
reference of the region of
interest is different from

that in this study
(2) Potential impact of
uncontrolled drugs and
comorbid diseases on

study results

Figure 8: Cocited reference timeline map of publications on neuroimaging of ASD from 2012 to 2021.
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with a gestational age of less than 27 weeks and preterm
infants at full term and the future diagnosis of ASD (at the
age of 6.5 years). It was determined that the MRI scan of
ASD in infancy showed that the brain structure was different
from that of typical development (TD) infants [57]. An
fNIRS study found that compared to low-risk siblings of
ASD subjects, high-risk siblings of ASD infants had reduced
functional activity (FA) and FC during social interaction at 6
to 9 months, and hyperlinks were present between hemi-
spheres at rest [58]. Many studies have shown that fNIRS
is a promising tool to explore the neural development of
ASD [59–61].

There are usually two ways to use neuroimaging for spe-
cific signal discrimination of ASD. One is to use public data
sets, such as ABIDE, and the other is to analyze neural signal
data under various task stimuli or resting states. A rigorous
scientific evaluation of all task paradigms must be consid-
ered. Several studies have determined that fNIRS is a good
choice for neural network connectivity analysis of ASD
infants and young children compared to functional magnetic
resonance imaging, because it has relatively high time reso-
lution and is more tolerant to head motion [62, 63].

5.2.2. Network. Neuroimaging technology can describe the
neurophysiological patterns of different brain regions, which
helps individuals to identify the abnormal brain structure
and functional connections between TD individuals and
nontypical development people.

Due to the heterogeneity of ASD, the description of atyp-
ical functional activation and functional connection of
different brain regions in various states of ASD for a given
period involves a variety of sensory organs or behavioral
responses. For example, the theory-of-mental (ToM) net-
work, including the medial prefrontal cortex, temporoparie-
tal junction, inferior frontal gyrus, superior temporal sulcus,
and posterior cingulate cortex, which is related to the devel-
opment of key skills for effective social interaction, reflects
the atypical ability of ASD subjects to emphasize and attri-
bute views and intentions. Kana et al. demonstrated that
when ASD individuals watched an animation of geometry,
both FA and FC in the ToM network decreased [64]. Cao
et al. found that the atypical development of the right tempor-
oparietal junction may be a crucial aspect regarding the social
defects of autistic patients from childhood to adolescence
[65]. Farrant and Uddin found a hyperconnectivity of regions
of interest in ASD children’s attention network [66]. He et al.
used MRI and discovered that the morphological connectiv-
ity of the cortical-striatum-thalamus-cortical network of
ASD increased and the morphological connectivity of the
cortical-cortical network decreased [16]. In addition, several
studies have shown that the working memory neural network
and visual-motor neural network of ASD exhibit different FC
patterns compared to a TD group [67, 68].

In the field of medical imaging, artificial intelligence
computer-aided diagnosis technology, including machine
learning and deep learning algorithms, plays an important
role [69]. The current research indicates that the develop-
ment of new feature selection methods is an important
direction of classification between ASD individuals and TD

subjects, which can promote the application of machine
learning methods to determine the most discriminative
features [70]. A convolutional neural network (CNN) is an
example of a deep learning algorithm, which can probably
serve as a classifier for ASD recognition [71]. Wang et al.
proposed a CCN architecture for fMRI analysis, which can
effectively capture the FC characteristics of related applica-
tions in fMRI analysis [72]. A deep learning algorithm (deep
belief network (DBN)) was used to combine the data from
an Autism Brain Imaging Data Exchange I and II (ABIDE
I and ABIDE II) to diagnose childhood ASD [73]. He et al.
found that when the artificial neural network model is
applied to the FC group data of very preterm infants, it
can predict the cognitive results for 2 years old [74].

In general, the development of artificial intelligence-
based models combined with neuroimaging datasets or
task-based neurobiological signal data as a tool for diagnos-
ing ASD has recently become an active area of research.

5.3. Study Limitations. The current research has some
potential limitations. First, the downloaded citation only
contains research in the WoSCC database for approximately
a decade (2012-2021) and does not include earlier literature
or that of other databases, which may cause a bias. Secondly,
although the two authors manually removed irrelevant liter-
ature and participated in data analysis, this does not exclude
subjective judgment. Third, some recent studies are in prog-
ress and have not been published, which will also bias the
research results.

6. Conclusion

In conclusion, combining fMRI data to identify computer-
aided diagnosis technology with higher accuracy for ASD
discrimination and for determining the difference between
FA and FC of neural networks that describe different states
of ASD has become an area of active research. Among the
countries involved in this research, the United States is the
most influential in the field of ASD neuroimaging. Close
cooperation between countries has positively impacted
research progress. There are more fMRI-related studies than
other neuroimaging studies. However, several studies are
limited by their inadequate sample representation. To better
address this problem, the strengthening of interagency con-
tacts and the establishment of an ASD imaging database are
recommended to promote scientific inquiry. In addition,
fNIRS is proposed as a more suitable imaging research tool
for the study of ASD neural FC and FA. In the future,
research on systematic and accurate AI algorithms for ASD
imaging data discrimination should be encouraged. This
could serve as the basis for studies on neuroimaging of
ASD in different psychological and behavioral states, which
can inspire new ideas about the diagnosis and intervention
training of ASD and should be explored. These findings
can potentially inspire new ideas about the diagnosis and
intervention training of ASD and serve as a reference for
clinicians, rehabilitation trainers, and the staff of special
education institutions.
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