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Abstract

Purpose of Review—Arsenic exposure is a public health concern of global proportions with a 

high degree of interindividual variability in pathologic outcomes. Arsenic metabolism is a key 

factor underlying toxicity, and the primary purpose of this review is to summarize recent 

discoveries concerning the influence of the human gut microbiome on the metabolism, 

bioavailability, and toxicity of ingested arsenic. We review and discuss the current state of 

knowledge along with relevant methodologies for studying these phenomena.

Recent Findings—Bacteria in the human gut can biochemically transform arsenic-containing 

compounds (arsenicals). Recent publications utilizing culture-based approaches combined with 

analytical biochemistry and molecular genetics have helped identify several arsenical 

transformations by bacteria that are at least possible in the human gut and are likely to mediate 

arsenic toxicity to the host. Other studies that directly incubate stool samples in vitro also 

demonstrate the gut microbiome’s potential to alter arsenic speciation and bioavailability. In vivo 

disruption or elimination of the microbiome has been shown to influence toxicity and body burden 

of arsenic through altered excretion and biotransformation of arsenicals. Currently, few clinical or 

epidemiological studies have investigated relationships between the gut microbiome and arsenic-

related health outcomes in humans, although current evidence provides strong rationale for this 

research in the future.

Summary—The human gut microbiome can metabolize arsenic and influence arsenical oxidation 

state, methylation status, thiolation status, bioavailability, and excretion. We discuss the strength of 

current evidence and propose that the microbiome be considered in future epidemiologic and 

toxicologic studies of human arsenic exposure.
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Introduction

Arsenic is among the most widespread and dangerous environmental toxicants in the world. 

It is ubiquitous in the environment and primarily originates from the natural weathering of 

the earth’s crust. As such, it inevitably becomes associated with human food and water as 

well as surface soils and particulates in the air [1]. Anthropogenic sources of contamination 

can also be significant, especially in areas with mining activity and industrial arsenic 

applications [2]. Acute exposure to high levels of arsenic-containing compounds (arsenicals) 

is toxic to most cellular life forms, and chronic, low-level exposure in long-lived organisms, 

like humans, is also associated with disease. The International Agency for Research on 

Cancer (IARC) has classified arsenic and inorganic arsenicals (see below) as group I 

carcinogens, finding sufficient evidence that these toxicants cause cancers of the lung, skin, 

and bladder [3]. Non-cancerous pathologies have also been linked to arsenic exposure, 

including skin lesions, metabolic dysregulation, diabetes mellitus, cardiovascular disease, 

pregnancy complications, and neurological symptoms [4]. Importantly, the development of 

these pathologies in arsenic-exposed populations is highly variable between individuals, 

even when accounting for host factors such as genetics and arsenical-specific metabolisms 

[5]. Genome-wide association studies and advancements in analytical methods have led to a 

robust understanding of the importance of human genetic determinants of arsenical 

metabolism that drive chemical speciation of arsenic in mammalian cells [6]. However, 

human genetic variability does not adequately explain disease penetrance among exposed 

populations, leaving the door open for discovering other important explanatory factors [7, 8].

A microbiome can be defined as the community of microorganisms occupying a defined 

ecosystem and the sum total of their physical, biochemical, and ecological activities [9]. The 

human microbiome is taxonomically diverse and comprised of bacteria, viruses, fungi, 

micro-eukaryotes, and archaea. It is now well appreciated that interactions between the 

microbiome, host cells, and the abiotic environment have significant impacts on human 

health and disease [10]. Here, we focus on microbiome activity of the human gastrointestinal 

tract or gut. From an ecological perspective, the human gut is an ecosystem and provides 

ecosystem functions just like a forest or ocean “biome.” Metabolism, meaning the 

biochemistry performed by microbial and human cells in the gut, is a critical function that 

can both directly and indirectly impact human health. Since all living organisms have to deal 

with arsenic to minimize potential toxicity, it should be of no surprise that members of the 

gut microbiome can metabolize arsenicals, thereby changing its toxicity in host tissues. On 

the other hand, if arsenic exposure kills certain members of the gut microbiome, their 

functions will be lost, which may indirectly influence host health.

In this review, we overview human exposures to arsenicals, relevant pathways of human 

arsenical metabolism and excretion, and the influence of arsenic-microbiome interactions on 

host physiology, arsenical metabolism, bioavailability, and toxicity. We also discuss 

evidence of arsenic-induced compositional and functional changes in the microbiome and 

potential contributions to host health associated with those changes.
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Arsenic in the Human Environment

Water Contamination

Inorganic arsenic (iAs) leeches from mineral deposits in the earth’s crust and into 

underground aquifers, leading to human exposure when wells are drilled or dug to meet 

water needs. In fact, the most common route of arsenic exposure in humans is contaminated 

drinking water [1]. Arsenic input into underground aquifers can be accelerated by 

anthropogenic activities, such as mining, and surface water contamination is more often 

attributed to deposition from mining, smelting, and agricultural applications compared with 

natural leeching [11].

The rate of iAs leeching into the water table depends on arsenical redox state and geological 

factors, such as soil type. Unlike other toxic metal(oid)s in the environment, which may 

form inorganic cations in solution, dissolved iAs is found as oxy-acid compounds [12]. 

Under normal conditions with circumneutral pH, pentavalent arsenate (iAsV) exists as an 

oxy-anion (H2AsO4
−, HAsO4

2−), while reduced trivalent arsenite (iAsIII) is typically 

uncharged (H3AsO3
0) and more mobile in the subsurface [13]. In oxygenated solution, iAsV 

is most stable, but a shift to even mildly reducing conditions can favor the formation of the 

more mobile iAsIII. iAsIII is also considered more toxic and bioavailable to human cells 

compared with iAsV. Thus, by altering the redox conditions and pH as part of normal 

metabolism, microorganisms both directly and indirectly influence iAs cycling in soil, 

subsurface, and aquatic ecosystems [14].Collectively, this means that environmental 

microbiomes profoundly impact the mobility, bioavailability, and toxicity of environmental 

iAs to humans [14, 15].

Soils and Agriculture

Contaminated soils and dust have also been considered as potential sources of arsenic 

exposure, especially among children because of common hand-to-mouth behaviors [16, 17]. 

Although arsenic ingestion from soils is much lower than from food and water, relative 

concentrations of arsenic in contaminated soils can sometimes reach concentrations several 

orders of magnitude higher than the safe drinking water standard [18]. Contamination of 

soils is often a result of deposition from smelting, coal burning, and agricultural pesticides. 

Agricultural pesticides represent a significant source of surface soil contamination. During 

the late-nineteenth and early to mid-twentieth centuries, inorganic arsenates of copper, 

calcium, and lead were widely used as agricultural pesticides throughout the USA and other 

countries [19]. Despite the documented health hazards and environmental persistence of 

these inorganic metal(oid)s, lead arsenate (Pb5OH(AsO4)3) became the most prominent 

agricultural pesticide of the time and was not officially prohibited in the USA until 1988 

[20]. This widespread historical use still contributes to high levels of both lead and arsenic in 

the soils of current and former agricultural lands [21], and elevated levels continue to be 

reported in a variety of food products [22].

Despite the phasing out of most inorganic arsenicals from use, organic arsenical compounds 

(oAs) are still widely used in agriculture and landscape management. Monosodium 

monomethyl arsenate (MSMA) is a commercially available arsenical herbicide used for 
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residential lawn care and commercial weed control in golf courses, sod farms, and highway 

rights-of-way [23]. Synthetic phenyl-arsenic compounds, including Roxarsone and 

Nitarsone, are used in poultry farming as growth-promoting feed additives and to deter 

certain veterinary pathogens [24]. While these pentavalent oAs are generally considered 

non-toxic and safe at limited exposure levels, they are subject to degradation by native 

microbial communities, contributing to environmental arsenic pools and potential risks to 

public and environmental health [24–27]. The US FDA recently withdrew approval for the 

use of organoarsenical drugs as growth-promoting agents in poultry feeds, but they remain 

commonly used outside North America and the European Union [28].

Exposure Via Food

Detectible arsenic in foods raises concerns about the potential contribution of dietary 

exposures. Arsenic can accumulate in cereal grains, vegetables, and fruit crops from 

contaminated irrigation water or surface soil environments [29]. Rice stands out among 

cereal grains as one of the world’s most widely consumed staple foods. Rice and rice-based 

food products often contain higher fractions of pentavalent arsenicals (iAsV; 

monomethylarsonic acid (MMAV); and dimethylarsinic acid (DMAV)), compared to other 

grains and vegetables [30]. These pentavalent methylated arsenicals are likely produced by 

microbial communities associated with the plant roots prior to uptake [31]. Arsenic in 

seafood occurs predominantly as more complex forms of oAs compounds, including 

arsenobetaine and arsenocholine in finfish and a wide variety of arsenic-containing lipid and 

sugar compounds in mussels and shellfish [32–34]. As with all routes of arsenic exposures, 

toxicity depends on the chemical properties of the arsenical and so depending on the sources 

of contamination and environmental conditions, dietary sources may have complex and 

diverse arsenic speciation profiles, resulting in large differences in toxicity and risk of 

disease. Arsenical speciation along with variations in food matrices and nutritional state of 

the host likely lead to variation in bioavailability and risk of disease [35]. More research is 

necessary on food as a significant route for arsenic exposure.

Arsenic Inhalation

A number of different processes contribute to atmospheric arsenic levels, including volcanic 

activity, mining and industrial processes, combustion of fossil fuels, use of agricultural 

pesticides, and volatilization of arsine compounds. Compared with drinking water exposure, 

inhalation is considered a minor source of arsenic exposure for the general population [3]; 

however, those living or working in proximity to emission sources may be at substantially 

higher risk of adverse exposure outcomes [36]. The largest sources of atmospheric arsenic 

emission are metal smelting, coal combustion, and herbicides, with arsenic laden particulate 

matter (PM) being the major medium of atmospheric transport [37]. Particulate matter with 

an aerodynamic diameter smaller than 10 μm (PM10) can be inhaled, while only particles 

smaller than 2.5 μm (PM2.5) penetrate into the lungs where they can be deposited onto the 

pulmonary epithelium [38]. Arsenic in coal or mineral ores evaporates during combustion 

and high-heat processing, adsorbing onto finer particles of fly ash, and resulting in 

atmospheric emissions of arsenic-containing PM10 and PM2.5 [39]. Atmospheric arsenic 

from coal combustion has been cited as a major factor contributing to lung cancers in 

industrial regions of India and China [3].
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Tobacco smoke is another significant source of inhaled arsenic, as arsenic-based pesticides 

in the soil can be taken up by tobacco plants. The risk of disease from arsenic contaminated 

tobacco is difficult to determine because smoking behavior carries an independent 

carcinogenic risk and has a synergistic effect with arsenic in food and water [40]. Arsenic 

has also been detected in the synthetic fluids of electronic cigarettes and the vapors they 

produce [41]. While the reported concentrations were lower than those identified in 

combustible tobacco products and smoke, further evaluation and comparative risk 

assessment are still needed to determine whether these relatively new products pose a risk.

Arsenic in Medicine

In contrast with the health problems associated with chronic incidental exposures, arsenic 

compounds have also been used therapeutically throughout history. In the pre-antibiotic era, 

drugs like arsanilic acid (atoxyl) and arsphenamine (salvarsan) were commonly used to treat 

syphilis and trypanosomiasis, among other common ailments [42]. Before the use of 

arsenicals as antibiotics was curtailed and modern antibiotics (e.g., penicillin) were 

introduced, it was noted that both laboratory and clinical syphilis strains had evolved 

resistance to arsenical treatments [43, 44], hinting at the potential influence of arsenic on the 

evolutionary dynamics of human-associated bacteria and foreshadowing contemporary 

struggles with antibiotic resistance in the clinic.

Currently, arsenic trioxide (ATO) is still used as an anticancer treatment for patients with 

acute promylocytic leukemia (APL).The exact molecular mechanisms of its anti-cancer 

activity are still being studied, but it has been suggested that arsenic biotransformations in 

the body are important for ATO’s clinical efficacy [45]. There is also growing evidence that 

the microbiome alters patient response and clinical outcomes of chemotherapy [46], leading 

some to speculate that targeted manipulations of the microbiome could be used to improve 

clinical outcomes and/or reduce toxic side-effects of current chemotherapeutics [47]. 

However, this concept of “pharmacomicrobiomics” has yet to be applied to therapeutic uses 

of ATO and recent trials exploring orally delivered ATO as a replacement for intravenous 

treatments [48] underscore the importance of determining the microbiome’s influence on 

arsenic metabolism in the context of human medicine.

Human Arsenic Metabolism

In humans and many of other animals, iAs entering the body in food and water is methylated 

as the primary means of systemic detoxification. Methylated arsenicals are more readily 

excreted, leading to enhanced body clearance [49], and efficient arsenic methylation is 

associated with beneficial long-term disease outcomes [50]. The complete mechanism of 

mammalian arsenic methylation with respect to the identity of reactants and order of 

products is still somewhat debatable and has been extensively reviewed [51, 52]. To 

summarize, iAs is taken up into circulation by both “trans-cellular” transport processes (i.e., 

passing through cells) and “para-cellular” transport processes (i.e., passing between cells) 

[53]. Within cells, iAs is transformed by a series of reduction and oxidative methylation 

steps, and almost exclusively into four methylated products: monomethylarsonic acid 

(MMAV), monomethylarsonous acid (MMAIII), dimethylarsinic acid (DMAV), and 
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dimethylarsinous acid (DMAIII). Methylation is enzymatically catalyzed by arsenic (3+) 

methyltransferase (AS3MT), utilizing S-adenosylmethionine (SAM) as a methyl group 

donor in concert with endogenous reducing agents such as thioredoxin (Trx) and glutathione 

(GSH) [54, 55]. Recently, a hypothesis based on evidence from crystallography 

demonstrated that pentavalent intermediates are likely reduced while still bound to AS3MT, 

which suggests that more toxic trivalent arsenicals may be the end products of methylation 

rather than the less toxic pentavalent species [56].

While GSH is an important reductant in the methylation pathway, arsenic-GSH-conjugates 

are also actively transported and effluxed from cells, and arsenic tri-glutathione (As(GS)3) 

and monomethyl arsenite di-glutathione (MMA(GS)2) have been detected in urine and bile 

of mammals [57]. These results suggest that conjugation is an important metabolism with 

respect to the mobility of arsenic in human tissue. In addition to arsenic-GSH conjugates, 

several sulfur-containing arsenicals can be formed in the body. In vitro and in vivo studies in 

a variety of organisms have demonstrated the production of thioarsenicals following arsenic 

exposure [58]. For example, thioarsenicals have been detected in human urine and in urine 

and feces of animal models [59, 60]. Human and rat red blood cells both have the capacity to 

thiolate arsenic in vitro [61], but the toxicological implications and primary mechanism(s) of 

arsenic thiolation in the body remain unclear. Regardless, pentavalent monothiolated 

arsenicals like monomethyl monothioarsonic acid (MMMTAV) and dimethyl 

monothioarsinic acid (DMMTAV), have cytotoxicity more similar to trivalent arsenicals 

compared with their non-thiolated counterparts (i.e., pentavalent methylated oxoarsenicals) 

[62]. A number of different chemical pathways have been proposed for the formation of 

thioarsenicals and have been thoroughly reviewed [51]. In general, these pathways are non-

enzymatic and involve interactions between methylated arsenicals and sulfide ions or bound 

sulfane sulfur, resulting in one or more of the arsenic-oxygen bonds being replaced by 

analogous arsenic-sulfur bonds [51]. Hydrogen sulfide (H2S) is an important signaling 

molecule throughout the body and source of sulfide ions. The liver is perhaps the most well-

known source of biogenic H2S, suggesting that hepatocytes play a significant role in 

thiolation. This hypothesis, however, has yet to be experimentally addressed.

Human Equivalent Arsenic Dosing in Mice

Selection of an appropriate toxicant dose in animal studies is critical for drawing 

conclusions regarding human risk, and itis important to standardize dosing across studies 

simply for consistency. In general, dosing levels are based on three criteria. First, some 

experiments are meant to evaluate mechanism and not necessarily natural history. For 

example, acute arsenic toxicity studies in mice typically use high doses of inorganic arsenate 

(iAsV) or arsenite (iAsIII), even though most humans are naturally and chronically exposed 

to much lower levels. However, the intent of most acute studies is to test whether a certain 

factor (host and/or microbial) influences the onset and/or progression of an observable 

outcome. As such, acute studies in mice often utilize doses between 1 and 50 ppm (Table 1). 

This range of dosing was also used to develop a human pharmacokinetic and 

pharmacodynamic modeling framework at the 2007 Annual Meeting of the Society of 

Toxicology [78]. Consequently, in terms of dosing per se, studies within this range will be 

consistent with the bulk of the literature.
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Second, if the focus of a study is on toxicity, the level of exposure should be above the 

lowest-observed-adverse-effect level (LOAEL) and somewhat lower than the immediate 

lethal dose (LD50). Unfortunately, there is considerable variability in LOAEL and LD50 

estimates for humans, but according to the ATSDR and EPA’s toxicological profile on 

arsenic[79], the LOAEL for acute, oral exposure (Appendix A in profile) is approximately 

0.05 mg iAs kg−1 body weight day−1. Assuming (as recommended by ATSDR [79]) a 55-kg 

person drinking 4.5 L of water day−1 and a 0.002-mg iAs kg−1 day−1 daily food intake, this 

level of exposure equates to 611 ppb arsenic in drinking water. Also, according to the 

ATSDR, death in oral arsenic exposures in drinking water > 60,000 ppb can result in death. 

Thus, exposures between 0.6 and 60 ppm should be relevant for human acute toxicity.

Third, and arguably the most important consideration, is allometric conversion. Such 

conversions take into account important physiological differences between humans and 

animals, such as body surface area. In other words, if mice have less surface area but the 

same uptake rate, then a higher dose is needed to reach the same exposure. For example, the 

FDA suggests [80] that a human equivalent dose (HED) in drug exposure studies is:

HED mg
kg = Animal dose mg

kg multiplied by Animal Km
Human Km

where Km values are the ratio of body weight to surface area (mouse Km = 3, human Km = 

37) [81]. Using this equation, 10, 25, and 100 ppm exposures in mice correspond to HEDs 

of 811, 2,027, and 8108 ppb in humans. All three of these exposures are well within the 

ATSDR toxicity range described above. In addition, the first level (811 ppb) is actually 

lower than that of drinking water recently reported for an arsenic rich part of Chile [82]. The 

middle and upper exposure levels represent doses where one can expect to see increasing 

(dose-dependent) levels of toxicity.

Bacterial Arsenic Metabolism

Bacterial arsenic metabolism has largely been identified and studied by examining microbial 

“resistance” to arsenic-induced effects (e.g., killing). Although metabolism and resistance 

often detoxify arsenicals, not all resistance pathways involve the biochemical transformation 

of arsenic (see below). Resistance gene clusters, dubbed ars operons, were first characterized 

in plasmids isolated from Escherichia coli and Staphylococcus aureus [83, 84]. Bacterial ars 
genes have since been identified and characterized in a variety of clinically important 

pathogens, including Listeria monocytogenes, Campylobacter jejuni, and Yersinia strains 
[85]. The ars operon has also been found in human gut symbionts like Bacillus subtilis [86] 

and the obligate anaerobe, Bacteroides vulgatus [87]. The molecular functions, distribution, 

and evolution of bacterial arsenic resistance have been reviewed in depth [85, 88–90]. Here, 

we provide an overview of common modes of bacterial arsenic resistance and metabolism, 

with a focus on those described or predicted in the intestinal environment (Fig. 1).

iAsV Reduction and iAsIII Efflux

The ‘core’ function of the ars operon is conferred by the arsBC genes, encoding for an 

iAsIII-specific efflux pump (arsB) and a cytosolic iAsV oxidoreductase (arsC) [91, 92]. 
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Resistance to iAsIII can be as simple as a one-step process consisting of ArsB-mediated 

efflux, while resistance to iAsV involves at least a two-step process via ArsC-mediated 

reduction to iAsIII followed by ArsB-mediated efflux. Most ars operons also contain a 

regulatory gene, arsR, that encodes a trans-acting, iAsIII-responsive transcriptional repressor 

[93, 94]. Efflux via ArsB is complemented or augmented in some bacteria by the 

homologous Acr3 transporter, sometimes referred to as ArsY [95, 96]. Despite independent 

evolutionary origins, ArsB and Acr3 have nearly identical functions with respect to arsenic. 

Both function as secondary active transporters coupling iAsIII efflux with H+ ion exchange, 

and both can function as subunits in a heterodimeric, ATP-driven iAsIII pump in the 

presence of the catalytic subunit, ArsA [97]. arsB and acr3 genes are found in bacterial ars 
operons in roughly equal frequency, suggesting that iAsIII resistance was very important in 

the evolution of arsenic resistance [90].

Oxidoreductase enzymes encoded by arsC genes are structurally and functionally similar to 

low molecular weight tyrosine phosphatases [98]. ArsC-mediated iAsV reduction is coupled 

with cellular thiol-disulfide exchange systems, which vary depending on the lineage of ArsC 

expressed [99]. In E. coli and other proteobacteria, iAsV reduction is commonly coupled 

with GSH and glutaredoxin, while thioredoxin-dependent ArsC enzymes are common in 

Firmicutes and Bacteroidetes phyla [100]. A third class of ArsC enzymes, first characterized 

in an isolate of Corynebacterium, utilizes the cellular mycothiol/mycoredoxin system [101]. 

This little studied redox system is so far uniquely found in Actinobacteria but has functional 

similarities to the GSH/glutaredoxin systems found in Proteobacteria.

Many ars operons also carry extended ars genes that support this core functionality. Two of 

the most common are arsA and arsD. As mentioned above, arsA encodes for a catalytic 

ATPase that forms a heterodimeric complex with ArsB/Acr3 transporters capable of ATP-

driven primary efflux of iAsIII [97]. ArsD is a metallochaperone protein that facilitates 

cytosolic transport of reduced iAsIII to the ArsAB complex for efflux [102]. While arsA and 

arsD are not essential for arsenic resistance, their presence greatly improves the efflux 

efficiency and transcriptional regulation of this arsenate reduction/arsenite efflux resistance 

pathway.

In addition to cytosolic arsenate reduction, many prokaryotes are capable of utilizing iAs for 

respiration. These systems differ from ArsC-mediated iAsV reduction first because they take 

place in the periplasm and second because they harness energy from the redox conversion 

between iAsIII and iAsV in the form of electrochemical gradients and electron transport. To 

date, there is little evidence of respiratory arsenic metabolism in the human gut environment. 

This may be due to the abundance of more favorable electron donor/acceptor couples in the 

intestine, although it is possible that they have simply not been identified yet. Several expert 

reviews are available that detail the structures, mechanisms, and distribution of these energy-

harnessing arsenic systems [103, 104].

Organoarsenic Metabolism in Bacteria

Human AS3MT, mentioned above, is a homolog of prokaryotic ArsM. The presence of this 

methylation enzyme in representative organisms from all three domains of life indicates that 

this metabolism was essential very early in earth’s biological history. Bacterial ArsM 
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catalyzes the methylation of iAsIII utilizing SAM as a methyl donor in a similar fashion to 

that of human AS3MT. Arsenic-methylating bacteria can generate significant amounts of 

mono-, di-, and trimethylated arsenicals from iAsIII [105]. While arsenic methylation 

functionally detoxifies iAs into MMAV and DMAV under oxidizing conditions, bacterial 

methylation has been shown to yield more toxic trivalent forms of mono and dimethyl 

arsenic in a simulated gut environment [106]. Li et al. recently proposed that arsenic 

methylation would not have evolved as a mode of detoxification in the early biosphere, but 

rather as a functional secondary metabolic pathway [107]. Similar to allelopathy in plants, 

arsenic-methylating bacteria may have gained a selective advantage in anoxic environments 

by secreting toxic MMAIII into their surroundings, thus inhibiting the growth of competitors. 

Interestingly, greater amounts of MMAIII are formed when arsenic-methylating bacteria are 

grown in co-culture, whereas the less toxic MMAV is the favored product of the same 

organisms grown in monoculture [108]. Li et al. also discuss the evolution of multiple 

resistance pathways against MMAIII and other toxic trivalent organoarsenicals, including 

efflux mediated by ArsP [109] and ArsK [110], demethylation back to iAs by ArsI [25], and 

chemical oxidation to the pentavalent state (oAsIII to oAsV) by ArsH [111]. ArsP mediated 

efflux is more specific to MMAIII but can also confer resistance to other trivalent 

organoarsenicals. ArsK is more promiscuous, conferring resistance to a variety of organic 

and inorganic trivalent arsenicals. ArsI is a carbon-As bond lyase capable of demethylating 

MMAIII to the less toxic iAsIII [25, 112].

Although arsM has been found in the genomes of different bacteria that inhabit the human 

gut, it is not yet clear whether arsenic methylation occurs in this environment. Similarly, 

ArsP, ArsH, and/or ArsI activities have not been experimentally evaluated and so it is 

unknown whether these play a role in human arsenic toxicity. It is worth noting that arsI has 

only been identified in aerobic bacteria, suggesting that it may not be common amongst the 

abundant anaerobic bacteria of the human gut [25]. That said, there is plenty of oxygen 

along the gut mucosa to support facultative bacteria and so even oxygen-dependent arsenic 

metabolisms should be considered possible until experimentally ruled out.

Arsenic-Microbiome Interactions

Much of what is known about arsenic-microbe interactions comes from environmental 

microbiology and in ecosystems such as soil and the subsurface, where microbial 

metabolisms are the primary determinants of arsenic speciation, mobility, and toxicity. Many 

of the same principles used in these environmental microbiology studies of arsenic can be 

directly applied to understand arsenic interactions with the human microbiome. For 

example, arsenic-microbiome interactions can have three general and sometimes overlapping 

outcomes: no noticeable effect, perturbation of microbiome taxonomic structure and 

function, and alteration of the pharmacological and/or toxicological properties of the 

toxicants [72]. More than a few studies argue that host metabolism is as important or 

perhaps more important than microbiome metabolism with respect to biotransformation and 

toxicity of arsenic [113, 114]. As discussed below, there is now strong evidence that the 

microbiome is an important determinant of exposure outcomes. Alteration of microbiome 

structure function is often part of the body’s physiologic response to physical and perceived 

threats, and microbiome structure-function relationships have been described for many 
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human diseases, syndromes, and behaviors. Recovery from an altered microbiome structure 

depends on which members of the microbiome are affected and whether these taxa can 

recover. If they cannot, a “dysbiotic” state may persist that promotes deleterious health 

outcomes. For example, perturbation of the gut microbiome by a toxicant can influence 

normal host uptake, metabolism, and excretion of dietary nutrients and may feedback on 

uptake of the toxicant. Similarly, toxicant killing of microbiome members may alter the 

maintenance of the gut epithelial barrier, regulation of host inflammatory responses, and 

synthesis or recycling of important metabolites and co-factors involved in the host’s toxic 

response pathways. Evidence for this type of interaction is also discussed below. Finally, 

pathologic outcomes due to chemical toxicant alteration of microbiome structure-function 

are juxtaposed by outcomes caused by microbiome biotransformation of chemical toxicants 

that alter their physicochemical properties. Sometimes these alterations result from direct, 

enzymatic activity (e.g., ArsBC), but sometimes they result indirectly and non-enzymatically 

when byproducts of microbial metabolism chemically interact with toxicants. Adding to this 

complexity, some biotransformations may have no effect, some may ameliorate, and some 

may significantly increase toxicity. As with the other types of interactions, evidence for 

microbiome biotransformation of arsenic is discussed below.

The Microbiome Alters Arsenic Exposure

The notion that intestinal bacteria contribute to health outcomes following arsenic exposure 

is now more than a century old. In 1917, Puntoni reported the ability of spore-forming 

bacteria isolated from human stool to produce a potent garlic odor when cultivated in the 

presence of cacodyl arsenic [115]. It was noted at the time that the odor was also common in 

people taking therapeutic arsenical compounds orally, but less common when taken 

subcutaneously, leading him to suspect that the gut microbiome was chemically altering 

arsenic. In another study, Challenger and Higginbottom (1935) identified a similar gaseous 

arsenical produced by Scopulariopsis brevicaulis (formerly Penicillium brevicaule) as 

trimethyl arsine gas [116]. More recently, E. coli isolated from the cecal contents of rats 

were shown to metabolize DMAsV, producing TMAVO and an unidentified arsenical [117].

In addition to experiments in pure cultures of bacteria, arsenic metabolism has been studied 

in the context of microbiome members experimentally evaluated in the lab (ex vivo). 

Incubations of the intestinal contents of rodents demonstrated a high capacity for enzymatic 

reduction and methylation of iAs mediated by the microbiome [118, 119]. Furthermore, two 

different studies showed that human microbiomes reduced and methylated iAsV in a 

simulated human gut environment, yielding both toxic (MMAIII and DMAIII) and 

comparatively less toxic methylated arsenicals (MMAV and DMAV) [106, 120]. 

Interestingly, iAsV was reduced to iAsIII even in autoclave sterilized experimental controls, 

suggesting that non-enzymatic processes may contribute to this transformation.

While the above studies provide strong evidence that the microbiome has the potential to 

influence arsenic toxicity, none of them experimentally determined the overall impact that 

the microbiome has on host exposure. In Coryell et al., our lab showed that antibiotic 

treatment of mice prior to arsenic exposure significantly reduced fecal arsenic excretion and 

increased host accumulation of arsenic in the liver and lung tissues [121]. We speculated that 
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microbial biomass in the gut, depleted by antibiotic exposures, was involved in mediating 

fecal elimination of ingested arsenic [121]. Pure culture experiments by others demonstrated 

adsorption of iAs onto extracellular polymeric substances of Gram-positive, but not Gram-

negative, bacterial isolates [122], providing a possible mechanism for microbial arsenic 

accumulation in the gut. Some evidence from our study also supported this mechanism, as 

we found the Gram-positive bacterium, Faecalibacterium prausnitzii, but not Gram-negative 

E. coli, provided protection to gnotobiotic AS3MT-KO mice during exposure [121].

Arsenic Perturbation of the Microbiome

Arsenic has been found to change the taxonomic structure of the microbiome in lab animals 

and human populations. In mice and rats, arsenic exposure induced shifts in microbiome 

community membership, metabolite profiles, the functional metagenome, and proteomic 

expression [68, 123–125]. Both arsenic dose and length of exposure were sufficient 

modifiers of the gut microbial community [125], with significant changes reported after 

mice drank water containing as little as 10 ppb of iAsIII [64] (i.e., the current maximum 

contaminant level for drinking water set by the World Health Organization and the US 

Environmental Protection Agency). Even though microbiome change can be quantified 

following arsenic exposure, it can be difficult to determine whether these changes have 

deleterious effects. For example, lab animal studies have made efforts to identify plausible 

links between arsenic-induced changes in the microbiome and host physiology, including 

altered host nitrogen homeostasis [64], energy metabolism [126], gut immune signaling 

[127], and epithelial histology [123]. In all of these cases, however, it remains unclear 

whether the observed changes in the host were caused directly by changes in the microbiota, 

arsenic toxicity, or interactions between them. It is necessary to understand the difference 

between association and causation and complementary experiments in gnotobiotic animal 

models can help fill this gap.

In a cohort of US infants with low to moderate arsenic exposure, microbes representing 8 

genera from the Firmicutes phylum were positively associated with urinary arsenic 

concentrations at 6 weeks of age, while 15 genera, including Bacteroides and 

Bifidobacterium were negatively associated. Notably, effects were stratified by sex and 

feeding status, with male and formula fed infants more susceptible to arsenic-related effects 

on the microbiome [128]. This is in contrast with findings in CD-1 mice that female mice 

were more sensitive to arsenic-induced microbiome perturbation [127]. In Bangladeshi 

children (4–6 years of age), high levels of arsenic in home drinking water were associated 

with a greater abundance of Gammaproteobacteria in the microbiome, more specifically, 

members of the Enterobacteriaceae family [129]. Metagenomic analysis identified an overall 

enrichment of genes involved in antibiotic exposure and multi-drug resistance, suggesting 

that arsenic and antibiotic resistance may be effectively linked. This finding is supported by 

animal studies demonstrating co-enrichments of antibiotic and metal resistance genes in 

fecal metagenomes of arsenic-exposed mice [123, 130]. Arsenic resistance genes have been 

characterized on a number of bacterial plasmids and other mobile genetic elements that also 

contain antibiotic resistance determinants [85], and bioinformatic analyses have identified a 

high degree of co-occurrence between ars genes, resistance to tetracycline, mercury, and 

copper, and a class 1 integrase gene associated with bacterial horizontal gene transfer [131]. 
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Thus, enrichment of antibiotic and metal resistance in the arsenic-exposed microbiome may 

be mediated by both co-selection and mobilized genetic elements.

The effects of arsenic on the microbiome appeared to be unique when compared with other 

environmental metal and metalloid toxicants [125, 132]. However, there is little similarity in 

compositional shifts during arsenic exposures in different studies. For instance, in Dong et 

al., Enterobacteriaceae were effectively the only taxa enriched in the high arsenic-exposed 

population of Bangladeshi children [129], while Hoen et al. reported a strong negative 

association between Enterobacteriaceae and urinary arsenic in US infants [128]. Nutritional 

factors may help explain differences between studies. In mice, moderate zinc deficiency was 

shown to exacerbate arsenic-induced microbiome shifts [126], while iron supplementation 

reduced the effects of arsenic on the microbiome and host response [123, 133]. Enrichments 

of bacterial iron acquisition pathways under arsenic exposure were also reported in rats, 

including the bacterial iron complex transport system [125] and enterochelin, a powerful 

iron chelator commonly found in members of Enterobacteriaceae [129].

In summary, arsenic exposure may cause compositional and functional changes in the gut 

microbiome, but not all reports identified consistent effects. Animal experiments using a 

variety of exposure conditions, delivery routes, microbiome analyses, and arsenic 

concentrations (10 ppb–100 ppm), have reported arsenic-induced perturbations dependent on 

host sex, arsenic dose, exposure time, and dietary micronutrients. Arsenic may be an 

important factor in the enrichment, spread, and/or maintenance of antibiotic resistance 

genes, and further investigation is needed to determine whether arsenic and other metal 

toxicants have an important influence on the reservoir of antibiotic resistance genes 

currently in circulation. Both clinical and epidemiological studies examining arsenic-

microbiome interactions should clarify these and other potential links and these studies 

should include arsenical speciation as well as proxies for microbiome function.

The Microbiome Decreases Arsenic Toxicity

In vivo, microbiome “phenotypes” have been linked to altered ratios of methylated and 

inorganic arsenicals in the host [67]. However, few studies have directly linked microbiome 

change, alteration, or absence with host health. We recently used humanized AS3MT-KO 

mice (i.e., germ free mice that received a human fecal transplant) to evaluate the effect of 

microbiome interindividual variability on disease outcome (mortality) [121]. Each group of 

humanized mice represented a different human donor, and each had markedly different 

microbiome compositions. We found that only a few bacteria were consistently (i.e., across 

humanized groups) associated with a beneficial outcome (i.e., longer survival) and that they 

belonged to some of the most common taxa found in the human gut. For example, two 

representatives of the Blautia genus as well as representatives of the Lachnospiraceae, 
Ruminococcus, and Faecalibacterium families were significantly associated with survival 

across humanized groups, but these are all very common and diverse groups of bacteria. It is 

possible that although these taxa were consistently associated across subjects, important 

strain level differences would weaken or even remove the statistical associations. In other 

words, taxa that are beneficial in one individual may not be beneficial in another person 

because bacterial taxonomy often does not reliably define function (Note: the first three E. 
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coli genomes to be sequenced shared only 40% of their protein-coding loci) [134]. 

Regardless, we showed definitively that an intact microbiome significantly delayed arsenic-

induced mortality in A3mt-KO mice, compared with germ-free and antibiotic-treated 

groups. Thus, there is now strong evidence that the microbiome protects the host from 

arsenic toxicity [121]. Since this protection seems to be donor microbiome dependent, the 

hunt is on for the specific members and metabolic pathways that are most beneficial and 

might be amenable for development as novel arsenicosis treatment and prevention strategies.

Challenges and Recommendations

Terminology like “toxicomicrobiomics” and “pharmacomicrobiomics” have emerged in 

recent literature from increased interest in microbiome-mediated metabolism of xenobiotic 

compounds, and its influence on physiological outcomes [135]. These emerging fields 

provide a framework for incorporating microbiome research into quantitative risk 

assessment, public health, and precision medicine. Despite many unknown factors, evidence 

discussed in this review suggests that the microbiome plays a significant role in limiting host 

exposure to arsenic. Further study of these functions will be needed to determine whether 

effects are due to direct microbial metabolism of arsenic or some other indirect mechanisms. 

Mechanistic research should emphasize relevant dosimetry, appropriate experimental 

manipulations, and establishing causal links to health outcomes in the host. Experimental 

reproducibility and generalizability are perennial challenges in health research, especially 

when it comes to the microbiome. Microbiome variation between different animal vivariums 

can contribute to unexpected experimental variation and a lack of reproducibility in results 

[136]. This not only demonstrates the urgency for developing better standardizations in 

animal models but also highlights the need for further investigation of natural microbiome 

variation between individuals and populations. Germ-free and gnotobiotic models, along 

with transplantation of human microbiomes, represent powerful tools for assessing the 

effects of natural or induced variation in vivo. Best practices are also being proposed for 

better standardization of experimental designs, sample collection, data analysis, and 

integration of microbiome data with other targeted or non-targeted data sets. More work is 

also needed in developing animal models of chronic arsenic toxicity, as chronic exposure 

represents the greatest threat to human well-being.

So far, very few epidemiological studies have investigated arsenic-microbiome interactions 

and even fewer interrogated host health as a variable. While single-timepoint observational 

studies may identify potential associations with microbiome composition or activity, they are 

limited to correlative inference. Prospective cohort studies tracking oral or fecal 

communities over time could help clarify key interactions between microbiome arsenic-

related diseases, and it is important to recognize that the microbiome is highly dynamic at 

the strain level [137]. Information regarding the incidence of enteric infection or antibiotic 

use in arsenic-exposed populations could be incorporated in both cohort and case-control 

studies to help determine the potential influence of these known microbiome modifiers on 

long-term risk on arsenic-related disease. Clinical research on the use of ATO in medical 

treatment of APL could also benefit from integration of microbiome analyses into empirical 

case reports and mechanistic studies. Given the evidence from. animal models, it is plausible 

that antibiotic use or other microbiome perturbations may influence the kinetics and efficacy 
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of ATO administered orally. Current evidence of the microbiome’s influence on arsenic 

uptake and excretion may or may not translate to ATO administration, as alternate chemical 

sources of arsenicals are more often common in animal models of arsenic toxicity.

Conclusions

The science of arsenic toxicology underwent a paradigm shift with the development of 

technologies and methods allowing for rapid and accurate speciation of arsenical 

compounds. Similarly, advancements in DNA sequencing and meta-omics technologies have 

changed our understanding of microbial interactions in human health. We reviewed and 

summarized recent insights into the influence of the microbiome on arsenic metabolism, 

excretion, and toxicity and discussed the influence of microbiome perturbations on arsenic 

exposure in both animal models and humans. The microbiome clearly has the potential to 

alter host arsenic metabolism and disease outcomes in mice. However, more research is 

needed to quantify microbial metabolism of arsenic, in vivo, and to identify underlying 

mechanisms influencing host uptake, metabolism, and excretion. Animal research is 

currently limited by availability of adequate animal models for arsenic-induced disease, 

especially with regards to health effects from chronic arsenic exposures, which represent 

perhaps, one of the greatest threats to human health. Further exploration and application of 

germ free and gnotobiotic animal models may help identify causal arsenic-microbiome links 

relevant to clinical practices and interventions.
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Fig. 1. 
Overview of supported and potential arsenic-microbiome interactions in the mammalian gut. 

Bacteria-encoded enzymes (a dotted boxes, black text) are known to biotransform inorganic 

and organic arsenicals via reduction, oxidation, methylation, and demethylation reactions (a 
dotted boxes, blue text) in combination with requisite substrates (a dotted boxes, red text). 

Bacterial metabolites (a dotted box, green text) may also be important for arsenical 

biotransformation in the gut. Starting and end products in these biotransformations are 

labeled with arrows. While bacteria are known to drive all these reactions, evidence for 

demethylation and oxidation has yet to be generated for bacteria living in a mammalian gut 
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and thiolation due to bacterial hydrogen sulfide (H2S) production has yet to be shown 

directly. The overall fate of arsenic in the gut (b) is influenced by the composition of 

intestinal contents and the likelihood of bacteria to sequester arsenic into biomass. These 

routes are similar to source-sink dynamics that take place in the environment.
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