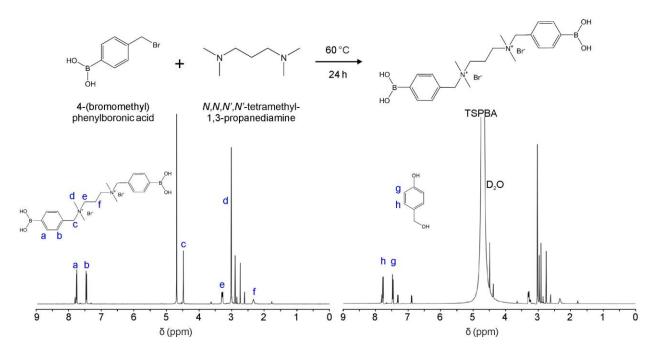
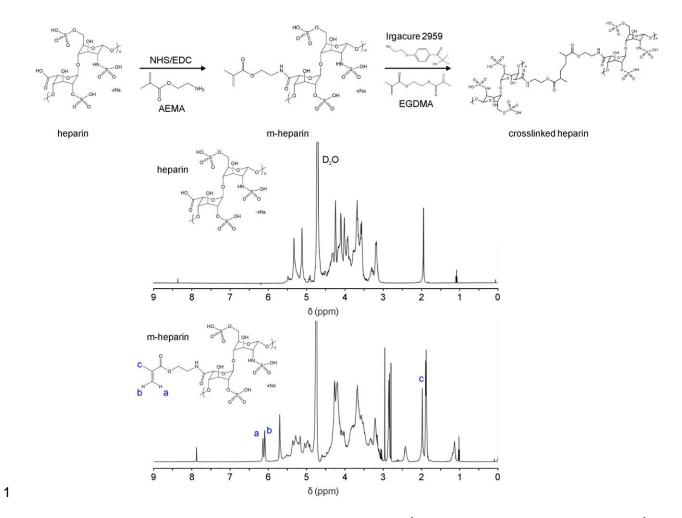
1 Supplementary Information

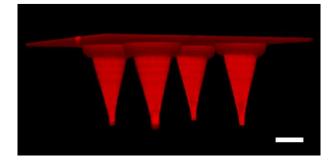
2 Scarless Wound Healing Programmed by Core-Shell Microneedles

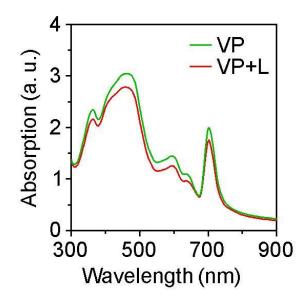

- 3 Ying Zhang^{1,+}, Shenqiang Wang^{1,+}*, Yinxian Yang¹, Sheng Zhao¹, Jiahuan You¹, Junxia Wang¹,
- 4 Jingwei Cai², Hao Wang¹, Jie Wang³, Wei Zhang³, Jicheng Yu^{1,2,4,5,6}, Chunmao Han³,
- 5 Yuqi Zhang^{1,3,6}*, Zhen Gu^{1,2,4,5,6,7}*
- 6 ¹Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of
- 7 Pharmaceutical Sciences, Zhejiang University
- 8 Hangzhou 310058, China
- ²Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang
- 10 University
- 11 Hangzhou, 310016, China
- ³Department of Burns and Wound Care Center, the Second Affiliated Hospital, College of
- 13 Medicine, Zhejiang University
- 14 Hangzhou 310009, China
- 15 ⁴Jinhua Institute of Zhejiang University
- 16 Jinhua 321299, China
- ⁵Liangzhu Laboratory, Zhejiang University Medical Center
- Hangzhou 311121, China
- ⁶National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University
- 20 Hangzhou 310058, China
- ⁷MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of
- 22 Polymer Science and Engineering, Zhejiang University
- 23 Hangzhou 310027, China
- ⁺These authors contributed equally: Ying Zhang, Shenqiang Wang
- *E-mail: guzhen@zju.edu.cn (Z.G.); yqzhang21@zju.edu.cn (Y.Z.); wangshenqiang@zju.edu.cn
- 26 (S.W.)

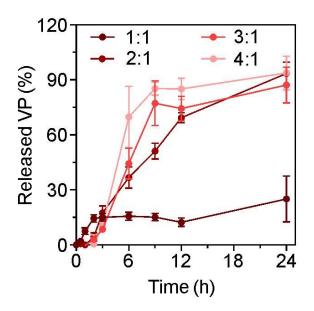
1 This PDF file includes:


- 2 Supplementary Fig. 1 Synthesis route of TSPBA and ¹H-NMR of TSPBA before and after
- 3 oxidization in 10 mM H₂O₂ for 1 h.
- 4 Supplementary Fig. 2 Synthesis route of m-heparin and ¹H-NMR of heparin and m-heparin.
- 5 Supplementary Fig. 3 A 3D Confocal image of Rhodamine B-labelled PF-MN shell.
- 6 Supplementary Fig. 4 Absorption spectra of VP before and after irradiation with 690 nm laser for
- 7 10 min.
- 8 Supplementary Fig. 5 The release profiles of VP from MN shell with different ratios of
- 9 PVA:TSPBA (1:1, 2:1, 3:1, and 4:1) in 0.1 mM H₂O₂.
- 10 Supplementary Fig. 6 Binding amounts of different inflammatory factors.
- 11 Supplementary Fig. 7 Weight remaining ratio of cHP incubated in PBS.
- 12 Supplementary Fig. 8 Evaluation of antibacterial and anti-biofilm activities by PF-MNs.
- 13 Supplementary Fig. 9 Accelerated wound healing with PF-MNs in acute wounds.
- 14 Supplementary Fig. 10 Gating strategies for macrophages and Treg cells analysis by flow
- 15 cytometry in acute wounds.
- 16 Supplementary Fig. 11 Gating strategies for macrophages and Treg cells analysis by flow
- 17 cytometry in wounds of diabetic mice.
- Supplementary Fig. 12 Blood routine on day 3 of diabetic mice received different treatments.
- 19 Supplementary Fig. 13 Immunofluorescence staining of wounds on day 7.
- 20 Supplementary Fig. 14 Histological analysis of wounds from diabetic mice on different days.
- 21 Supplementary Fig. 15 Blood biochemistry analysis on day 3 of diabetic mice received different
- 22 treatments.
- 23 Supplementary Fig. 16 Biocompatibility of PF-MNs in vivo.

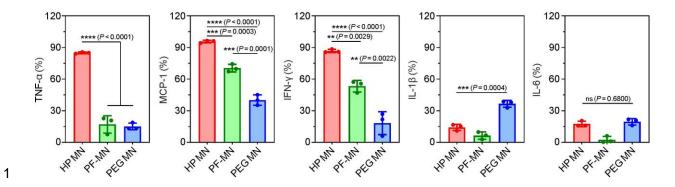
- 1 Supplementary Fig. 17 Mechanistic analysis of wound healing with PF-MN treatment.
- 2 Supplementary Fig. 18 Apoptosis analysis of fibroblasts.
- 3 Supplementary Fig. 19 Histological analysis of HS after PF-MN treatment on day 25 and day 35.


1 Supplementary Figures

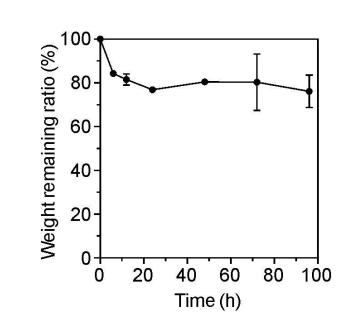

- Supplementary Fig. 1 | Synthesis route of TSPBA and ¹H-NMR of TSPBA before and after
 oxidization in 10 mM H₂O₂ for 1 h. ¹H NMR (500 MHz, D₂O) of TSPBA: δ 7.77 (d, 4H), 7.47 (d,
- 5 4H), 4.49 (s, 4H), 3.30 (m, 4H), 3.02 (s, 12H), 2.34 (m, 2H).


- **Supplementary Fig. 2** | Synthesis route of m-heparin and ¹H-NMR of heparin and m-heparin. ¹H
- 3 NMR (500 MHz, D_2O) of m-heparin: δ 6.13 (s, 1H), 6.09 (s, 1H), 1.98 (d, 3H).

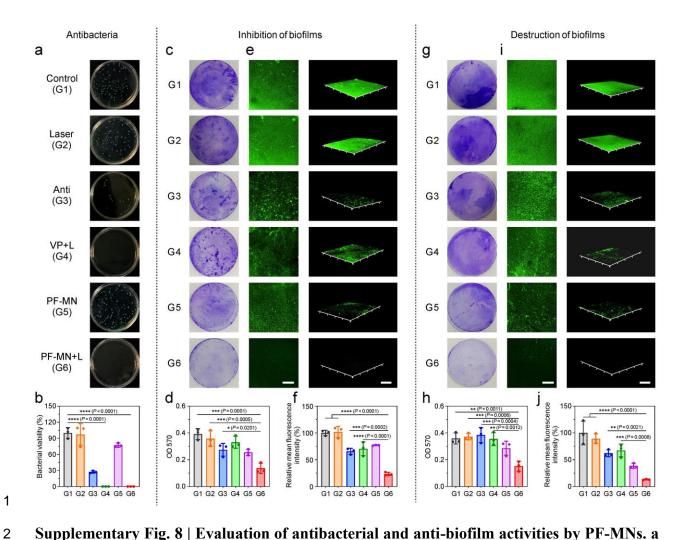
- 2 Supplementary Fig. 3 | A 3D Confocal image of Rhodamine B-labelled PF-MN shell. Red:
- 3 Rhodamine B. Scale bar, 200 μm.



- 2 Supplementary Fig. 4 | Absorption spectra of VP before and after irradiation with 690 nm laser
- 3 for 10 min.

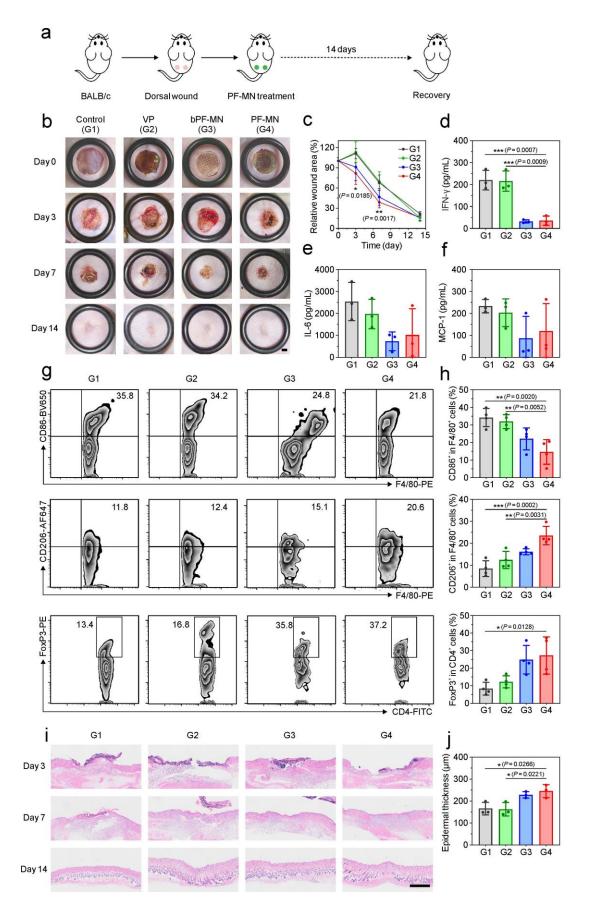


2 Supplementary Fig. 5 | The release profiles of VP from MN shells with different ratios of


- 3 PVA:TSPBA (1:1, 2:1, 3:1, and 4:1) in 0.1 mM H_2O_2 (n=3 independent samples). Data are
- 4 presented as mean \pm SD.

- 2 Supplementary Fig. 6 | Scavenged pro-inflammatory cytokines after incubation with heparin (HP)
- 3 MNs, PF-MNs, and PEG MNs for 24 h, including TNF- α , MCP-1, IFN- γ , IL-1 β , and IL-6 (n=3
- 4 independent samples). Data are presented as mean \pm SD and statistical significance was analyzed
- 5 via one-way ANOVA with Tukey's multiple comparison test. P value: ** P < 0.01, *** P < 0.001,
- 6 **** *P* < 0.0001.

- 2 Supplementary Fig. 7 | Weight remaining ratio of cHP incubated in PBS (n = 3 independent
- 3 samples). Data are presented as mean \pm SD.

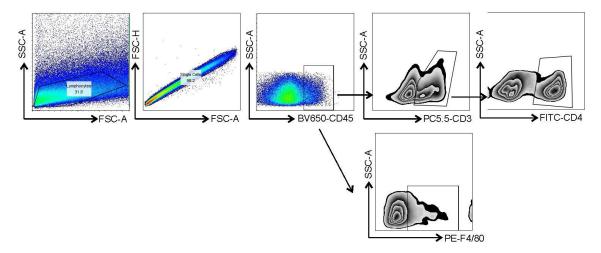

Corresponding bacterial viability of PA after different treatments (n = 3 independent samples). **c** Photographs of the immature biofilms stained by crystal violet, showing the inhibitory effects of PF-MNs. **d** Corresponding OD 570 values of immature biofilms of each group (n = 3 independent samples). **e** Confocal images and corresponding 3D images of DMAO-stained (green) immature biofilms after different treatments. Scale bar, 200 µm. **f** Corresponding fluorescence intensities of DMAO-stained (green) immature biofilms (n = 3 independent samples). **g** Photographs of the

Photographs of bacterial colonies of PA on LB agar plates after different treatments. **b**

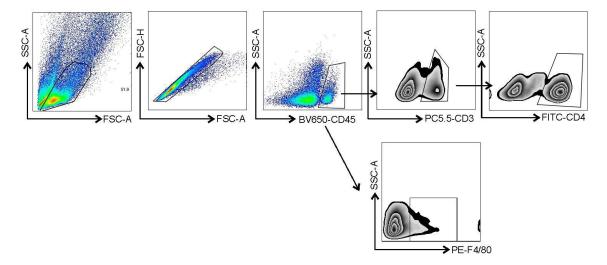
mature biofilms stained by crystal violet, showing the destructive effects of PF-MNs. h

Corresponding OD 570 values of mature biofilms (n = 3 independent samples). i Confocal images

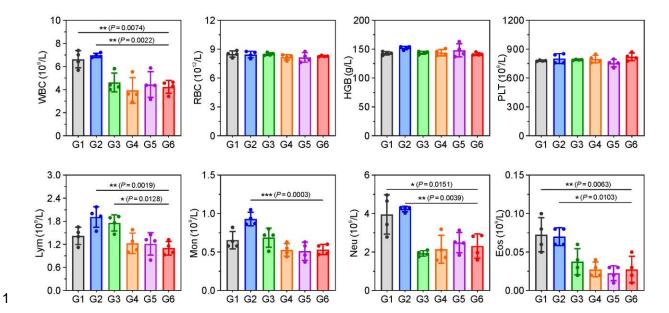
- 1 and corresponding 3D images stained with DMAO of mature biofilms in different groups. Scale
- bar, 200 μ m. **j** Corresponding fluorescence intensities of DMAO-stained mature biofilms (n = 3
- 3 independent samples). L: Laser. Three independent experiments were performed and
- 4 representative results are shown in c, e, g, and i. Data are presented as mean \pm SD and statistical
- 5 significance was analyzed via one-way ANOVA with Tukey's multiple comparison test. P value:
- 6 * P < 0.5, ** P < 0.01, *** P < 0.001, *** P < 0.0001.

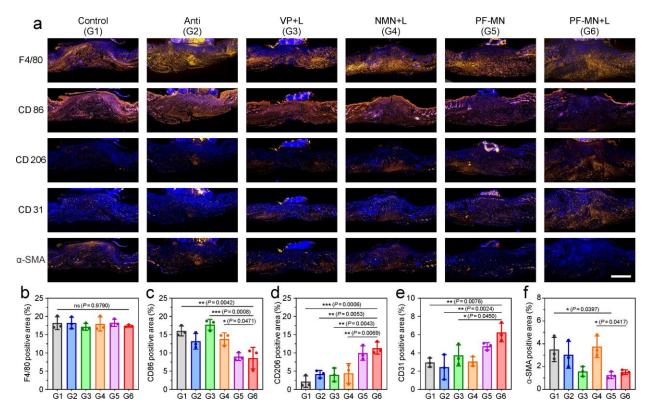

1 Supplementary Fig. 9 | Accelerated wound healing with PF-MNs in acute wounds. a Experimental schematic indicating PF-MN treatment process on BALB/c mice. **b** Photographs of 2 wounds of BALB/c mice after treatment with PBS, VP, blank PF-MNs (bPF-MNs), and PF-MNs. 3 4 Scale bar, 2 mm. c Quantitative analysis of the relative wound area after different treatments (n =5 6 biologically independent samples). **d-f** Quantitative analysis of the levels of IFN- γ (d), IL-6 (e), and MCP-1 (f) from the wounds on day 3 (n = 3 biologically independent samples). g-h 6 Representative flow cytometry plots (g) of macrophages and regulatory T cells and corresponding 7 quantitative analysis (h) from wounds on day 3 (n = 4 biologically independent samples). i H&E 8 9 staining images of wounds on day 3, 7, and 14. Scale bar, 1 mm. j Statistical analysis of epidermal thickness on day 7 (n = 3 biologically independent samples). Three independent experiments were 10 performed and representative results are shown in i. Data are presented as mean \pm SD and statistical 11

significance was analyzed via one-way ANOVA with Tukey's multiple comparison test. P value:


12

13

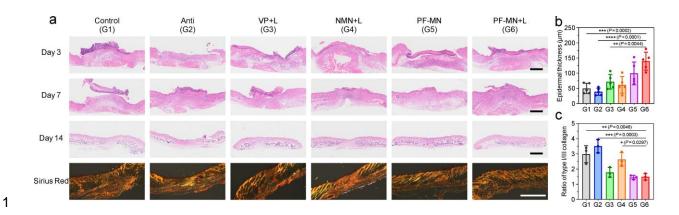

* *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001.


- 2 Supplementary Fig. 10 | Gating strategies for macrophage and Treg cell analysis by flow
- 3 cytometry in acute wounds.

- 2 Supplementary Fig. 11 | Gating strategies for macrophage and Treg cell analysis by flow
- 3 cytometry in diabetic wounds.

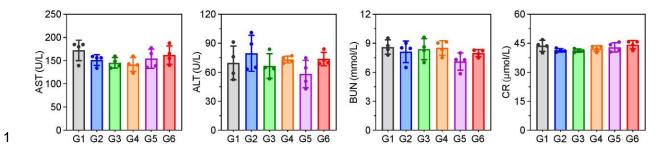
Supplementary Fig. 12 | Blood routine on day 3 of diabetic mice received different treatments (G1: Control, G2: Anti, G3: VP+L, G4: NMN+L, G5: PF-MN, G6: PF-MN+L) (n = 4 biologically independent animals). WBC: white blood cell, RBC: red blood cell, HGB: hemoglobin, PLT: platelet, Lym: lymphocyte, Mon: monocyte, Neu: neutrophil, Eos: eosinophil. Data are presented as mean \pm SD and statistical significance was analyzed via one-way ANOVA with Tukey's multiple comparison test. P value: * P < 0.05, ** P < 0.01, *** P < 0.001.

Supplementary Fig. 13 | Immunofluorescence staining of wounds on day 7. a Representative fluorescence images from wounds in diabetic mice. Scale bar, 1 mm. b-f Statistical analysis of F4/80 (b), CD86 (c), CD206 (d), CD31 (e), and α -SMA (red) (f) relative fluorescence areas (n =3 biologically independent samples). Three independent experiments were performed and representative results are shown in **a**. Data are presented as mean \pm SD and statistical significance was analyzed via one-way ANOVA with Tukey's multiple comparison test. P value: * P < 0.05, 7 ** *P* < 0.01, *** *P* < 0.001.

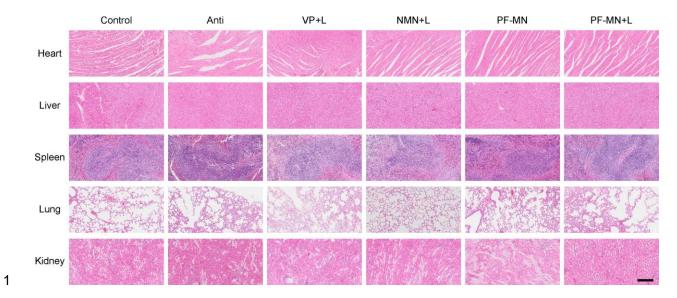

2

3

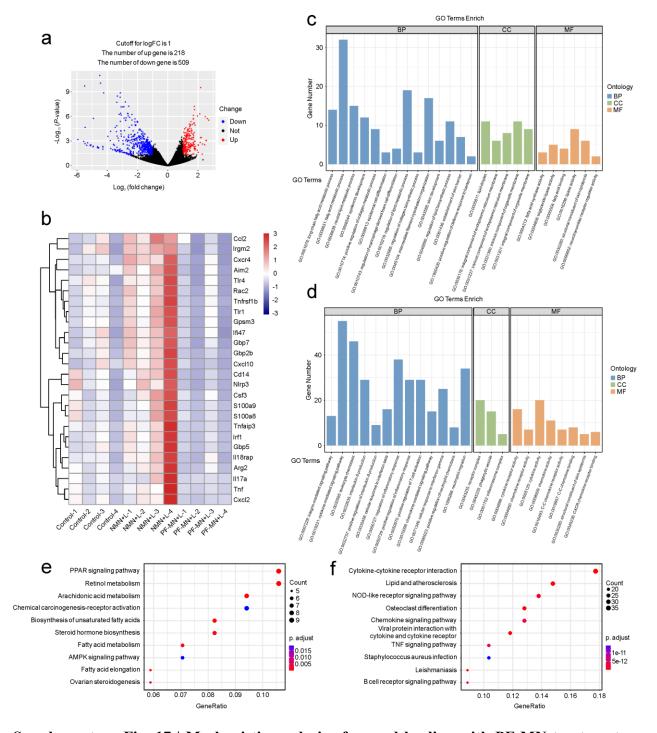
4


5

6

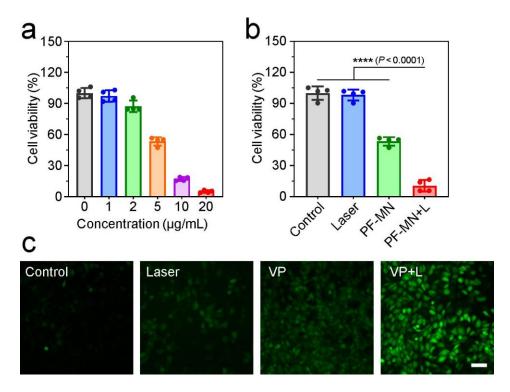


Supplementary Fig. 14 | Histological analysis of wounds from diabetic mice on different days.

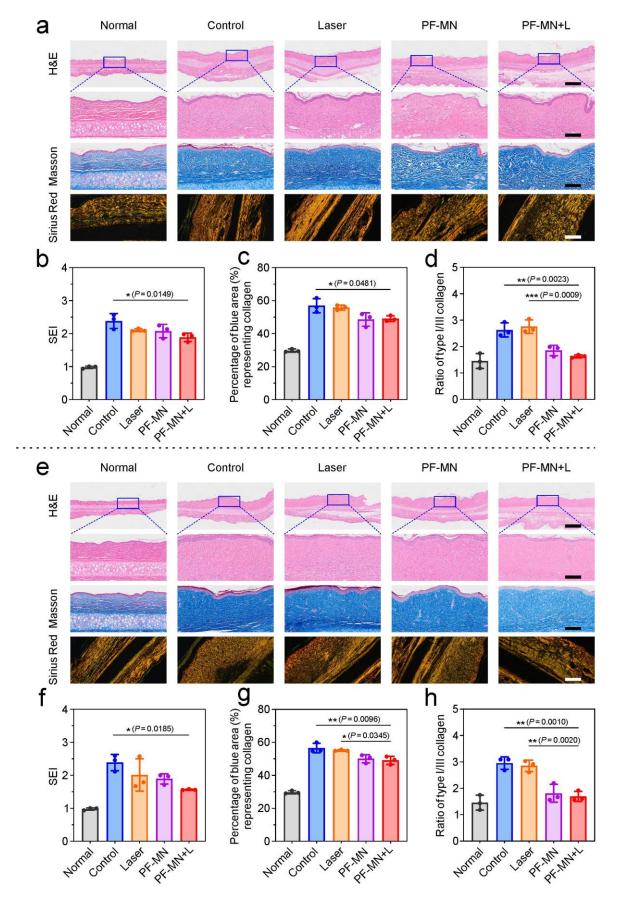

a Representative H&E staining images of wounds on day 3, 7, and 14 and Sirius Red staining images on day 14. Scale bar, 1 mm. **b** Corresponding statistical analysis of epidermal thickness on day 7 (n = 5 biologically independent samples). **c** The ratio of type I/III collagen on day 14 analyzed from the Sirius Red staining images (n = 3 biologically independent samples). Three independent experiments were performed and representative results are shown in **a**. Data are presented as mean \pm SD and statistical significance was analyzed via one-way ANOVA with Tukey's multiple comparison test. P value: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.001.

- 2 Supplementary Fig. 15 | Blood biochemistry analysis on day 3 of diabetic mice received different
- 3 treatments (G1: Control, G2: Anti, G3: VP+L, G4: NMN+L, G5: PF-MN, G6: PF-MN+L) (*n* = 4
- 4 biologically independent animals). AST: aspartate transferase, ALT: alanine transferase, BUN:
- blood urea nitrogen, CR: creatinine. Data are presented as mean \pm SD.

- 2 Supplementary Fig. 16 | Biocompatibility of PF-MNs in vivo. H&E staining images of major
- 3 organs (heart, liver, spleen, lung and kidney) from diabetic mice on day 14. Scale bar, 200 μm.
- 4 Three independent experiments were performed and representative results are shown.



Supplementary Fig. 17 | Mechanistic analysis of wound healing with PF-MN treatment. a


2

- Volcano plot of transcriptomic analysis of differentially expressed genes (n = 4 biologically
- 4 independent samples). **b** Heatmap analysis of differentially expressed genes. **c-d** GO analysis of
- 5 differentially expressed genes. e-f Enriched KEGG pathways of PF-MN+L versus Control and

- 1 NMN+L. The size of the dots indicates the number of genes associated with indicated KEGG terms
- 2 and the colour of the dots indicates the adjusted P values (p. adjust) calculated by one-sided
- 3 Fisher's exact test with Benjamini-Hochberg correction.

Supplementary Fig. 18 | Apoptosis analysis of fibroblasts. a Cytotoxicity of different concentrations of VP on fibroblasts (n = 4 independent samples). b Cell viability of fibroblasts after different treatments: laser irradiation, PF-MNs, or PF-MNs with laser irradiation (n = 4 independent samples). c Fluorescence images of fibroblasts treated with laser irradiation only, VP solution only (5 µg/mL), or VP solution (5 µg/mL) with laser irradiation, indicating the ROS generated by VP using DCFH-DA. Scale bar, 50 µm. Three independent experiments were performed and representative results are shown in c. Data are presented as mean \pm SD and statistical significance was analyzed via one-way ANOVA with Tukey's multiple comparison test. P value: **** P < 0.0001.

1 Supplementary Fig. 19 | Histological analysis of HS after PF-MN treatment on day 25 and day 35. a Representative H&E staining, Masson Trichrome staining and Sirius Red staining 2 images of HS on day 25. Scale bar, 1 mm in H&E staining image (top), 200 µm in H&E staining 3 4 image (enlarged), Masson Trichrome staining and Sirius Red staining images. b-d Corresponding 5 quantitative analysis of SEI (b), percentage of collagen (c), and type I/III collagen (d) of HS on day 25 (n = 3 biologically independent samples). e Representative H&E staining, Masson 6 Trichrome staining and Sirius Red staining images of HS on day 35. Scale bar, 1 mm in H&E 7 staining image (top), 200 µm in H&E staining image (enlarged), Masson Trichrome staining and 8 9 Sirius Red staining images. f-h Corresponding quantitative analysis of SEI (f), percentage of 10 collagen (g), and type I to type III collagen (h) of HS on day 25. (n = 3 biologically independent samples). Three independent experiments were performed and representative results are shown in 11 12 a and e. Data are presented as mean \pm SD and statistical significance was analyzed via one-way ANOVA with Tukey's multiple comparison test. P value: *P < 0.05, **P < 0.01, *** P < 0.001. 13