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Abstract

Commuting flows and long-distance travel are important spreading factors of viruses and

particularly airborne ones. Therefore, it is relevant to examine the association among

diverse mobility scenarios and the spatial dissemination of SARS-CoV-2 cases. We

intended to analyze the patterns of virus spreading linked to different mobility scenarios, in

order to better comprehend the effect of the lockdown measures, and how such measures

can be better informed. We simulated the effects of mobility restrictions in the spread of

SARS-CoV-2 amongst the municipalities of two metropolitan areas, Lisbon (LMA) and Porto

(PMA). Based on an adapted SEIR (Suscetible-Exposed-Infected-Removed) model, we

estimated the number of new daily infections during one year, according to different mobility

scenarios: restricted to essential activities, industrial activities, public transport use, and a

scenario with unrestricted mobility including all transport modes. The trends of new daily

infections were further explored using time-series clustering analysis, using dynamic time

warping. Mobility restrictions resulted in lower numbers of new daily infections when com-

pared to the unrestricted mobility scenario, in both metropolitan areas. Between March and

September 2020, the official number of new infections followed overall a similar timeline to

the one simulated considering only essential activities. At the municipal level, trends differ

amongst the two metropolitan areas. The analysis of the effects of mobility in virus spread

within different municipalities and regions could help tailoring future strategies and increase

the public acceptance of eventual restrictions.
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1. Introduction

The outbreak of the SARS-CoV-2 virus started in December 2019 in Wuhan, China, and has

disseminated rapidly throughout the world. Many countries have implemented strict lock-

down procedures to stop the spread of infections and imposed limitations on mobility and

social contacts, such as traffic control and the temporary suspension of all non-essential travel

[1, 2]. In the USA, a mobility reduction between 40 and 60% due to SARS-CoV-2 restrictions

was observed [3]. In Europe, early results show that mobility was sharply reduced in response

to the first lockdowns and increased again when restrictions were lifted [4]. In the Netherlands,

a decrease in the number of trips (55% reduction) and distance traveled (68% reduction) was

observed [5]; and in France, there were 65% fewer trips [6], similar to the reduction observed

in Italy [7].

Prior studies have shown that commuting and long-distance travel were important spread-

ing factors of viruses, especially airborne ones [8–11]. A previous study in Sweden indicated

that banning travels over 50 km distance could considerably decrease the spatiotemporal

spread of disease outbreaks, such as SARS (Severe Acute Respiratory Syndrome), even when

considering that not all the population would comply [12]. In such a context, mobility restric-

tions are considered efficient approaches to decrease the spread of a virus [13], and their effects

on the dissemination of SARS-CoV-2 are being investigated. In Italy, Cartenı̀ et al. [14] found

a positive correlation between transport accessibility and COVID-19 cases, using a multiple

linear regression model. In the USA, using a generalised linear model, Badr et al. [15] observed

that a reduction in mobility flows at the county level was strongly correlated with a decrease in

COVID-19 cases, even though this effect was delayed for up to 3 weeks. Other studies have

also tested the relation of COVID-19 spread with the implementation of control measures

using epidemiological models, such as SIR or S(E)IR (Susceptible, (Exposed), Infected, Recov-

ered/Removed), widely used in epidemiological studies [16, 17]. In Germany, Dehning et al.

[18] estimated up to 40% decrease in virus spreading rate during March 2020, linked to gov-

ernmental interventions that limited social contact. Likewise, Gatto et al. [19] estimated a 45%

reduction in virus transmission in Italy due to restrictions in mobility and human-to-human

interactions, between February and March 2020.

In Portugal, the first control measures were applied on 12th March 2020, 10 days after the

first COVID-19 cases were recorded; on 18th March, the state of emergency was declared, and

a strict lockdown was implemented ([20]; DR 55/2020). Internal traveling was limited to essen-

tial services, remote work was declared compulsory and schools were closed until early May

2020. Due to a low number of fatalities in this early stage of the pandemic, Portugal was por-

trayed as a successful case of COVID-19 control [21]. Throughout the year 2020, other lock-

down periods were implemented, linked to the dynamics of the virus spread in the country. In

some cases, particularly restrictive measures to inter-municipal mobility were applied to

reduce the flow of people expected in specific holidays. Early findings point out to an evident

decrease in virus dissemination rate due to the reduction in mobility levels, as measured by

mobile positioning data [22], although the paths of virus spreading reveal a heterogeneous pat-

tern among municipalities [20].

This study intended to investigate the relationship between different mobility scenarios and

the spatial dissemination of SARS-CoV-2 cases. Using virus spread simulations based on a

SEIR model, we estimate the potential effects of the flow of people, according to specific com-

muting conditions and restrictions, in the number of COVID-19 cases and their spatial distri-

bution. The analysis was applied to the metropolitan areas of Lisbon and Porto in Portugal.

Composed by a set of adjacent and interconnected municipalities, metropolitan regions con-

stitute the most densely populated areas in the country, with a high concentration of economic
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activities, intense commuting flows amongst the different municipalities and a diversified

transport network. We aimed to investigate the patterns of virus spread potentially linked to

mobility conditions in these areas, to further understand the influence of the lockdown mea-

sures implemented in the virus dissemination, and how such measures could be better

adjusted in the future.

2. Materials & methods

2.1. Study areas

2.1.1. Lisbon Metropolitan Area (LMA). LMA is located in the west-central part of Por-

tugal, centered on the mouth of the river Tagus. It is composed of 18 municipalities, 9 of them

located in the north side of Tagus River, and 9 in the south, and includes Lisbon’s capital city

(Fig 1). It extends over 3015 km2, with the biggest municipality having an area of 465 km2 (Pal-

mela) and the smallest 24 km2 (Amadora). In 2019, the resident population in LMA reached 2

840 005 inhabitants [23], which corresponds to 27.6% of the country’s total population. The

most populated municipality is Lisbon, with 506 654 inhabitants, whereas Alcochete has the

lowest number of residents (19 395). Nearly 81% of the population commutes, predominantly

by car (59%), whereas collective public transport (composed of train, metro, bus, and boat) is

used by 16% of the commuters [24].

Intermunicipal flows reveal that Lisbon is the largest receiver, mainly from Sintra, Ama-

dora, Odivelas, Loures, Oeiras, and Vila Franca de Xira in the north side of Tagus River, and

from Almada and Seixal in the south (Fig 2). These are also the municipalities with the largest

share of public transport flow to Lisbon, which receives nearly half of the people that commute

by public transport within the metropolitan area. When considering only the essential activi-

ties’ flows, these patterns change, and people commuting are dispersed through more munici-

palities, including Palmela and Setúbal in the south, which in the other mobility scenarios

represent less than 3% of the flows.

2.1.2. Porto Metropolitan Area (PMA). PMA is located in the northwest part of Portu-

gal, centered on the mouth of the river Douro. It is composed of 17 municipalities, 10 of

them located in the north side of the Douro river, and 7 in the south, including the second

most populated city of Portugal (Porto) (Fig 1). PMA extends over 2041 km2, with the most

extensive municipality having an area of 329 km2 (Arouca) and the smallest 8 km2 (São

João da Madeira, SJMadeira). In 2019, the resident population was 1 721 038 [23], which

corresponds to 16.7% of the country’s total population. The most highly populated munici-

pality is Vila Nova de Gaia, with 299 879 people, whereas Arouca is the least populated (20

950). Nearly 79% of the population commutes, predominantly by car (68%). In contrast,

collective public transport is used by only 11% of the mobile population of the metropolitan

area [24].

Intermunicipal flows reveal that Porto is the largest receiver, mainly from Gondomar,

Maia, Matosinhos, and Vila Nova de Gaia (Fig 3). These are also the municipalities with the

largest share of public transport flow to Porto and Valongo. About a third of the population

from Valongo and Gondomar commutes by public transport. Maia and Paredes receive com-

muters from the contiguous municipality of Valongo. The highest proportion of transport

flows from Vila do Conde are directed to the neighbouring municipality of Póvoa de Varzim,

except when considering public transport, with more people commuting to Porto using this

mode. The flows regarding essential activities are more dispersed amongst the municipalities

that compose PMA, with Santo Tirso and Oliveira de Azeméis representing a larger propor-

tion of the flows when compared with the other mobility scenarios.
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Fig 1. Location of the two metropolitan areas of Portugal (LMA–Lisbon, PMA–Porto), with the distribution of the dense urban

areas within their territory.

https://doi.org/10.1371/journal.pone.0274286.g001
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2.2. Data collection

2.2.1. Mobility. We collected statistical data on travel flows between the different munici-

palities for each metropolitan area, based on the latest available Census from Statistics Portugal

(INE, Instituto Nacional de Estatı́stica) [26]. These data represent the number of people who

commute daily, for work or study, between an origin (where they live) and a destination

(where they work or study), disaggregated by transport mode. To analyze distinct mobility pat-

terns within the metropolitan areas, we combined the data to create different layers: 1) the

total number of people travelling between municipalities using any transport mode (Table 1,

1); 2) the number of people travelling between municipalities using collective transport modes

(train, metro, bus and boat, Table 1, 2). In addition, we collected statistical data regarding

major sectors of activity based as well on the available data from the latest Census 2011 [26].

These data represent the number of people who work or study in different sectors of activity,

disaggregated by origin (place of residence) and destination (where they work or study). The

sectors of activity are divided into 21 categories, as presented in Table 1. Based on the

Fig 2. Daily flows amongst LMA municipalities. A) unrestricted mobility with all transport modes (data of 2011); B) mobility based on the use of collective public

transport; C) mobility restricted to essential activities Origin is identified by the color of the corresponding municipality, shown in the map on the right. The degree of

flows is represented by the width of the colored links. To facilitate visualization, flows representing less than 3% of the total were excluded. Graphs were made with circlize

package in R software [25]. Longer names of municipalities were reduced for simplification: VFXira = Vila Franca de Xira. Source of data: Statistics Portugal (INE, 2011).

https://doi.org/10.1371/journal.pone.0274286.g002

Fig 3. Daily flows amongst PMA municipalities. A) unrestricted mobility with all transport modes (data of 2011); B) mobility based on the use of collective public

transport; C) mobility restricted to essential activities. Origin is identified by the color of the corresponding municipality, shown in the map on the right. The degree of

flows is represented by the width of the colored links To facilitate visualization, flows representing less than 3% of the total were excluded. Graphs were made with circlize

package in R software [25]. Longer names of municipalities were reduced for simplification: VNGaia = Vila Nova de Gaia; SMFeira = Santa Maria da Feira;

SJMadeira = São João da Madeira; Oliv Azemeis = Oliveira de Azeméis.

https://doi.org/10.1371/journal.pone.0274286.g003
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restrictions applied by the Portuguese government, we selected those sectors that were consid-

ered essential and were not suspended during lockdowns, specifically: Agriculture, fisheries,

and forestry; extraction industry; transformation industry; electricity and gas supply; water

supply, sanitation, and residues; construction; trade and auto repair; transport and storage;

and human health. We then calculated the number of people working in these essential sectors

and that commuted between the municipalities within each metropolitan area. Since all school

activities were suspended during stricter lockdown periods, students were excluded. As such,

this new layer (Table 1, 3) represents another mobility scenario, restricted to the people who

commute to work regarding only essential activities. Another layer was also created, limited to

the people who work solely in industrial activities (Table 1, 4), to test if any specific relation-

ship exists with the patterns of virus dissemination. This option derived from prior studies on

the SARS-CoV-2 dispersion, considering that industrial activities may require close interaction

amongst workers [27] and a high contagion risk related to the presence of industrial activities

has been found in Portugal, mainly in the northern region [28].

The data on transport modes and activity sectors are not connected. Therefore, it was not

possible to organize the layers 3) and 4) (Table 1) according to transport mode. Since the focus

was on patterns within metropolitan areas, travel to and from municipalities outside LMA or

PMA was disregarded for all layers.

More recent data on mobility patterns within both metropolitan areas are available,

obtained with a specific survey carried out in 2017 by Statistics Portugal [24]. However, these

data are incomplete for most municipalities, with 14% of missing data for LMA and 35% for

PMA. As such, although it may be useful to verify potential changes in commuting levels since

2011, we had to use these data with caution and restricted to the total number of people travel-

ling between municipalities in all transport modes combined (Table 1, 5).

2.2.2. Epidemiological data. We have obtained the Effective Reproduction Number (Rt),

available daily, for the period between 23rd March 2020 to 31st March 2021, from the National

Institute Ricardo Jorge, Ministry of Health (INSA, in Portuguese, http://www.insa.min-saude.

pt/category/areas-de-atuacao/epidemiologia/covid-19-curva-epidemica-e-parametros-de-

transmissibilidade). Rt is a derivation of R0, the basic reproduction number that represents

how each infected person produces many secondary infections. Rt is the reproduction number

Table 1. Data collected regarding different mobility scenarios, for LMA and PMA.

Mobility scenarios Data layer Source Characteristics

1) Unrestricted Mobility

(2011)

Number of people travelling between

municipalities, all transport modes

INE,

2011

Includes all transport modes (car, walk, bus, train, metro, boat, bike, other)

2) Mobility based on the use of

public/ collective transport

Number of people travelling between

municipalities using public & collective

transport

INE,

2011

Includes public collective transport modes (bus, train, metro, boat) and

company buses

3) Mobility restricted to

essential activities

Number of people travelling between

municipalities who work in essential

activities

INE,

2011

Agriculture, fisheries, and forestry; extraction industry; transformation

industry; electricity and gas supply; water supply, sanitation and residues;

construction; trade and auto repair; transport and storage; human health

Other activities, non-essential, temporarily

suspended during lockdowns or done

remotely

INE,

2011

Accommodation and restaurants; information and communication; finance

and insurance; real estate; scientific and technical; public administration and

social security; education; arts and sports; other services; domestic;

international organizations

4) Mobility restricted to

industrial activities

Number of people travelling between

municipalities who work in industrial

activities

INE,

2011

Includes industrial activities, extraction and transformation

5) Unrestricted Mobility

(2017)

Number of people travelling between

municipalities, all transport modes

INE,

2017

Includes all transport modes (car, walk, bus, train, metro, boat, bike, other).

Dataset is incomplete, with 14% missing data for LMA and 35% for PMA

https://doi.org/10.1371/journal.pone.0274286.t001
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over time, or R0 at time t [29, 30]. Rt data are available at the regional level; therefore, we used

the daily Rt values of the North region for the simulations applied to PMA, and those available

for the region of Lisbon and Tagus Valley for LMA simulations.

Data on the number of SARS-CoV-2 cases per municipality in Portugal became available

since 23rd March 2020, provided by the Directorate-General of Health (DGS, in Portuguese).

Until 6th July, the data were provided daily, with an update on the cumulative number of cases

per municipality. From that day on and until the 26th October 2020, the data were provided

only once a week. After that, the data started to be aggregated for 14 days to calculate an inci-

dence rate (number of cases/100.000 residents). We collected the available data per municipal-

ity for each metropolitan area for the period under study (23rd March 2020 until 31st March

2021), obtained from the official DGS reports and shared publicly in a specific repository

(https://github.com/dssg-pt/covid19pt-data). These data were used to calibrate the values of

the first day of each simulation (corresponding to the 23rd March 2020), retrieving the number

of official COVID-19 cases per municipality. Afterwards, these data were also used to compare

the results and the timelines of the several simulations.

2.3. Methodological procedure

2.3.1. SEIR modeling. We used a simulation procedure based on a parsimonious SEIR

model, adapted from a study developed for Tokyo in Japan, and using R software tools [31];

(https://www.databentobox.com/2020/03/28/covid19_city_sim_seir/). The SEIR model

depicts the temporal evolution of disease spread in a sequence of phases, or epidemiological

compartments, that represent different conditions. The parameters and conditions applied to

the simulations were as follows (Fig 4):

S–the susceptible population was obtained from the number of residents in each munici-

pality, reported in 2019 [23]. It was assumed that immunity to the virus was inexistent; there-

fore, the entire population was considered susceptible at the start of the simulations. We

considered that once a person was infected, he/she would no longer be susceptible to the virus,

mostly by gaining a certain level of immunity and some by eventual death.

E–the exposed population depends on the probability of contact between infected people

and the susceptible population. In the SEIR model, the transition rate between the susceptible

and exposed compartments in the model is given by parameter β, or the inverse of the contact

period 1/β, representing how often a susceptible-infected contact results in a new exposure.

Fig 4. Schematic representation of the simulation procedure applied.

https://doi.org/10.1371/journal.pone.0274286.g004
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We estimated β values from the daily Rt values and the transition rate between infected and

removed (parameter γ, see phase R below), considering that Rt is a function of β/γ [32].

I–the infected population derives from the rate at which the people exposed to the virus

become infectious, calculated according to the period of incubation of the virus. Following

recent epidemiological information (https://www.ecdc.europa.eu/en/covid-19/latest-evidence/

infection; [33], we applied a constant incubation period of 6 days (the inverse of this period is

parameter α = 1/6).

R–most people recover from the virus and stop being infectious after 10 days, according to

recent epidemiological results [34] and expressed in the patient isolation rules applied in the

country. The inverse of this period gives the last parameter of the SEIR model, or the rate an

infected person recovers and moves into the final phase (γ = 1/recovery time of 10 days). This

parameter, together with Rt, was used to estimate daily β.

2.3.2. Mobility scenarios. The parameters α and γ are disease-specific and do not vary

spatially; therefore, the same rates were applied to all municipalities in both metropolitan

areas. Conversely, the β parameter varies in time and space, and daily values adjusted for each

metropolitan area were applied. The variation of β in space, derived from the mobility pat-

terns, is defined by people’s flows within each metropolitan area. These flows were obtained

from the different commuting levels identified (Table 1 and Fig 4): 1) unrestricted mobility, all

transport modes; 2) mobility based on the use of public collective transport; 3) mobility

restricted to essential activities; 4) mobility restricted to industrial activities. We created an ori-

gin-destination (OD) matrix for each flow type, calculating the number of people traveling

within each municipality and between each possible pair or municipalities every day, in LMA

and PMA separately. We focused on the potential influence of commuting flows in virus

spread and evolution, assuming that the effects of preventive measures, such as physical dis-

tancing, hand sanitization, and face masks, were expressed within the β/Rt values applied. The

simulated exposed and infected cases for each municipality were calculated by assuming con-

tact between susceptible people, local infected cases and imported infectious cases, which vary

with the degree of commuting flows in the mobility scenarios defined (Fig 4). The parameters

of the SEIR model were kept constant, except β, and no other variables were integrated, to

allow focusing on the analysis of potential differences resulting specifically from different

mobility levels.

Based on the flow of people between municipalities and the parameters defined for the

SEIR model, we simulated the daily new cases and the active cases of infection per day. We

evaluated how they were spatially distributed within each metropolitan area. The simulation

started on the 23rd March of 2020 when data disaggregated at the municipal level was first

available. The SEIR model was calibrated with the cases recorded for that day, regarding the

number of susceptible, exposed, and infected people in each municipality. Afterwards, the

model was run for 373 days until 31st March 2021—the period for which Rt values daily were

available at the time of the development of the simulations.

Subsequently, we compared the evolution of the number of newly infected by day between

all the simulated mobility scenarios in the study period. We analyzed the potential effect of

mobility restrictions on the proportion of infected people. Additional simulations for each

metropolitan area were obtained for the scenarios representing unrestricted mobility 2011 and

mobility restricted to essential activities, using the upper and lower confidence intervals (95%)

of the corresponding daily Rt values. The comparison of the simulated values with official rec-

ords of infected cases was made only for the period between 23rd March and 26th October

because, afterwards, the reporting of new cases in Portugal changed to an incidence rate for 14

days, and this format is not suitable to compare with the simulated cases.

PLOS ONE Mobility and SARS-CoV-2 spread in urban areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0274286 September 9, 2022 8 / 17

https://www.ecdc.europa.eu/en/covid-19/latest-evidence/infection
https://www.ecdc.europa.eu/en/covid-19/latest-evidence/infection
https://doi.org/10.1371/journal.pone.0274286


2.3.3. Time-series clustering analysis. The trends of COVID-19 spread were further

explored at the municipal level through time-series clustering analysis, considering the scenar-

ios of unrestricted mobility 2011 and mobility restricted to essential activities. In each metro-

politan area, the simulated timelines of the virus spread for each municipality were partitioned

into groups, based on the (dis)similarities between the temporal sequences of predicted new

daily infections. We used Dynamic Time Warping (DTW) distance as a dissimilarity measure

[35], using the package dtwclust in R software [36]. This algorithm aims to find the optimum

warping path between multiple time series that may vary in speed, allowing their synchroniza-

tion by applying transformations such as stretching or warping. The following step was to

compute time-series prototypes that efficiently represent the most significant features of all

series in each cluster, assuming that all time-series within a cluster are self-similar [37]. We

used an iterative, global method based on DTW known as DTW barycenter averaging (DBA),

which involves the use of one series as a reference (centroid) randomly selected from the data-

set, as developed by Petitjean et al. [38]. Finally, we used a hierarchical clustering method

because our dataset is relatively small, and it was not required to specify the desired number of

clusters previously.

3. Results

3.1. Estimated new infections (SEIR model) by mobility scenario

In both metropolitan areas and for all mobility scenarios, the simulated values of daily new

infections are low until 4th May 2020, subsequently increasing at different rates (Fig 5). It coin-

cides with the first lockdown period, established between 23rd March and 4th May 2020. In

LMA, excluding the scenario of unrestricted mobility 2017, the highest daily values of new

infections are reached in mid-January 2021. In contrast, in PMA the highest daily values are

reached by mid-November 2020 decreasing sharply afterwards, until early January 2021 when

values increase again, although at a much lower level than before.

Fig 5. Simulated number of daily new infections by mobility scenario (described in Table 1), between 23rd March 2020 and 31st March 2021, in the metropolitan

areas of Lisbon (left) and Porto (right). Stricter lockdown periods, with restrictions on intermunicipal mobility, are delimited by the vertical dashed lines and cover

the periods between 23rd March and 4th May 2020, 28th November to 8th December 2020, and from 27th December 2020 until 31st March 2021.

https://doi.org/10.1371/journal.pone.0274286.g005
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In most simulations, the number of infected people in LMA is higher than in PMA. How-

ever, these correspond to a lower proportion of the total susceptible population in the metro-

politan area (Table 2). An exception is found for the scenario of mobility restricted to

industrial activities, whose proportion of the infected population and the total number are

greater in PMA. In both areas, the scenario representing unrestricted mobility with 2017 data

reached the highest number of infections (Fig 5). For LMA, it is estimated that 64% of the total

population would have been infected by the end of March 2021, with a daily maximum value

of new infections close to 15 000 people reached by mid-October 2020. For PMA, the propor-

tion of people infected would be 56%, and the daily maximum would be around 8 500 new

infections, reached in late October 2020 (Table 2).

In both metropolitan areas, the mobility scenario with the lowest estimated values of infec-

tions is the one restricted to industrial activities (Fig 5). In LMA, the timeline of daily new

infections is very similar between the scenarios of mobility restricted to essential activities and

the public transport use. In contrast, in PMA the strongest similarity is found between mobil-

ity scenarios regarding public transport use and industrial activities (Fig 5).

The timeline of official records of new infections follows different mobility scenarios over

time and vary between metropolitan areas. In LMA, the daily official records (until 6th July

2020) follow a similar shape to the scenario’s timeline restricted to essential activities (Fig 6).

In July 2020, coinciding with the change from daily to cumulative weekly records, LMA official

records reach the simulated values for the unrestricted mobility 2011 scenario and increase

since mid-September 2020 (Fig 6). In PMA, some daily official records of March and April

2020 surpass the upper threshold of the simulated values for the unrestricted mobility 2011,

stabilizing in May 2020 close to the timeline of the mobility scenario restricted to essential

activities. This trend continues until the end of August 2020, when weekly cumulative records

start to follow the timeline given by the upper threshold of the scenario restricted to essential

activities (Fig 6). Since 19th October 2020, official weekly records progress similarly to the

unrestricted mobility 2011 scenario (Fig 6).

3.2. Clusters of municipal trends

We identified different clusters of municipalities according to the trends of COVID-19 spread

over time. In LMA, considering the scenario of unrestricted mobility 2011, most municipali-

ties show a progressive increase in daily new infections since mid-September until late Novem-

ber 2020, more evident from mid-October to mid-November. Afterwards, the number of new

infections remains relatively high until the end of January 2021, but dispersed over more

Table 2. Results on infected cases, obtained from the simulations with different mobility scenarios, for LMA and PMA.

Study areas Lisbon Metropolitan Area (LMA) Porto Metropolitan Area (PMA)

Mobility scenarios Total no. infected % infected Max no. daily infected Total no. infected % infected Max no. daily infected
Unrestricted mobility, all transport modes 2011 1 827 526 43.4 7534 836 647 48.8 6844

[2021-01-19] [2020-11-05]

Unrestricted mobility, all transport modes 2017 1 808 035 64.4 14906 968 059 56.3 8588

[2020-10-14] [2020-10-23]

Mobility based on the use of public collective

transport

238 320 8.5 1518 152 590 8.9 805

[2021-01-23] [2020-11-16]

Mobility restricted to essential activities 326 322 11.7 2397 230 095 13.6 1391

[2021-01-24] [2021-01-22]

Mobility restricted to industrial activities 84 958 3.0 420 126 345 7.5 681

[2021-01-23] [2021-01-22]

https://doi.org/10.1371/journal.pone.0274286.t002
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municipalities (Fig 7A). Lisbon and Sintra form a specific cluster, with the highest estimated

values of daily new infections, although substantially higher for Lisbon. Cascais, Loures, and

Oeiras show intermediate values of new infections, forming another cluster; Almada and Ama-

dora come after with regard to estimated new infections and constitute a specific time-series

cluster, despite being geographically apart and separated by the river Tagus.

Fig 6. Simulated number of daily new infections for the scenarios regarding unrestricted mobility 2011 and mobility restricted to essential activities, between 23rd

March and 26th October 2020, in the metropolitan areas of Lisbon (LMA, left) and Porto (PMA, right). Estimated values considering the upper and lower thresholds

of the confidence interval (95%) of Rt are represented as dashed lines. Official recorded cases of new infections are represented as points, daily values until the 6th

July, and cumulative weekly values afterwards.

https://doi.org/10.1371/journal.pone.0274286.g006

Fig 7. Time-series clustering of the daily new infected in the municipalities of LMA, for the simulation regarding the unrestricted mobility of 2011 (A, left) and

restricted to essential activities (B, right). The color key is the same for both metropolitan areas and mobility scenarios, to facilitate visual comparisons, but the range

of values (new infections by day) differs. Obtained with dtwclust package in R software [37].

https://doi.org/10.1371/journal.pone.0274286.g007
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In the scenario representing essential activities (Fig 7B), the municipality of Lisbon becomes

isolated in a specific cluster, reaching the highest daily values of infections in January 2021. Cas-

cais, Oeiras, and Loures form again a specific cluster with intermediate values of new daily

infections; this cluster is then linked to Sintra, the municipality with the second-highest values

of daily infections, but much lower than the ones obtained for Lisbon. Almada and Amadora

are again considered a specific cluster due to the similarity of simulated values over time. Moita

and Sesimbra compose the cluster with the lowest numbers of new infections by day.

In PMA, the overall trends considering unrestricted mobility 2011 show higher numbers of

daily new infections between October and November 2020 (Fig 8A). The highest numbers of

new infections by day are found in Vila Nova de Gaia (VNGaia), a trend that remains until the

end of January 2021. The second highest values are found in Porto, which forms a specific clus-

ter with VNGaia. Matosinhos is the third municipality regarding new daily infections and

remains separated from other municipalities until the third level of connection. Santa Maria

da Feira and Gondomar present intermediate values of new daily infections and form another

cluster. Vila do Conde and Paredes are also strongly connected regarding the evolution of the

new daily infections, as well as Santo Tirso and Oliveira de Azemeis (Oliv Azemeis), even

though these municipalities are geographically apart from each other. The cluster formed by

Arouca and Vale Cambra shows the lowest values.

In the scenario representing essential activities (Fig 8B), the municipality with the highest

numbers of daily new infections is Porto, followed by Vila Nova de Gaia, forming a specific

cluster with the highest values of new daily infections until the end of January 2021. Santa

Maria da Feira (SMFeira) and Matosinhos define the second cluster with higher values, which

is then linked to Maia, differing from the spatial groups formed in the unrestricted mobility

scenario. Valongo and Gondomar compose the second cluster with higher values, differing

from the simulations obtained with the unrestricted mobility scenario. Oliveira de Azemeis

Fig 8. Time-series clustering of the daily new infected in the municipalities of PMA, for the simulation regarding the unrestricted mobility of 2011 (A, left) and

restricted to essential activities (B, right). The color key is the same for both metropolitan areas and mobility scenarios, to facilitate visual comparisons, but the range

of values (new infections by day) differs. Obtained with dtwclust package in R software [37].

https://doi.org/10.1371/journal.pone.0274286.g008

PLOS ONE Mobility and SARS-CoV-2 spread in urban areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0274286 September 9, 2022 12 / 17

https://doi.org/10.1371/journal.pone.0274286.g008
https://doi.org/10.1371/journal.pone.0274286


shows intermediate values of daily new infections, being linked in a second level to the cluster

formed by Valongo and Gondomar.

4. Discussion

In a pandemic context, the restrictions imposed on travel and social contact emerge from the

need to reduce the contact between humans to restrain the dissemination of the virus, as past

epidemic experiences reveal [13, 39]. Based on an adapted SEIR model and official Rt cases

recorded at regional scale, we simulated the number of daily new infections in metropolitan

areas for different mobility scenarios, to test the potential effect of travel restrictions on virus

dissemination. The timelines obtained from the different simulated scenarios indicate that

virus spread has responded to the mobility restrictions implemented. The number of new

infections decreased after lockdown periods, with a certain delay, a pattern also found by

Dehning et al. (2020) [18]. Indeed, along the pandemic period, ongoing for over a year, mobil-

ity restrictions have been implemented throughout the world to curb the spread of the disease,

with variable effects. In China, Jia et al. (2020) [40] found that mobility accurately predicted

the spatiotemporal pattern of infections, by analyzing mobile phone data. In another recent

study in Taiwan, Chang et al. (2021) [41] found that intra-city travel restrictions had more

impact than intercity ones on outbreak patterns, both in space and time. Our findings show

that the mobility flows after the first lockdown in Portugal, implemented from mid-March to

early May 2020, never reached the pre-pandemic levels during the year 2020, even when most

restrictions were lifted. Other studies corroborate this for the country via the analysis of Goo-

gle Mobility Data [22], indicating, for most activities, a distance from the mobility baseline

even after eight months. This reduction of mobility is not homogeneous amongst activities, as

it was found for several countries; in Portugal, retail-recreation and transit stations showed the

sharpest decreases in mobility when the first lockdown was implemented, in March 2020,

whereas permanency in residence has increased [22]. In India, the sharpest reduction was

found for retail and recreation (73.4%), followed by transit stations (66%), workplaces (56.7%),

grocery and pharmacy (51.2%), and visits to parks (46.3%) [42].

Our results indicate that until mid-October in PMA, the evolution of virus spread followed

closely the timeline obtained with the scenario of mobility restricted to essential activities

(between the two CI thresholds), with values of new infections increasing afterwards. In LMA,

this change happens earlier, since July, with weekly cumulative records following the timeline

given by the unrestricted mobility scenario, at the lower threshold between mid-August and

mid-September. These results are consistent with prior analysis done for the country, which

evidenced secondary outbreaks in July 2020 especially in the urban and suburban areas of Lis-

bon, likely due to the ease of restrictions [21]. Afterwards, the increase in new infections may

be related to reopening strategies, with a desired "return to normal" encouraged by the govern-

ment, even though preventive measures (such as the use of a face mask and hand hygiene)

were kept. Other studies have also been able to associate the SARS-CoV-2 virus spread with

control measures implemented in different countries [18, 43, 44].

The number of infections has drastically changed in January 2021 in Portugal, compared to

the previous year. After Christmas, the country went through a challenging period in the num-

ber of infected cases and fatalities, and the capacity of the health system to respond was chal-

lenged. The simulations captured these conditions, which show a sharp increase in daily new

infections shortly after Christmas, particularly in LMA. The number of new infections started

to decrease in mid-January 2021, following the implementation of mobility and social restric-

tions on the 27th December, and a stricter lockdown established on 16th January 2021, includ-

ing one week later the suspension of all school activities and heavy restrictions on inter-
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municipal mobility (DR 3/2021). The lack of strict measures during the Christmas period and

the usual family gatherings during this season are likely responsible for this strong increase in

virus incidence. The appearance of new variants of the virus, supposedly more contagious, is

also to be accounted for [45]. Other reasons may be linked to environmental conditions since

the virus dissemination increases when the temperature is lower, although climatic variables

alone cannot explain this spread dynamics [46, 47]. Under such circumstances, reopening

strategies should take into account the control of mobility flows, the maintenance of remote

working activities and social distancing measures, and the cautious restart of social events, as

suggested by prior research [48–50].

We also found that the weight of the industrial activities differs between the two metropoli-

tan areas, with LMA dynamics being more supported by services. In contrast, PMA has a

higher proportion of industrial activities. The distribution of the metropolitan areas’ essential

activities is also different—as verified by the time-series clusters, which also show that the

timeline and concentration of new infections in the municipalities differ between scenarios. In

LMA, Lisbon absorbs most of the flows regardless of the scenario considered, whereas in

PMA, the main city (Porto) does not predominate so evidently, although it is part of the cluster

with higher number of infections. First studies on the geographical dispersion of COVID-19 in

Portugal found that the diffusion of the virus started in densely populated areas with a high

concentration of economic activities [51], a pattern likely associated with the intensity of com-

muting flows. Some differences are also found regarding public transport use; in PMA, public

transport mobility seems to be associated with the flow of people working in industrial activi-

ties, as the timeline of virus spread is very similar. Instead, in LMA, the public transport flow

seems to be linked with people working in essential activities, although this cannot be con-

firmed due to the lack of connection between the two databases. The link between the

COVID-19 pandemic and public transport use has been investigated for different areas. Com-

paring countries with mobility restrictions in March 2020, such as Portugal, with others that

did not follow that path, like the United Kingdom, reveals an overall decay of public transport

use by 95% and 75%, respectively [52]. In Poland, a 77% decrease in public transport use was

verified [53], and in Wuhan, where the virus first spread, all public transportation services

were suspended [54], an extreme measure that is unlikely to be implemented in other coun-

tries [52].

The SEIR model used assumed most parameters as constant in the population, a choice that

limited the analysis of potential epidemiological differences within the metropolitan areas.

Also, no other variables regarding the response of the health system or predictors of human

behavior were added. Despite these limitations, the retrospective analysis carried out allowed

to focus on the specific effects of mobility levels in virus dissemination, which could help

understanding if more tailored strategies can be implemented for each metropolitan area or

municipality, according to their particular mobility conditions, and increase the public accep-

tance of the restrictions implemented.

5. Conclusion

Human mobility and transport patterns are associated with disease spread in a population. In

this study, we simulated the spread of COVID-19 in metropolitan areas in Portugal for one

year, considering several mobility scenarios with different restrictions. The dissemination of

the virus varies between metropolitan areas and between their municipalities, indicating differ-

ent patterns in mobility and transport use. These differences should be considered in reopen-

ing strategies in a pandemic context, and integrated in strategies to improve the conditions of

metropolitan areas. Mobility patterns will likely change in the metropolitan areas beyond the
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duration of the outbreak, with implications to human choices and activities and the overall

socio-economic dynamics of these areas. In this context, further work is needed: to understand

mobility restrictions’ effects on virus spread at different scales; how these restrictions can be

integrated in reopening strategies, uncompromising public health; how other social and

hygiene measures can be of complement; and how the mobility patterns of metropolitan areas

can be improved.
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