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Three-Dimensional Gene Map 
of Cancer Cell Types: Structural 
Entropy Minimisation Principle for 
Defining Tumour Subtypes
Angsheng Li1, Xianchen Yin1,2 & Yicheng Pan1

In this study, we propose a method for constructing cell sample networks from gene expression profiles, 
and a structural entropy minimisation principle for detecting natural structure of networks and for 
identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell 
types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a 
three-dimensional gene map is established by defining the unique gene expression pattern for each 
identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and 
healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided 
into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate 
that most cell samples of an identified subtype share similar survival times, survival indicators and 
International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our 
algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional 
gene map establishes a high-definition, one-to-one map between the biologically and medically 
meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that 
form singleton submodules.

One of the challenges of cancer treatment is targeting specific therapies to pathogenetically distinct tumour types 
to maximise treatment efficacy and minimise toxicity. Traditionally, cancer classification has been based on the 
morphological appearance of the tumour; however, this approach has serious limitations. Tumours with simi-
lar histopathological appearances can have different clinical courses and exhibit different responses to therapy. 
Molecular heterogeneity within individual cancer diagnostic categories is also evident in the variable presence 
of chromosomal translocations, tumour suppressor genes deletions and numerical chromosomal abnormalities. 
Cancer classification is difficult because the classification relies on specific biological insights, instead of on sys-
tematic, comprehensive, global and unbiased methods for identifying tumour subtypes.

Over the past decade, the increased availability of large-scale gene expression profiles have led researchers to 
propose a number of new approaches for classifying tumour types or subtypes based on gene expression analyses. 
Golub et al.1 have proposed a neighbour analysis to distinct known types, and a “class predictor” that assigns a 
new sample to a known class purely based on the gene expression profiles, and have verified their methods using 
an acute leukaemia dataset. Alizadeh et al.2 have proposed a method based on hierarchical clustering, which 
divides the type of diffuse large B-cell lymphomas into two subtypes. Ramaswamy et al.3 have proposed a “classi-
fier” based on a support vector machine (SVM) and have analysed the accuracy of true type predictions for both 
the snap-frozen human tumour and normal tissue specimens. Yeoh et al.4 have analysed sets of genes that define 
certain subtypes. Bhattacharjee et al.5 have classified human lung carcinomas by using hierarchical clustering and 
have verified the classification by a selected set of gene expression profiles. Su et al.6 have analyzed differences in 
gene expression between human and mouse transcriptomes by using a selected set of gene expression profiles. 
Pomeroy et al.7 have proposed a classification method for tumour types of the central nervous system based on 
a learning algorithm and have verified their result by a selected set of gene profiles. Monti et al.8 have proposed a 
learning algorithm to classify the tumour types and have verified their results according to the similarity with the 
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true types. Yang and Naiman9 have proposed a learning algorithm to select a small set of genes that are distinct to 
known tumour types. Haferlach et al.10 proposed a learning algorithm to classify the leukemia subtypes based on 
a large number of clinical samples.

Theoretical biologists have found that gene expression patterns are important for tumour classification. Ao 
et al.11 have shown that a 20-node network may generate 32 attractors, implying that gene expression patterns 
provide a better classification scheme than the dominating scheme based on DNA and mutations. Wang et al.12 
have reported the identification and prediction of liver tumour subtypes from an endogenous network. Zhu et 
al.13 have discovered a hierarchical property of prostate cell types.

Community detection is to identify the natural communities of a naturally evolving network. It provides a 
systematic and global approach to understanding the natural structures of the real world networking systems 
and is one of the major topics in network theory14,15. According to Darwin’s theory16, animals from ants to people 
form social groups in which most individuals work for the common good. Similarly, we may have that individ-
uals of a naturally evolving network may form natural communities. Li et al.17,18 have shown that the natural 
communities of a network maybe detected by an algorithm which follows the principle of the formation of the 
natural communities, and that (two-dimensional) structural entropy minimisation is the principle for detecting 
the natural communities in networks. This progress implies that tumour types and subtypes may be identified 
by the community detection algorithms on the basis of structural entropy minimisation, due to the fact that nat-
ural community detection is a classification by following the principle of the organisation of the network. In the 
present paper, we show that structural entropy minimisation is the principle for detecting natural structures of 
networks. Specifically, we show that structural entropy minimisation is the principle for identifying cancer cell 
types and subtypes.

We establish a novel method to define tumour types and subtypes. To establish our method, we have to resolve 
two challenges. The first is to detect the two- and three-dimensional natural structures of a naturally evolving net-
work, and the second is to construct a network from the unstructured gene expression data of cancer cell samples 
such that the constructed network captures the nature and laws of the gene expression data of the cancers. We 
resolve the two challenges by using our new notion of high-dimensional structural entropy of graphs.

Given a network G and a natural number K, we define the K-dimensional structural entropy of G, denoted 
 ( )GK , to be the least overall number of bits required to determine the K-dimensional code of the node that is 
accessible from random walk with stationary distribution in G. The K-dimensional structural entropy of a graph 
quantitatively measures the non-determinism or uncertainty of the natural K-dimensional structure of the graph. 
The K-dimensional structural entropy of network G explores that the community structure of G that realises the 
two-dimensional structural entropy of G is the natural community structure of G, and that the three-dimensional 
structure of G that realises the three-dimensional structural entropy of G is the natural three-dimensional struc-
ture of G. Therefore, K-dimensional structural entropy minimisation is the principle of the natural K-dimensional 
structure of networks for K >  1. This result demonstrates that although there are many reasons and causes for the 
formation of natural communities such as social groups in a society, interests of organisations and games in a 
competing system etc, the minimisation of non-determinism or equivalently, the minimisation of uncertainty is 
the unified measure for the divergent causes of the formation of natural structures of a networking system. 
Furthermore, the structural entropy of graphs implies that one-dimensional structural entropy minimisation is 
the principle of a natural network of large-scale unstructured data.

Our method consists of an algorithm, denoted  K, to detect the K-dimensional structure of a network to min-
imise the K-dimensional structural entropy of the network for each K >  1, and algorithms  and  to construct a 
cell sample network from the gene expression profiles of a cancer by minimising the one-dimensional structural 
entropy of graphs. We implement the experiments of our algorithms to classify tumour types and subtypes for 
cancers and healthy tissues. Experiments show that our method defines meaningful types and subtypes for cancer 
cell samples.

We also compare the classifications given by our algorithms with the two frequently used community detect-
ing algorithms: the first is the modularity maximisation algorithm proposed by Clauset, Newman and Moore19, 
denoted , and the second is the minimisation of expression length algorithm proposed by Rosvall and 
Bergstrom20, denoted InforMap or  .

To evaluate the classifications of the types and subtypes found by our algorithms K  and the existing algo-
rithms  and  , we analyse the similarity between the true tumour types and the modules identified by the 
algorithms, establish the gene map of the modules, and analyse the performance of the found types and subtypes 
in clinical data. The experimental results demonstrate that our algorithms establish a high-definition and 
one-to-one three-dimensional gene map of the submodules of the cancers identified by our new algorithms. For 
the diffuse large B-cell lymphoma (DLBCL), our results demonstrate that most of the cell samples within a mod-
ule or submodule identified by our algorithms share similar survival times, survival indicators and International 
Prognostic Index (IPI) scores, and indicate that the distinct modules or submodules identified using our struc-
tural entropy minimisation algorithms noticeably differ in overall survival times, survival ratios and IPI scores, 
and that distinct modules identified by the modularity maximisation and description length minimisation algo-
rithms exhibit undistinguishable survival times, survival ratios and IPI scores.

High-Dimensional Graph Structure Entropy
In a real world network, at every time step, various interactions, communications and operations may occur in 
the network, and the actions in the network are often unpredictable. Thus, the non-determinism of the various 
actions in a network is the essence of the complexity of the network. It is certainly a dynamical complexity of the 
network.
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Our notion of structure entropy of a graph is to measure the dynamical complexity of the graph. Intuitively, for 
a graph G and a natural number K, the K-dimensional structural entropy of G is the least overall number of bits 
required to determine the K-dimensional code of the node that is accessible from random walk with stationary 
distribution in G. We will gradually establish the notion.

One-dimensional structural entropy.  First, we recall Shannon’s entropy function. For a probability vec-
tor p =  (p1,…, pq), with ∑ == p 1i

q
i1 , the Shannon entropy function of p is defined as follows:
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Considering the definition of H(p1, p2, ···, pn), for every i, l =   −  log pi is the length of the binary representation 
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 is one of the 2l numbers. Therefore, we interpret −log pi as the 
“self-information of pi”, which also indicates that −log pi is the amount of information needed to determine the 
code of i. Therefore, −∑ = p plogi
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i i1 2  is the average amount of information required to determine the code of i that 

is picked according to the probability distribution p =  (p1, p2, ···, pn).
For a connected graph G =  (V, E) with n nodes and m edges, we define one-dimensional structural entropy or 

the positioning entropy of G by using the entropy function H. For each node i ∈  {1,2, ···, n}, let di be the degree of 
i in G, and let =pi

d
m2
i . Then, the stationary distribution of random walk in G is described by the probability 

vector p =  (p1, p2, ···, pn). We define the one-dimensional structural entropy or positioning entropy of G as follows:
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By definition,  ( )G1  is the average number of bits required to determine the one-dimensional code of the 
node that is accessible from the random walk with stationary distribution in G.

(Remark: (i) If the degree di of node i is 0 for some i, then the definition of ( )G1  is invalid. (ii) The definition 
of ( )G1  may be extended to disconnected graphs; in such cases,  ( )G1  is the weighted average of ( )G1  for all of 
the connected-component Gi of G. Of course, we assume that for the graph of a singleton with no edge, the 
one-dimensional structural entropy of the graph is 0 because, a random walk cannot occur in such a graph. (iii) 
The definition of ( )G1  differs from the Shannon entropy for the randomly selection of a node in G as follows: 
 ( )G1  is a dynamical notion measuring the complexity of the random walk in the graph, whereas the Shannon 
entropy is a static notion for a probabilistic distribution).

The one-dimensional structural entropy (or positioning entropy) is interesting for the following reasons: (i) 
the notion is a dynamical version of the Shannon’s entropy in graphs, (ii) positioning is a basic operation for 
network applications, and (iii) the first step for a rigorous study on unstructured big data is perhaps to structure 
the data, for which one-dimensional structural entropy minimisation could be the fundamental principle. Item 
(iii) is extremely important, because it means that the minimisation of one-dimensional structural entropy could 
be the principle to identify the natural network from unstructured big data. In the present paper, we will propose 
such an algorithm to construct cell sample networks for cancers from the unstructured gene expression profiles.

Two-dimensional structural entropy.  For a naturally evolving network G =  (V, E), individuals form 
social groups primarily through self-organising behaviours. Therefore, self-organisation behaviours lead to a nat-
ural community structure of the network. To detect the natural communities of a network, we must understand 
the principle of self-organisation of naturally evolving networks.

Suppose that  = , , ,X X X{ }L1 2  is a partition of V, in which each Xj is defined as a module or a commu-
nity. Using  , we encode a node v by a pair (i, j) such that j is the code of the community X containing v (referred 
to as the global code), and i is the code of node v within its own community X (referred to as the local code). In this 
case, suppose that v is the node that is accessible from the random walk with stationary distribution in G. We 
define the number of bits required to determine the pair (i, j) of the codes of v. The following two scenarios may 
occur:

	 Case 1: �v is accessible from node u in the community of v. In this case, only the local code i of v within its own 
community must be determined because the code of its community is already known before the ran-
dom walk.

	 Case 2: �v is accessible from a node outside v’s own community. In this case, both the local and global codes of 
v, or the pair (i, j), must be determined.

If   is a well-defined community structure of G, then the probability of Case 2 occurring is small. In this sce-
nario, the number of bits required to determine the two-dimensional code (i, j) of the node that is accessible from 
the random walk is significantly smaller than the one-dimensional structural entropy or positioning entropy of 
G.

The ideas presented above motivated us to define the two-dimensional structural entropy, which is also referred 
to as the module entropy or local positioning entropy of a graph.

For a connected graph G =  (V, E), suppose that  = , , ,X X X{ }L1 2  is a partition of V. We define the struc-
tural entropy of G by   as follows:
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where L is the number of modules in partition  , nj is the number of nodes in module Xj, ( )di
j  is the degree of the 

i-th node of Xj, Volj is the volume of module Xj (the sum of the degrees of the nodes in module Xj), and gj is the 
number of edges with exactly one endpoint in module Xj.

The two-dimensional structural entropy of a graph G is defined as follows:

( ) = ( ) , ( )G Gmin{ } 3
2H H

P

P

where   runs over all of the partitions of G.
For a network that naturally evolves in nature and society, we propose the following self-organisation hypoth-

esis: the self-organisation of individuals in the network minimises the non-determinism of the structure of the 
network. Assuming the self-organisation hypothesis, the algorithm minimising the two-dimensional structural 
entropy of the graph produces the natural community structure of the network.

The definition of  ( )G2  clearly reveals that minimising the non-determinism of the community structures is 
a principle of the natural community structures and network self-organisation in nature and society. As a matter 
of fact, Li, Li and Pan17 and Li et al.18 have shown that two-dimensional structural entropy minimisation is the 
principle for detecting the natural community structure of networks.

High-dimensional structural entropy.  Real world networks generally have a hierarchical structure such 
that a module of a network may consist of quite a few submodules, which leads to a natural extension of the 
two-dimensional structural entropy to high-dimensional cases.

To define high-dimensional structural entropy, we introduce a partitioning tree of graphs. First, we consider 
the two-dimensional case. For a graph G =  (V, E), and a partition = , , ,X X X{ }L1 2  of V, we interpret the 
partition   by a partitioning tree   of hight 2 as follows: 1) first, we introduce the root node λ, and define a set of 
nodes Tλ =  V, 2) we introduce L immediate successors for the root node denoted α λ= ˆ ii , where i =  1, 2, ···, L, 
and associate the set Xi with node αi; thus, we define =αT Xii

, and 3) for each αi, we introduce |Xi| immediate 
successors denoted α ˆ ji  for all j ∈  {1, 2, ···,|Xi|}, and each successor α ˆ ji  is associated with an element in Xi; thus, 
we define α ˆT ji

 as the singleton of a node in =αT Xii
.

Therefore,   is a tree of height 2, and all of the leaves of   are associated with singletons. For every node 
α ∈ , Tα is the union of Tβ for all of β values (of the immediate successors) of α, and the union of Tα for all of 

the nodes α values at the same level of the tree   is a partition of V.
Thus, the partitioning tree of a graph G =  (V, E) is a set of nodes such that each node is associated with a 

nonempty subset of vertices of graph G, and can be defined as follows:
Let G =  (V, E) be a network. We define the partitioning tree   of G as a tree   with the following properties:

(1)	 For the root node denoted λ, we define the set Tλ =  V.
(2)	 For every node α ∈ , the immediate successors of α are αˆ j  for j from 1 to a natural number N ordered 

from left to right as j increases.Therefore, αˆ i  is to the left of αˆ j  written as α α<ˆ ˆi jL , if and only if 
i <  j.

(3)	 For every α ∈ , there is a subset ⊂αT V  that is associated with α. For α and β, we use α β⊂  to denote that 
α is an initial segment of β. For every node α λ≠ , we use α − to denote the longest initial segment of α, or 
the longest β such that β α⊂ .

(4)	 For every i, {Tα | h(α) =  i} is a partition of V, where h(α) is the height of α (note that the height of the root 
node λ is 0, and for every node α λ≠ , h(α) =  h(α − ) +  1).

(5)	 For every α, Tα is the union of Tβ for all β’s such that β −  =  α; thus, ∪=α β α β=−T T .
(6)	 For every leaf node α of  , Tα is a singleton; thus, Tα contains a single node of V.

We define the entropy of G by a partitioning tree   of G.
For a network G =  (V, E), suppose that   is a partitioning tree of G. We define the structural entropy of G by 

  as follows:

(1)	 For every α ∈  , if α λ≠ , then define

α( ) = − ,
( )

α α

α−
H G

g
m

V
V

;
2

log
42



where gα is the number of edges from nodes in Tα to nodes outside Tα, Vβ is the volume of set Tβ, namely, the 
sum of the degrees of all the nodes in Tβ. (Remark: For an edge-weighted graph G =  (V, E), gα is the sum of the 
weights of all the edges between Tα and nodes outside Tα, and the degree of a node v ∈  V in G is the sum of the 
edge weights of all the edges incident to v. For a non-weighted graph, we regard the weight of an edge as 1.)
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(2)	 We define the structural entropy of G by the partitioning tree   as follows:

HT
T

T∑ α( ) = ( ).
( )α α λ∈ , ≠

G H G;
5

Let G =  (V, E) be a network. We define the K-dimensional structural entropy of G as follows:

H H
T

T( ) = ( ) , ( )G Gmin{ } 6
K

where   ranges over all of the partitioning trees of G of height K.
Our definition of the structural entropy explores the following self-organisation principle: minimising the 

non-determinism of a structure is the principle for the self-organisation of structures within naturally evolving 
networks.

In particular, the K-dimensional structural entropy of a graph G implies that the K-dimensional structure of 
G that minimises the K-dimensional structural entropy of G is the natural K-dimensional structure of G. Precisely, 
according to the definition of the K-dimensional structural entropy, we may define the natural structure of a 
graph as follows: Given a connected graph G, a natural number K >  1, a constant δ ≤  1 and a K-level partitioning 
tree   of G, we say that   is a δ-natural K-dimensional structure of G, if H HT ( ) ≤ ⋅ ( )

δ
G GK1 . This definition 

allows us to mathematically analyse the natural structures of networks. We leave it as an open question.

Algorithm for Minimising the K-Dimensional Structural Entropy
In this section, we describe an algorithm for finding a partitioning tree   of a graph G of height K to minimise the 
K-dimensional structural entropy of G.

Two operators, the merging operator and the combining operator, are introduced, and a partitioning tree is 
developed by using the two operators.

First, we define the merging operator. Let   be a partitioning tree and let α and β be nodes of   with α <  Lβ 
(meaning that α is to the left of β) and α −  =  β −  =  γ for some γ. In addition, let α γ= ˆ i , and β γ= ˆ j  for 
i <  j.

We define a partitioning tree below, which is obtained from   via the following merging operator: 
α β( , ); :M T

Let Tα =  {x1, x2, ···, xM} and Tβ =  {y1, y2, ···, yN}, which are ordered as listed in the sets. Then,

(1)	 Define Tα =  {x1, x2, ···, xM, y1, y2, ···, yN}, which are ordered as they are listed.
(2)	 Set h(α) ←  h(α).
(3)	 For each s ∈  {1, 2, ···, M}, define =αˆT x{ }s s  with α α( ) ← ( ) +ˆh s h 1.
(4)	 For every t with M +  1 ≤  t ≤  M +  N, define =α −ˆT y{ }t t M  with α α( ) = ( ) +ˆh t h 1.
(5)	 Delete β.
(6)	 For every j′  >  j, if γ ′ˆ j  is defined, then set

← .γ γ′− ′ˆ ˆT Tj j1

Here, we use α β( , )G
  to denote the partitioning tree defined by   via the merging operator M T α β( , );  above.

We define the difference between the structural entropies of G obtained from a partitioning tree   and a par-
titioning tree obtained from   through a merging operator.

For a graph G =  (V, E) and a partitioning tree   of G, let α β, ∈  such that α −  =  β − and h(α) <  K. Then, 
define   α β∆ ( , ) = ( ) − ( )′L G L G;G , where α β′ = ( , )G  . By definition, we have

TM

T T
∑ ∑α β∆ ( , ) = − + .

( )γ α γ β γ

γ γ

γ δ α δ

δ δ
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g
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V
V

g
m

V
V

;
2

log
2

log
7

G
: or

2
:

2

In this case, if α and β occur such that α <  Lβ, α −  =  β − , h(α) <  K, and if TM α β∆ ( , ) >; 0G , then α β( , );M T  
is defined and written as M T α β( , )↓; .

According to equation (7), α β∆ ( , );G TM  is locally computable.
Second, we define the combining operator. Let G =  (V, E) be a graph, and let   be a partitioning tree of G.
For any α β, ∈ , if:

1.	 α −  =  β −  =  γ for some γ, and
2.	 for any δ ∈  , if either α δ⊆  or β δ⊆ , then h(δ) <  K,

then define the combining operator C T α β( , );  as follows:

	 -create a new node ξ with ∪=ξ α βT T T  and ξ −  =  γ,
	 -let the two branches with root α and β in   be two branches of ξ, while maintaining the same order as in  .

By definition, the Δ -function with the combining operator α β( , );C T  is as follows:
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α β α β ξ α β∆ ( , ) = ( ) + ( ) − ( ( ) + ( ) + ( )), ( )′ ′ ′H G H G H G H G H G; ; ; ; ; ; 8G T
C T T T T T

where ′  is the tree obtained from   by the combing operator C T α β( , ); .
If α <  Lβ such that α −  =  β − , and if α δ⊆  or β δ⊆  implies h(δ) <  K for every δ and TC α β∆ ( , )>; 0G . Thus, 

C T α β( , );  is defined and written as α β( , )↓;C T .
In this case, it is clear that α β∆ ( , );G T

C  is locally computable.
Finally, we introduce our algorithm denoted K  by using both the merging and combining operators. Let 

G =  (V, E) be a graph. Suppose that {v1, v2, ···, vn} is the set of all vertices in V ordered as they are listed in the set. 
The K-dimensional structural entropy algorithm on G proceeds as follows:

(1)	 Define the initial partitioning tree   as follows:

	 -Set Tλ =  V with h(λ) =  0, and for every i ∈  {1, 2, ···, n}, define =λˆT v{ }i i  with λ λ( ) = ( ) +ˆh i h 1.
(2)	 If there are α β, ∈   such that M T α β( , )↓; , then

1.	 choose α and β such that TM α β∆ ( , );G  is maximised;

2.	 let ′  be the partitioning tree obtained from   by the merging operation of   with α and β;

3.	 set  ← ′; and
4.	 go back to step (2).

(3)	 If there are α β, ∈  such that C T α β( , )↓; , then

(a)	 choose α and β such that TC α β∆ ( , );G  is maximised;
(b)	 let ′  be the partitioning tree obtained from   by the combining operation of   with α and β;
(c)	 set  ← ′; and
(d)	 go back to step (2).

(4)	 Otherwise, output the partitioning tree  , and terminate the program.

The algorithm K  outputs a partitioning tree   of G. Clearly algorithm K  works naturally on weighted 
networks.

Time complexity of algorithm K .  For K =  2, the time complexity of  2 is O(n2) for all graphs, and is 
( ⋅ )O n nlog2  for sparse networks17, where n is the number of nodes in the graph. This algorithm is a nearly linear 

time algorithm for networks, which easily functions for networks that include millions of nodes. For K =  3, for 
every first level node α in the partitioning tree, the size of Tα does not decrease during the implementation of the 
algorithm. Therefore, |Tα| =  M for M with 1 ≤  M ≤  n. For a fixed M and a fixed Tα of size M, the number of oper-
ations associated with the children of α is the time complexity of an 2  with M graphs of M nodes; thus, O(M2) for 
general graphs, and ( ⋅ )O M Mlog2  for networks. This analysis gives the time complexity with one first level node 
α of the partitioning tree O(n3) for all graphs and ( )O n nlog2 2  for sparse graphs. Because there are at most n first 
level nodes in the partitioning tree, the time complexity of 3  is bounded by O(n4) for all graphs, and 
( ⋅ )O n nlog3 2  for sparse networks, which is significantly larger than that of  2.

The time complexity analysis above clearly indicates that our algorithm 3  is not a hierarchical clustering 
algorithm with 3 levels. Because of the time complexity of ( )O n nlog3 2  for sparse networks or O(n4) for all graphs, 
although 3  is a polynomial time algorithm, it can, in practice, only manage graphs that contain thousands of 
nodes. Therefore, it is difficult to detect the natural K-dimensional structure of a network of large sizes for K >  3 
(the time complexity generally increases by a factor of n2 whenever the dimension increases by 1, for dimensions 
K ≥  2), which poses a new issue regarding the design of better algorithms for minimising the K-dimensional 
structural entropy of networks for each K >  1, including for the case of K =  2. We remark that the time complexity 
( )O n nlog2  of 2  for networks is in fact impractical for n as large as hundreds of millions. For this reason, there is 

a need to design better algorithms to find the minimal two-dimensional structural entropy of networks.
Finally, we note that K  is a heuristic algorithm to compute the K-dimensional structural entropy of graphs 

and indicate that precisely computing the K-dimensional structural entropy of graphs is an extremely difficult 
problem that should be resolved in future computer science studies.

Remark: (i) the merging operator combines two sets X and Y into a set ∪=Z X Y  such that all of the nodes 
in Z are not distinguished and are allowed to re-group within Z in the future; (ii) the combining operator com-
bines two sets X and Y into ∪=Z X Y  such that that the subtypes X and Y are kept within Z; (iii) the two oper-
ators are natural rules in real world clustering, which incorporates the idea of a mixture both bottom-up and 
top-down methods; (iv) our algorithm K  is a basic greedy strategy for minimising the K-dimensional structural 
entropy, and new rules are required to design new algorithms to minimise the K-dimensional structural entropy 
of graphs; (v) we determined the K-dimensional structural entropy for small values of K because, in real world 
networks, hierarchical structures occur; however, the number of levels of a community within a community is 
indeed small.
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Clearly, our algorithm  K not only seeks to follow the principle of self-organisation of networks, but also the 
natural rules in the real world as the operators of the algorithm. The algorithms are designed to explore the natu-
ral two- and three-dimensional structures of networks rather than optimise an artificially defined object function. 
We use this strategy because natural objects can be identified by following natural rules, and algorithm  2 has 
been shown to successfully detect natural communities in social networks17. The algorithm 3  can be regarded as 
a deep detecting algorithm that seeks to explore the natural hierarchical structure of networks.

We use our algorithms K  for K =  2, 3 to identify the modules and submodules of cancers and to compare our 
algorithms with the two most frequently used algorithms, namely, the modularity maximisation algorithm 19 
and the description length minimisation algorithm  20.

Constructing Cell Sample Networks Based on Gene Expression Profiles
Suppose that v1, v2, ···, vn are n samples of cells and that g1, g2, ···, gN are N genes. For every pair (i, j), let a(i, j) 
be the expression profile of gene gi in sample vj. Then, for every j from 1 to n, a vector (a(1, j), a(2, j). ···, a(N, j)) 
occurs and represents the gene expression profiles of the sample vj, denoted Pj. For every pair (j, j′ ), let Wj,j′ be the 
Pearson correlation coefficient between Pj and Pj′, the gene expression profiles of samples vj and vj′, respectively.

A cell sample network G =  (V, E) is constructed on the basis of the gene expression profiles by the following 
algorithm, denoted .

Algorithm  works with a fixed natural number k, and proceeds as follows:

(1)	 The vertices of G are the cell samples v1, v2, ···, vn, that is, let V =  {v1, v2, ···, vn}; and
(2)	 For every j, suppose that u1, u2, ···, uk are the cell samples such that W(vj, u1), W(vj, u2), ···, W(vj, uk) are the 

highest k weights among the weights W(vj, u) for all of the samples u, where W(vj, u) is the Pearson correla-
tion coefficient between the gene expression profiles of samples vj and u. For every i from 1 to k, create an edge 
(vj, ui) with weight W(vj, ui).

This constructs the weighted graph G =  (V, E).
In the construction of G, k is a fixed number that depends on different cell samples and gene expression 

profiles.
The choice of k is a challenging problem. It requires that the choice of k ensures that the nontrivial weights are 

maintained in the generated graph, and the trivial or noisy weights are removed. Here, we realise the idea by the 
following algorithm, denoted .

Algorithm  proceeds as follows:

(1)	 (Noise amplifying) Fix a noise amplifier σ. Let W be the average wight among all the pairs of cell samples. Let 
M =  σ ⋅  W be the modifier. Let H be the weighted graph of the cell samples such that for every pair (i, j) of cell 
samples, there is a weight W′ (i, j) =  W(i, j) +  M.This step amplifies the noise for all the weights. The roles of 
this step are two-fold: if the weight W(i, j) between cell samples i and j is nontrivially high, then the modified 
weight W′ (i, j) =  W(i, j) +  M is approximately the original weight W(i, j) since the modifier M is small, and if 
the weight W(i, j) is trivial or noisy, then the modified weight W′ (i, j) =  W(i, j) +  M is significantly amplified, 
which allows our algorithm to better filter the noise or trivial weights from the highly nontrivial weights.In 
our experiments, we choose the noise amplifier σ =

n
1

2
 when n <  1000, and σ =

n
1  when n >  1000, where n 

is the number of the cell samples. This choice of σ is approximately equivalent to the following operation: 
Every cell sample increases a unit weight and uniformly assigns the extra unit weight to all the other cell sam-
ples.(The crucial new idea in algorithm  is the introduction of the noise amplifier σ and the modifier M. The 
motivation is to amplify noise for an algorithm to easily identify the noises. However, it may have more impli-
cations and have some theoretical backgrounds. The exact form of the σ may vary a bit for different 
networks.)

(2)	 For every k, let Hk be the weighted graph obtained from H as follows:

(a)	 The modifier M is kept for every edge.
(b)	 For every cell sample i, keep the weighted edges of the top k weights, and delete all the other weights.

(3)	 For each k, let H(k) be the one-dimensional structural entropy of the weighted graph Hk.We say that k is a 
stable point, if both H(k −  1) >  H(k) and H(k +  1) >  H(k) hold.

(4)	 (Minimisation of non-determinism or uncertainty) Define k to be the k′  that achieves the least one-dimen-
sional structural entropy among all the stable points. That is, k is a stable point, and H(k) is the least among 
the H(k′ ) for all the stable points k′ .

This step ensures that the chosen k generates a network structure with minimum uncertainty or 
non-determinism.

In this study, we consider a cell sample network for 4 cancers (additional cancer types and healthy tissue are 
discussed in the supplementary information) using the following data.

(1)	 Acute leukaemia from Golub et al.1, which were obtained from acute leukaemia patients at the time of diag-
nosis. The data contain the expression of 7,129 genes for 38 samples that constitute 3 cell types. The three 
tumour types obtained from acute leukaemia patients at the time of diagnosis are as follows: 11 acute myeloid 
leukaemia (AML) samples; 8 T-lineage acute lymphoblastic leukaemia (ALL) samples; and 19 B-lineage ALL 
samples.
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(2)	 Lymphoma data from Alizadeh et al.2, which contain the expression of 4,026 genes for 96 samples, which consti-
tute 9 cell types. The 9 types consist of three different types of tumours, diffuse large B cell lymphoma (DLBCL), 
chronic lymphocytic leukaemia (CLL), and follicular lymphoma (FL), as well as normal B and T cells at different 
stages of cell differentiation, including germinal centre B, NL.lymph node/tonsil, activated blood B, resting/
activated T, transformed cell lines, and resting blood B. On the basis of gene expression profiling, Alizadeh et al.2 
have suggested dividing the DLBCL type into two subtypes, GC B-like DLBCL and activated B-like DLBCL.

(3)	 Multi-tissues from the multi-tissue dataset from Ramaswamy et al.3, which contain the expression of 5,565 
genes for 103 samples constituting 4 cell types. The tissue samples are from four distinct cancer types: 26 
breast, 26 prostate, 28 lung, and 23 colon samples.

(4)	 The test data of leukemia from Haferlach et al.10, which contains 1152 samples and 1480 gene expression 
profiles. The samples consist of 18 subtypes.

In Figures 1, 2, 3 and 4 of the supplementary information, denoted S-Figures 1, 2, 3 and 4, we depict the curves 
of the one-dimensional structural entropy function H(k) for the acute leukaemia, lymphoma, the multi-tissues 
and the new test leukemia data, respectively.

By observing S-Figures 1, 2, 3 and 4, we have that the parameter k chosen by the algorithm  for the acute 
leukaemia, the lymphoma, the multi-tissues and the new test leukemia data are k =  7, k =  6, k =  9, and 11, respec-
tively. The algorithm  with the chosen k =  7, 6, 9 and 11, constructs the cell sample networks of the acute leukae-
mia, the lymphoma, the multi-tissues and the test data leukemia, respectively.

Gene Classification Map
For a cancer with cell samples V =  {v1, v2, ···, vn}, suppose that g1, g2, ···, gN are all of the genes. For a given gene 
g =  gi, we use g(v) to denote the gene expression profile of g for cell sample v ∈  V. By normalising, we ensure that 
the average g(v) for all values of v is 0, and the values g(v) for all samples v, are real numbers in [− 1, 1] (details of 
the normalisation is provided in the Methods section).

Let G =  (V, E) be the cell sample graph of a cancer based on the gene expression profiles. Suppose that {X1, 
X2, ···, XL} is a partition of V identified by a community-detecting algorithm from the graph G. For a set Xi, 
we define g(Xi) to be the average of g(x) for all x ∈  Xi. For a gene g, we use Xg to denote the set Xi such that 
g(Xi) =  maxj{g(Xj)}.

For every j, we define Bj to be the set of all genes g such that Xg =  Xj, which are listed in decreasing order of the 
gene expression value.

A gene map of G according to the partition {X1, X2, ···, XL} is a matrix of colour codes of L ×  L blocks. In the 
matrix, the j-th row is the set Bj ordered as defined above, and the j-th column is the set Xj listed in a fixed order. All 
of the genes are listed in the ordering B1, B2, ···, BL, in which each Bj has its own order by the gene expression profiles.

The gene map explores the cell types and the subtypes of the cancer tumours and the set of genes that deter-
mines the corresponding cell types and subtypes.

Next, we prepare to construct our gene map method and define the cancer types and subtypes.
Before implementing the experiments, we summarise the steps of our approach. Our approach for construct-

ing the gene map consists of the following steps:

(1)	 Construct a weighted network of cell samples on the basis of the gene expression profiles of the cell samples;
(2)	 Identify the modules and/or submodules by community identification algorithms for networks;
(3)	 Identify the set of genes that defines the modules and submodules of the cell sample network identified by the 

algorithms;
(4)	 Compare the true tumours types with the modules and submodules identified by the community identifica-

tion algorithms; and
(5)	 Analyse the survival times, survival indicators and IPI scores of the modules and submodules of the cancers 

identified by all of the algorithms.

Our approach differs from the hierarchical clustering methods, and various learning algorithms. Our method 
directly defines types and subtypes of cancers by network algorithms, and is completely different from the learn-
ing algorithms that find a classifier based on some training samples and assign a new sample to a known type 
using the classifier.

A cell sample network is constructed on the basis of the minimisation of one-dimensional structural entropy 
as realised in algorithms  and .

We define the types and subtypes of cell samples from all of the graphs above by our algorithms based on the 
K-dimensional structural entropy of graphs, which is denoted  K, for K =  2 and 3, and by the  and   algo-
rithms, respectively.

The details on the modules identified by the algorithms are reported in the supplementary information. All of 
the experiments and analyses performed for the additional cancer, the lung cancer and healthy tissue are given in 
the supplementary information.

Similarity of the Modules Identified by an Algorithm to the True Tumour Types
For a network G =  (V, E), let X and Y be two subsets of V. We define the similarity of Y to X as follows:

∩( , ) =
⋅

.
( )

S X Y
X Y
X Y 9

G
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Suppose that  = , , ,X X X{ }N1 2  and = , , ,Y Y Y{ }M1 2  are two partitions of G.
Then, similarity of  to   is defined as the function Q

Ps  such that for all j ∈  {1, 2, ···, N},
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Acute Leukaemia
Similarity.  Table 1 describes the similarity of the modules of acute leukaemia identified by the algorithms 2 , 
,   and 3 .

According to Table 1, the similarity of the modules identified by 2  is the same as that identified by , the 
weighted average similarity of the modules found by 3  is less than that by the algorithm 2  and larger than that 
by  , and the average weighted similarity found by  2 is the same as that found by , whereas it is higher that 
that found by  . According to the similarities listed in Table 1,  2, 3  and  all perform better than   in this case.

According to S-Tables 1, 2, 3, 4 and 6, the tables in the supplementary information, we observe the following 
results: (1) There are 3 true types. (2) Algorithm  found 5 models. (3) Algorithm   found 2 modules. (4) 
Algorithm  2 found 4 modules. (5) Algorithm  3 found 6 modules in which ALL_21302B-cell and 
ALL_7092_B-cell are singletons.

Gene map of true types.  Figure 1 shows the colour codes of the gene map of the three acute leukaemia true 
types: ALL-B, ALL-T and AML. Figure 1 reveals that the type ALL-B may not be a precise or refined tumour type 
of acute leukaemia, although the three types ALL-B, ALL-T, and AML are distinguishable by three different gene 
expression patterns.

Gene map of the modules based on modularity maximisation.  Figure 2 shows the gene map of the 
modules of acute leukaemia identified by the modularity maximisation algorithm . Figure 2 and S-Table 2 
reveal that ALL-B is principally divided by modules 1 and 2, and modules 3 and 4 are basically the ALL-T and 
AML, and each of the modules is defined by a set of genes.

Gene map by InforMap.  Figure 3 shows the gene map of the modules of acute leukaemia identified by the 
algorithm InforMap  . Figure 3 and S-Table 3 show that algorithm   identified only two modules and none of the 
identified modules is clearly defined by a unique set of genes or is highly similar to a true type.

Gene map of the modules by structural entropy minimisation 2.  Figure 4 depicts the gene map of 
the modules of the cell sample network of acute leukaemia identified by our algorithm  2.

Figure 4 and S-Table 4 show the following results: (1) Module 1 is a subtype of ALL-B (except for AML_13), 
and it is defined by a set of more than 800 genes. (2) Module 2 is a subtype of ALL-B, and it is defined by a set of 
more than 2,500 genes. (3) Module 3 is exactly the type ALL-T, and is defined by a set of more than 1,000 genes. 
(4) Module 4 is the type AML (missing AML_13), and is defined by a set of more than 1,000 genes.

These results demonstrate that both modules 1 and 2 are biologically meaningful subtypes of the type ALL-B 
except for AML_13.

According to Figs 1 and 4, the true types and the modules identified by our algorithm 2  are distinguishable. 
However, the pictures are not highly-defined because, the gene expression profiles in the diagonal blocks are not 
extremely high and the gene expression profiles other than the diagonal blocks are nontrivially high.

Three-dimensional gene map.  Figure 5 depicts the gene map of the refined classification of acute leukae-
mia provided by our algorithm  3.

Figure 5 and S-Table 6 reveal the following results:

2    3

ALL-B (19 cells) 0.725 0.725 0.824 0.688 

ALL-T (8 cells) 1.0 1.0 0.535 1.0 

AML (11 cells) 0.953 0.953 0.953 0.953 

Weighted average  0.849 0.849 0.801 0.831 

Table 1.   Similarity of the cell types of leukaemia identified by 2, ,   and 3 .
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(1)	 Algorithm 3  identified 6 modules. Each module Xi is either a true type or a subset of a true type that consists 
of several distinguishable submodules and indicate that all of the modules are distinguishable and each sub-
module Yi,j is uniquely determined by a block of genes Bi,j, which generates a high-definition and one-to-one 
map from the submodules Yi,j to gene expression patterns Bi,j for all i and j.

(2)	 Submodule 2.2 is defined by a set of more than 1,000 genes.
(3)	 Module 3 is defined by a set of more than 2,000 genes.
(4)	 Module 4 is defined by a set of more than 400 genes.
(5)	 Submodule 6.2 is defined by a set of more than 700 genes.

It is conceivable that an analysis of gene set B that defines a module X or a submodule Y may be required to 
treat the corresponding module X or submodule Y. However, our results show that a module X or a submodule 
Y usually has a large gene set B that expresses the module X or submodule Y, which could lead to difficulty in 

Figure 1.  Gene map of the true types of acute leukaemia. The three types are the ALL-B, ALL-T and AML, 
respectively.

Figure 2.  Gene map of the modules of acute leukaemia identified by . The 5 modules and their modules 
are provided in the supplementary information.
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treating a tumour type. To address this issue, our three-dimensional gene map analysis suggests that for a tumour 
type X, we may divide X into submodules Y1, Y2 and Y3. Upon analysis, the gene sets B1, B2 and B3 may express 
Y1, Y2 and Y3, respectively. This analysis could aid in treating the tumour type X. Nevertheless, we believe that 
it is fundamental to identify and analyse the large set of genes that express a biologically meaningful module or 
submodule, and our three-dimensional cancer gene map can provide this method.

The results (1) to (5) demonstrate that all of the modules and submodules classified by our algorithm 3  maybe 
biologically meaningful. In particular, according to (3) and (4), ALL_21302_B-cell and ALL_7092_B-cell are 
remarkably cells that may play essential roles in the classification, diagnosis and therapy of acute leukaemia. 
According to (2) and (5), submodules 2.2 and 6.2 could be extremely important in the classification, diagnosis 
and therapy of acute leukaemia.

Remark. All the algorithms ,  , 2  and  3 fail to correctly assign the cell sample AML_13 to the AML type. 
This finding implies that AML_13 could be particularly interesting.

Figure 3.  Gene map of the modules of acute leukaemia identified by  . The 2 modules and their modules are 
provided in the supplementary information.

Figure 4.  Gene map of the modules of acute leukaemia identified by 2 . The 4 modules and their modules 
are provided in the supplementary information.
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Gene Map of Lymphoma
Similarity.  Table 2 shows the similarity of the modules of the lymphoma identified by  2, ,   and 3  to the 
true types.

According to S-Tables 8, 9, 10, 11 and 14, we have the following results: (1) There are 9 true types. (2) 
Algorithm  found 4 modules. (3) Algorithm   found 9 modules. (4) Algorithm  2 found 11 modules. (5) 
Algorithm  3 found 13 modules.

Table 2 reveals the following results: (1) 2  exactly identifies 4 true types. (2) 3  exactly identifies 4 true types. 
(3)   exactly identifies 2 true types. (4)  exactly identifies only one true type.

The results above demonstrate that the modules found by 2  and  3 may be the best. In fact, dividing DLBCL 
according to the algorithms  2 and  3 defines the prognostic categories. This example also indicates that weighted 
similarities are insufficient for evaluating the quality of the modules for detecting algorithms because the true 
cancer types may not be absolutely correct (otherwise, these cancers may have already been resolved).

Gene map of true types.  Figure 6 shows the gene map of the true types of lymphoma, which consists of 9 
types: DLBCL, germinal centre B, NL. lymph node/tonsil, activated blood B, resting/activated T, transformed cell 
lines, FL, resting blood B, and CLL, which are ordered as listed.

Figure 5.  Gene map of the modules of acute leukaemia identified by 3 . The 6 modules and their submodules 
are provided in the supplementary information.

 2   3

DLBCL 0.511 0.903 0.796 0.466 

Germinal centre B 0.535 0.272 0.408 0.535 

Nl. lymph node/tonsil 0.577 0.192 0.246 0.577 

Activated blood B 1.0 1.0 1.0 1.0 

Resting/activated T 1.0 0.913 1.0 1.0 

Transformed cell lines 0.816 0.333 0.866 0.816 

FL 0.949 0.577 0.866 0.949 

Resting blood B 1.0 0.385 0.516 1.0 

CLL 1.0 0.638 0.856 1.0 

Weighted average 0.731 0.768 0.817 0.709 

Table 2.   Similarity of the modules of the lymphoma found by 2, ,   and 3.
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Figure 6 reveals the following results:1) All of the types are distinguishable because they are defined by differ-
ent blocks of genes. 2) All of the types except DLBCL are expressed by different sets of genes. 3) The type DLBCL 
is a large set; however, it is not well-expressed. 4) Four types (germinal centre B, NL. lymph node/tonsil, resting/
activated T and transformed cell lines) are highly expressed by a set of many genes; thus, the blocks of genes 
expressing the types are large. 5) Except for DLBCL, the 8 remaining types are highly expressed by their corre-
sponding blocks of genes.

These results imply that DLBCL is not a well-defined type, which will be shown in the gene map of the mod-
ules of lymphoma identified by the algorithm  2.

Gene map of the modules by modularity maximisation.  Figure 7 depicts the gene map of the mod-
ules of lymphoma identified by the modularity maximisation algorithm .

Figure 7 and S-Table 9 reveal the following properties: (1) Algorithm  identified 4 modules. (2) The four 
modules identified by  are distinguishable by different sets of genes.

(1) indicates that the modules identified by  are far from the true types. (1) and (2) imply that gene expres-
sion patterns alone is insufficient for evaluating the modules identified by a community detection algorithm.

Gene map by InforMap.  Figure 8 depicts the gene map of lymphoma classified by algorithm  .
Figure 8 and S-Table 10 reveal the following results: (1) 9 modules are found. (2) Each of the 9 modules is 

defined by a unique set of genes. (3) The large DLBCL type is divided, and the DLBCL samples are assigned to 6 
modules.

(3) is interesting. As we mentioned before, the DLBCL type is too large, and may not be a well-defined true 
type. Here, we see that the algorithm   assigned the DLBCL cell samples to 6 modules. We will further analyse the 
divisions of the DLBCL samples using clinical data.

Gene map of the modules by structural entropy minimisation algorithm 2.  Our algorithm  2 
identified 11 modules for lymphoma, and the results are provided in the supplementary information.

Figure 9 depicts the gene map of lymphoma classified by our algorithm  2.
Figure 9 and S-Table 11 reveal the following properties: (1) Modules 1, 2, 3, 7, 8, 9, 10, and 11 essentially corre-

spond to transformed cell lines, activated B-like DLBCL, GC B-like DLBCL, activated blood B, resting/activated 
T, FL, resting blood B, and CLL, respectively. (2) The DLBCL type is essentially divided into modules 2, 3, and 6. 
(3) Except for module 3, which contains the subtype GC B-like DLBCL, every module is highly expressed by a 
significantly large set of genes. (4) Module 2 is the subtype activated B-like DLBCL and is highly expressed by a 
set of more than 300 genes. (5) Module 3 contains the subtype GC B-like DLBCL (except for DLCL-0011) and is 
large. However, the module is well-expressed only by a set of less than 100 genes. This finding could be caused by 
i) the expression of the subtype GC B-like by only a small set of genes or ii) an incomplete current gene expres-
sion array. (6) Module 6 contains a subset of DLBCL, and its biological and medical classification is unknown. 
However, our two-dimensional gene map shows that the module is highly expressed by a set of more than 290 
genes. (7) Module 4 is a combination of GC B-like DLBCL, and germinal centre B. Our gene map shows that the 
module is highly expressed by a set of more than 300 genes. (8) Module 5 is a combination of activated B-like 
DLBCL and NL. lymph node/tonsil. Our gene map shows that the module is highly expressed by a set of more 

Figure 6.  Gene map of the true types of lymphoma. The nine types are: 1 DLBCL, 2 Germinal centre B, 3 Nl. 
lymph node/tonsil, 4 Activated blood B, 5 Resting/activated T, 6 Transformed cell lines, 7 FL, 8 Resting blood B, 
and 9 CLL.
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than 400 genes, implying that, it is a biologically meaningful type. (9) Module 8 is the resting/activated T, and it 
is highly expressed by a set of more than 1,800 genes. (10) Module 11 is the CLL, and it is highly expressed by a 
set of more than 450 genes.

These results imply that modules 2, 3 and 6 could be new subtypes of DLBCL and modules 4 and 5 could be 
new subtypes of lymphoma. We will verify these results by clinical data analyses.

Three-dimensional gene map.  Figure 10 depicts the gene map of the refined classification of lymphoma 
derived by our algorithm  3, for which the details of modules and submodules are provided in the supplementary 
information. Figure 10 and S-Table 12 establish the three-dimensional gene map from the types and subtypes of 
the gene expression patterns, which shows the types and subtypes of lymphoma, and demonstrate that almost all 
of the subtypes may have a biological meaning related to the classification of tumour types and subtypes of lym-
phoma. In particular, it predicts some remarkable subtypes for DLBCL and lymphoma, which will be verified by 
clinical data analyses.

Remark: Interestingly, all of the algorithms isolate DLCL-0009 from the other DLBCL samples, although the 
reason remains unclear.

Figure 7.  Gene map of the modules of lymphoma identified by . The 4 modules and their modules are 
provided in the supplementary information.

Figure 8.  Gene map of the modules of lymphoma identified by  . The 9 modules and their modules are 
provided in the supplementary information.
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Gene Map of Multi-tissues
Similarity.  Table 3 describes the similarity of the modules of the multi-tissues identified by the algorithms 2 , 
,   and 3 . Table 3 shows the following results: (1) Algorithm  2 exactly identifies 1 true type and approximates 
the other three true types with similarities greater than 0.94. (2) Algorithm 3  exactly identifies 1 true type and 
approximates the other three true types with similarities greater than 0.91. (3) Algorithm  identifies 1 true type 
and approximates the other three true types with similarities greater than 0.85. (4) Algorithm   approximates all 
the true types with similarities greater than 0.76.

According to S-Tables 17, 18, 19, 20 and 22, we have the following results: (1) There are 4 true types. (2)  
found 5 modules. (3)   found 6 modules. (4) 2  found 4 modules. (5)  3 found 7 modules, including 3 singletons, 
BR_U16, BR_UX7 and LU_A17T.

Gene map of true types.  Figure 11 depicts the gene map of the true types of the multi-tissues ordered 
according to the types BR, PR, LU and CO.

As shown in Fig. 11, each of the types is well-expressed by the gene expression map and all of the types are 
distinguishable.

Figure 9.  Gene map of the modules of lymphoma identified by 2. The 11 modules and their modules are 
provided in the supplementary information.

Figure 10.  Gene map of the modules of lymphoma identified by 3 . The 13 modules and their submodules 
are provided in the supplementary information.
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Gene map of the classification by modularity maximisation.  Figure 12 depicts the gene map of the 
modules of the multi-tissues identified by the modularity maximisation algorithm .

Figure 12 and S-Table 18 reveal the following results: (1)  identified 5 modules, and one is a true type. (2) 
Except for the true type, the other 4 modules are not well-defined by a distinct set of genes.

Gene map by InforMap.  Figure 13 depicts the gene map of the multi-tissue dataset according to algorithm 
 .

Figure 13 and S-Table 19 reveal the following results: (1)   identified 6 modules, and one is a true type. (2) 
Each module is well-defined by a distinct set of genes. (3) The 6th module contains only one sample, BR_U16.

Gene map of the multi-tissues by structural entropy minimisation algorithm 2 .  Figure 14 
depicts the gene map of the multi-tissue dataset provided by our algorithm  2. Figure 14 and S-Table 20 reveal 
that the modules 1–4 here are the same as or highly similar to BR, CO, LU and PR, respectively.

Three-dimensional gene map.  Figure 15 depicts the gene map of the refined module and submodule 
classification of the multi-tissue dataset according to our algorithm  3.

Figure 15 and S-Table 21 reveal the following results: (1) Module 1 is essentially of the type BR. (2) Module 2 
is of the type CO and consists of 3 distinguishable submodules. (3) Modules 3, 4 and 7 are singletons and consist 
of BR_U16, BR_UX7 and LU_A_LU_A17T, respectively. (4) Module 5 is of the PR type and consists of 3 distin-
guishable submodules. (5) Module 6 is of the type LU and consists of 4 distinguishable submodules. (6) Each sub-
module is defined by a set of a significantly large number of genes. (7) Every gene pattern defining a submodule 
fails to define any other module or submodule. (8) The three cells, BR_U16, BR_UX7 and LU_A_LU_A17T are 
expressed by sets of more than 1,500, 300 and 300 genes, respectively.

2    3

BR 0.961 0.856 0.760 0.941 

PR 1.0 1.0 1.0 1.0 

LU 0.946 0.945 0.945 0.945 

CO 0.941 0.891 0.891 0.941 

Weighted average 0.962 0.924 0.900 0.957 

Table 3.   Similarity of the modules of multi tissue found by 2, ,   and 3.

Figure 11.  Gene map of the true types of multi-tissues. The types 1, 2, 3 and 4 are the BR, PR, LU and CO, 
respectively.
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These results demonstrate that our three-dimensional gene map shown in Fig. 15 provides a high-definition, 
one-to-one map from the submodules of true cell types to the gene expression patterns of the multi-tissues and 
indicates that BR_U16, BR_UX7 and LU_A_LU_A17T are remarkable cells that may play special roles in the 
classification of multi-tissues.

DLBCL Submodules Identified by 2 and  3 Define Prognostic Categories
We used the DLBCL clinical data from Alizadeh et al.2 to analyse the overall survival times, survival ratios and IPI 
scores of the submodules of the DLBCL type identified by the algorithms 2 , 3 ,   and .

Submodules identified by 2.  S-Tables 44 and 45 show the statistical survival times, survival ratios and IPI 
scores of the DLBCL submodules identified by the  2 algorithm.

S-Tables 44 and 45 reveal the following results:

(1)	 Except for DLCL_0041 and DLCL_0009, the DLBCL samples are divided into modules 2 to 6.
(2)	 Module 2 essentially represents activated B-like DLBCL samples. The overall survival time is 26.4 months, the 

Figure 12.  Gene map of the modules of multi-tissues identified by . The 5 modules and their modules are 
provided in the supplementary information.

Figure 13.  Gene map of the modules of multi-tissues identified by  . The 6 modules and their modules are 
provided in the supplementary information.
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overall survival ratio is 20%, and the IPI scores are 2 or 3.
(3)	 Module 3 contains 12 samples. The module includes GC B-like DLBCL samples. The overall survival time is 

49.6 months, the survival ratio is 55%, and the IPI scores are 3 or 4.
(4)	 Module 4 contains 4 GC B-like DLBCL samples. The overall survival time is 85.7 months, the survival ratio is 

100%, and the IPI scores are 0 or 1.
(5)	 Module 5 contains 4 activated B-like DLBCL samples. The overall survival time is 30 months, the survival 

ratio is 25%, and the IPI scores are 2 or 3.
(6)	 For modules 2 to 5, most DLBCL samples within the same module share similar survival times, survival indi-

cators and IPI scores.
(7)	 Module 6 contains 10 samples. The overall survival time is 37 months, the survival ratio is 40%, and the IPI 

scores range from 0 to 4.
(8)	 The DLBCL samples in distinct modules among modules 2 to 6 have different overall survival times, survival 

ratios and IPI scores.

Figure 14.  Gene map of the modules of multi-tissues identified by 2. The 4 modules are exactly the same or 
almost the BR, CO, LU and PR respectively, for which the details are provided in the supplementary 
information.

Figure 15.  Gene map of the modules of multi-tissues identified by 3 . The 7 modules and their submodules 
are described in the supplementary information.



www.nature.com/scientificreports/

1 9Scientific Reports | 6:20412 | DOI: 10.1038/srep20412

These results demonstrate that most of the DLBCL samples divided in each of the modules 2–5 share similar 
survival times, survival indicators and IPI scores, indicate that the samples in different modules have significantly 
different overall survival times, survival ratios, and IPI scores, and show that the samples in module 6 have diver-
gent survival times, survival indicators and IPI scores. These results indicate that the classification of the DLBCL 
samples in modules 2 to 5 are interpretable and distinguishable in clinical practice. However, module 6 is not 
well-defined in clinical practice.

Submodules identified by  3.  S-Tables 46 and 47 show the statistical survival times, survival ratios and IPI 
scores of the DLBCL submodules identified by  3.

S-Tables 11 and 14 show that 3  refines the modules identified by  2. Therefore, the submodules of lymphoma 
identified by  3 correspond to the submodules of the modules identified by 2 . In particular, the DLBCL samples 
are divided into a number of submodules by  3.

S-Tables 46 and 47 reveal the following results:

(1)	 The DLBCL samples in each of the submodules 2.2, 3.1, 3.3, 4.1, 4.3, 5.1, 6.1, 6.2 and 8.1 are similar to one 
another in survival times, survival indicators and IPI scores.

(2)	 However, the DLBCL samples in submodules 3.2, 7.1, 7.2, 8.2 and 8.3 are divergent in survival times, survival 
indicators and IPI scores.

(3)	 The overall survival times, survival ratios and IPI scores in most of the submodules are distinguishable.

Therefore, many of the submodules of the DLBCL samples identified by 3  are interpretable by the similarity 
of survival times, survival indicators and IPI scores for the cell samples within the same submodule, and distin-
guishable by overall survival times, survival ratios and IPI scores for different submodules.

Submodules identified by   and .  S-Tables 48 and 49 describe the statistical survival times, survival 
ratios and IPI scores of the DLBCL submodules identified by  .

S-Tables 48 and 49 reveal the following results:

(1)	 Except for DLCL_0041 and DLCL_0009, the DLBCL samples are divided into modules 1, 7, and 8.
(2)	 Module 1 contains 32 DLBCL samples. The overall survival time is 47.58 months, the survival ratio is 52%, 

and the IPI scores range from 0 to 4.
(3)	 Module 7 contains 6 DLBCL samples. The overall survival time is 32.68, the survival ratio is 33%, and the IPI 

scores are 2 or 3.
(4)	 Module 8 contains 3 DLBCL samples. The overall survival time is 20.07 months, the survival ratio is 0%, and 

the IPI scores are 1, 2 and 3.

Therefore, except for module 7, the DLBCL modules identified by   are non-interpretable and undistinguish-
able in clinical practice.

S-Table 50 describes the statistical survival times, survival ratios and IPI scores of the DLBCL submodules 
identified by .

S-Table 50 shows that the algorithm  fails to identify submodules for the DLBCL samples.
Our results can be summarised as follows:

•	 Algorithm  2 divides the DLBCL samples into several modules, and for almost all of the modules, most of the 
samples in the same module share similarity in survival times, survival indicators, and IPI scores, and the 
samples in different modules exhibit distinct overall survival times, survival ratios and IPI scores.

•	 Algorithm  3 further refines the modules identified by  2 into submodules, and for most submodules, the 
samples in the same submodule share similar survival times, survival indicators, and IPI scores, and the sam-
ples in different submodules are distinguishable by the overall survival times, survival ratios and IPI scores.

The results above are better than expected. Surprisingly, our algorithms are derived from pure mathematics, 
and we did not use any information from biology or concepts from learning theory. The results may provide new 
insights into cancer study and therapies. For example, our results may indicate that a tumour type in different 
stages may correspond to different subtypes that have different gene expression patterns and are in different prog-
nostic categories. Furthermore, our theory and algorithms have potential applications in a wide range of fields, 
including computer science, networking and data processing.

However, the algorithms  and   fail to divide the DLBCL samples into clinically meaningful subtypes.
In summary, in the networks constructed from the gene expression profiles on the basis of the one-dimensional 

structural entropy minimisation, the algorithms 2  and  3 on the basis of the two- and three-dimensional struc-
tural entropy minimisation may identify the subtypes of tumours that are clinically interpretable and distinguish-
able. The results demonstrate that structural entropy minimisation, including the one-, two- and 
three-dimensional cases, could be the correct principle for defining the natural modules in nature, such as for 
defining cell types and subtypes of cancers.

Gene Map of New Data Leukemia
Similarity.  Tables 4 and 5 describe the similarity of the modules of the new data Leukemia identified by the 
algorithms  2, 3 ,  and  .
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Tables 4 and 5 show the following results: (1) Algorithm  finds 9 modules which approximate 6 true types 
with similarity greater than 0.8. (2) Algorithm   finds 27 modules which approximate 7 true types with similarity 
greater than 0.8. (3) Algorithm  2 finds 17 modules which approximate 8 true types with similarity greater than 
0.8. (4) Algorithm  3 finds 18 modules which approximate 7 true types with similarity greater than 0.8.

According to S-Tables 55–91, we observe the following results: (1) There are 18 true types. (2) Algorithm  
found 9 modules. (3) Algorithm   found 27 modules. (4) Algorithm  2 found 17 modules. (5) Algorithm 3  
found 18 modules.

(1–5) demonstrate that our algorithms  2 and 3  not only approximate well the true types, but also give the 
correct number of subtypes. However, the algorithms  and   cannot even estimate the correct number of true 
types when the number of cell samples is large.

Gene map of true types.  Figure 16 depicts the gene map of the true types of the new data Leukemia.
Figure 16 shows that all the 18 subtypes are distinguishable, that C1, C3, C8, C13 and C18 are not well-defined 

by the corresponding gene patterns, and that all the other subtypes are well-defined by a unique gene pattern.

Gene map of the classification by modularity maximisation.  Figure 17 depicts the gene map of the 
modules of the new data Leukemia identified by the modularity maximisation algorithm .

 2   3

C1 0.154 0.143 0.231 0.159 

C2 0.936 0.913 0.913 0.936 

C3 0.646 0.488 0.685 0.646 

C4 0.942 0.531 0.942 0.942 

C5 0.896 0.890 0.890 0.896 

C6 0.791 0.199 0.725 0.791 

C7 0.682 0.362 0.687 0.682 

C8 0.517 0.707 0.501 0.517 

C9 0.904 0.255 0.970 0.904 

Table 4.   Similarity of new data Leukemia found by 2 , ,   and 3-1.

 2    3

C10 0.976 0.976 0.976 0.976 

C11 0.894 0.922 0.878 0.894 

C12 0.642 0.263 0.550 0.642 

C13 0.809 0.620 0.603 0.809 

C14 0.241 0.183 0.442 0.241 

C15 0.827 0.989 0.566 0.827 

C16 0.467 0.905 0.877 0.467 

C17 0.482 0.659 0.552 0.482 

C18 0.471 0.472 0.418 0.471 

Weighted average 0.701 0.701 0.641 0.701 

Table 5.   Similarity of new data Leukemia found by 2, ,   and 3 -2.



www.nature.com/scientificreports/

2 1Scientific Reports | 6:20412 | DOI: 10.1038/srep20412

Figure 17 reveals the following results: (1) The algorithm  found 9 modules. (2) Modules 4, 5, 6, 7 and 8 are 
well-defined by the corresponding gene patterns, and all the other modules are not well-defined by the corre-
sponding gene patterns.

Gene map by InforMap.  Figure 18 depicts the gene map of the new data Leukemia according to algorithm 
 .

Figure 18 reveals the following results: (1) The algorithm   found 27 modules. (2) Most of the modules are not 
well-defined by the unique corresponding gene pattern.

Figure 16.  Gene map of the true types of new test leukemia data. There are 18 subtypes of the cell sample 
network.

Figure 17.  Gene map of the modules of new test leukemia data identified by . The 9 modules and their 
modules are provided in the supplementary information.
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Gene map of the multi-tissues by structural entropy minimisation algorithm 2 .  Figure 19 
depicts the gene map of the new data Leukemia provided by our algorithm 2 .

Figure 19 reveals the following results: (1) The algorithm  2 found 17 modules. (2) All the modules are distin-
guishable by the corresponding gene patterns. (3) Modules 3 and 10 are not well-defined by the unique corre-
sponding gene patterns, and all the other modules are well-defined by their corresponding unique gene 
patterns.

Figure 18.  Gene map of the modules of new test leukemia data identified by  . The 27 modules and their 
modules are provided in the supplementary information.

Figure 19.  Gene map of the modules of new test leukemia data identified by 2 . The 17 modules are exactly 
the same or almost the BR, CO, LU and PR respectively, for which the details are provided in the supplementary 
information.
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Three-dimensional gene map.  Figure 20 depicts the gene map of the new data Leukemia provided by our 
algorithm 3 .

Figure 20 reveals the following results: (1) The algorithm 3  found 18 modules, each of which consists of a few 
submodules. (2) The 18 modules are distinguishable by the corresponding gene patterns, and most of the modules 
are well-defined by the corresponding unique gene patterns. (3) The submodules of a module are distinguishable 
by the corresponding gene patterns.

Hypotheses and Criteria of Tumour Classification
Li, Li and Pan17 and Li et al.18 have shown that the minimisation of two-dimensional structural entropy is 
the principle for discovering natural communities in networks. This result indicates that the minimisation of 
two-dimensional structural entropy or equivalently, the minimisation of non-determinism of structures, is the 
principle of network self-organisation.

Our results reveal that the same principle holds true for defining tumour types and subtypes. We thus propose 
the following hypothesis.

Hypothesis for defining the type and subtype of tumours

•	 The construction of a network on the basis of gene expression profiles provides a global approach to defining 
the types and subtypes of tumours by network algorithms.

•	 One-dimensional structural entropy minimisation is the principle for constructing the network of unstruc-
tured data like the gene expression profiles.

•	 The partitioning of cell sample graphs provides an approach to defining tumour types and subtypes.
•	 Two-dimensional structural entropy minimisation is a principle of tumour-type classification.
•	 Three-dimensional structural entropy minimisation is a principle for defining tumour subtypes.

According to the definition, structural entropy minimisation minimises the non-determinism of structures 
within networks. This is a new principle for the self-organisation of many networks in nature and society. Here, we 
verify that the same principle holds for tumour classification. Furthermore, we conclude that high-dimensional 
structural entropy minimisation is the principle for structuring and processing big data in general. However, 
further studies will be required to provide a resolution for this hypothesis.

Unlike the high-dimensional structural entropy, the definition of the one-dimensional structural entropy 
does not imply any principle, because it is determined purely by the distributions of the edges and the corre-
sponding weights. However, our results demonstrate that one-dimensional structural entropy minimisation could 
be a principle for us to detect the natural or true network that evolves in nature and society. This discovery 
is interesting, because, it means that although there are many reasons to affect the evolution of a real world 
network, the natural such network still follows some principles, for example, the principle of minimisation of 
non-determinism or uncertainty as explored by this research. Furthermore, our results demonstrate that the real 
world network may not simply be one of the networks generated purely by a random ensemble, it is in fact the 
network that follows the random ensemble towards minimisation of the one-dimensional structural entropy. This 
discovery may have deep implications in a wide range of disciplines. For example, it implies that there is a general 

Figure 20.  Gene map of the modules of new test leukemia data identified by 3. The 18 modules and their 
submodules are described in the supplementary information.
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principle that controls the formation and evolution of the natural structure of a real world complex system from 
random variations. This understanding is an analogy of Darwin’s evolution theory: natural selection is the prin-
ciple that controls the evolution of species from random variations16. More importantly, our results demonstrate 
that one-dimensional structural entropy minimisation is the principle that controls the evolution of the natural 
structure from random variations. Therefore, our one-dimensional structural entropy could provide a quantita-
tive measure to understand the laws of the nature. (For this reason, we suggest a future project to investigate the 
relationship between the structural entropy minimisation principle and Darwin’s natural selection).

Nevertheless, our results indicate that structural entropy minimisation, including the one-, two- and 
three-dimensional cases, is the principle for a new theory of big data in future computer science.

Considering the evaluation of an identified cancer type or subtype, a single criterion cannot verify the accu-
racy of a defined type or subtype of a cancer because cancer is a disease that has not been fully elucidated. Our 
results suggest that the true type or subtype of a cancer must simultaneously satisfy the criteria listed below.

Criteria for verifying a type or subtype of a tumour.  A defined type or subtype T is true, if it satisfies 
the following criteria:

(1)	 (Similarity) T is similar to a type T′  defined in cancer biology.
(2)	 (High-definition gene mapping) There is a set B of genes such that B highly expresses T, but fails to express 

any other cell types.
(3)	 (Interpretability) Most of the cell samples in T share similar survival times, survival indicators and IPI scores.
(4)	 (Prognostic distinction) Type T exhibits distinct overall survival times, survival ratios and IPI scores with 

other types in medical practices.

Theoretically, if an identified type or subtype T is highly expressed by a unique set of genes, then T should 
have a biological meaning; however, if it does not have a biological meaning, we must explain why the identified 
type or subtype T is biologically trivial when it is highly expressed by a unique and significantly large set of genes. 
According to this understanding, the criteria (1–3) above could be useful in identifying tumour types and sub-
types. Criterion (4) requires that theoretical types or subtypes must be verified by medical practices.

Our results presented here demonstrate that the modules identified by the  2 algorithm and the submodules 
identified by the 3  algorithm for different cancer types simultaneously satisfy the four criteria (1–4).

Discussions
Construction of a cell sample graph.  Our theory depends on the construction of a cell sample graph 
determined by gene expression profiles. Our method is realised by appropriately choosing the parameter k. The 
choice of k must ensure that trivial or noisy profile weights are removed and that nontrivial profile weights are 
maintained. Therefore, k must not be too large or too small. More importantly, the choice of k depends on the data 
of the gene expression profiles. The principle we proposed here is to choose the k such that the one-dimensional 
structural entropy of the generated graph is the least among all stable points, that is, the points at which minimal 
one-dimensional structural entropy is achieved.

Our algorithm  for choosing k is an approximated realisation of the general principle that one-dimensional 
structural entropy minimisation is a correct principle for networking of unstructured data. It works very well for 
the cell sample graph construction in the present paper.

However, the algorithm has some disadvantage, for example, we require that each cell sample keeps the edges 
of the top k weights. In real world, different cell sample may have to keep different numbers of edges. For this 
reason, we believe that there must be better methods to realise the general principle. The general principle allows 
us to construct interactive graphs for various kinds of data and sparsify networks. More optimal cell sample 
graphs may be constructed from the gene expression profiles, and these graphs may allow our algorithms  2 and 

3  provide improved cancer classification. We believe this is still a grand challenge for future computer science.

Challenges.  The two- and three-dimensional gene maps developed by the algorithms  2 and  3 identify bio-
logically and medically meaningful subtypes of tumours such that each subtype is defined by a unique gene 
expression pattern. The results provide new insights for cancer study.

Our three-dimensional gene map also demonstrates that, for a biologically and medically meaningful tumour 
subtype X, there is usually a large gene set B that defines X. In this case, the gene expression profiles fail to differ-
entiate the genes in B. For cancer, however, it is important to select a small number of genes from B such that the 
small set of genes determines the subtype X.

Therefore, the three-dimensional gene map also suggests a fundamental challenge: for a subtype X, a small 
number of genes that essentially determines the subtype X should be identified.

Our three-dimensional gene map indicates that the gene expression profiles do not help to resolve this 
challenge.

Conclusions
In this study, we propose a method of identifying the high-dimensional structural entropy of graphs for the con-
struction of networks from gene expression profiles and we also propose the construction of heuristic algorithms 
 K  to detect the natural K-dimensional structure of networks by minimising the K-dimensional structural 
entropy, or the non-determinism of the K-dimensional structure of the networks. Algorithm 2  identifies the 
modules of the cell samples for five cancers and healthy tissue, and algorithm  3 identifies the submodules of the 
cell samples of five cancers and healthy tissue. Almost all of the modules and submodules identified by our 
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algorithms 2  and 3  are defined by a unique gene expression pattern. By using currently available clinical data 
for type DLBCL lymphoma, we demonstrate that most samples in the DLBCL module or the submodule identi-
fied by 2  and 3  share similar survival times, survival indicators and IPI scores and indicate that distinct modules 
and submodules identified by  2 and 3  are distinguishable in overall survival times, survival ratios and IPI 
scores. Our results demonstrate that a tumour type may consist of several subtypes that satisfy the following cri-
teria: (i) the subtypes are definable by a unique gene expression pattern; (ii) most of the samples of the same 
subtype share similar survival times, survival indicators and IPI scores; and (iii) different subtypes have distinct 
overall survival times, survival ratios and IPI scores. Our results demonstrate that the tumour subtypes satisfying 
the above criteria can be identified by our algorithms 2  and 3 . The algorithms K  are used to minimise the 
K-dimensional structural entropy of networks. Therefore, high-dimensional structural entropy minimisation is 
the principle to define tumour types and subtypes. Our algorithms perform deep searches in networks, indicating 
that networking is the correct approach to defining tumour subtypes and their corresponding gene expression 
patterns. Our three-dimensional gene map of cancers provides the first high-definition, one-to-one map between 
biologically and medically meaningful subtypes and gene expression patterns, and our theory may have potential 
implications in cancer biology.

Our results demonstrate that one-dimensional structural entropy minimisation is the principle for networking 
of unstructured data, and that K-dimensional structural entropy minimisation is the principle for detecting the 
natural K-dimensional structures of real world networks for K >  1. The principle may have implications in a wide 
range of disciplines such as physics, biology, computer science, networking, and big data processing.

Methods
Normalisation of gene expression profiles.  For a gene g, suppose that (a1, a2, ···, an) is the vector of the 
gene expression profiles of g for all the samples v1, v2, ···, vn. We normalise the gene expression vector as follows:

(1)	 Set = ∑ =a a
n i

n
i

1
1  and σ = ∑ ( − )= a a
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.
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According to the definition above, (c1, c2, ···, cn) is a coded vector of gene expression vector (a1, a2, ···, an) such 
that the average value of ci is 0, and each ci is in the interval [− 1, 1].

Data analysis.  The module and submodule of classifications for acute leukaemia, lymphoma, and 
multi-tissues are summarised in the supplementary information. We extract the top 10 genes for each of the mod-
ules or submodules identified by our algorithms 2  and  3 (supplementary information). We also analyse the gene 
map for three additional networks of lung cancer and healthy tissue, and the results are provided in the supple-
mentary information.
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