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1  | INTRODUC TION

The red panda (Ailurus fulgens), an arboreal herbivorous mammal, oc-
cupies a highly specialized niche in which it dwells primarily in bam-
boo understories in temperate conifer forests adjacent to broadleaf 
forests (Wei, Feng, Wang, & Hu, 1999; Wei, Feng, Wang, Zhou, & 

Hu, 1999; Yonzon & Hunter, 1991). The red panda is a member of the 
order Carnivora but eats an herbivorous diet, particularly bamboo 
in humid climates at high altitudes (Wei, Feng, Wang, & Hu, 1999; 
Yonzon & Hunter, 1991). Presently, the red panda is distributed in 
five Asian countries: Nepal, India (Sikkim, West Bengal, Arunachala), 
Bhutan, northern Myanmar, and China (Tibet, Yunnan, and Sichuan) 
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Abstract
An upsurge in anthropogenic impacts has hastened the decline of the red panda 
(Ailurus fulgens). The red panda is a global conservation icon, but holistic conservation 
management has been hampered by research being restricted to certain locations 
and population clusters. Building a comprehensive potential habitat map for the red 
panda is imperative to advance the conservation effort and ensure coordinated man-
agement across international boundaries. Here, we use occurrence records of both 
subspecies of red pandas from across their entire range to build a habitat model using 
the maximum entropy algorithm (MaxEnt 3.3.3k) and the least correlated bioclimatic 
variables. We found that the subspecies have separate climatic spaces dominated by 
temperature-associated variables in the eastern geographic distribution limit and 
precipitation-associated variables in the western distribution limit. Annual precipita-
tion (BIO12) and maximum temperature in the warmest months (BIO5) were major 
predictors of habitat suitability for A. f. fulgens and A. f. styani, respectively. Our 
model predicted 134,975 km2 of red panda habitat based on 10 percentile thresholds 
in China (62% of total predicted habitat), Nepal (15%), Myanmar (9%), Bhutan (9%), 
and India (5%). Existing protected areas (PAs) encompass 28% of red panda habitat, 
meaning the PA network is currently insufficient and alternative conservation mech-
anisms are needed to protect the habitat. Bhutan’s PAs provide good coverage for 
the red panda habitat. Furthermore, large areas of habitat were predicted in cross-
broader areas, and transboundary conservation will be necessary.
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(Choudhury, 2001; Dorji, Rajaratnam, & Vernes, 2012; Glatston, 
1994; Wei, Feng, Wang, & Hu, 1999; Yonzon & Hunter, 1994). It also 
may occurs a separate population in Meghalaya, India (Choudhury, 
2001; Thapa, Hu, & Wei, 2018). Glatston (1994) and Wei, Feng, 
Wang, and Hu (1999) reported two subspecies (A. fulgens fulgens and 
A. fulgens styani) of red panda based on morphology and the geo-
graphic barrier of the Nujiang River in Yunnan, China. A. f. fulgens 
is regarded as the Himalayan subspecies confined to Nepal, India, 
Bhutan, Myanmar, and a small portion of Yunnan in China, whereas 
A. f. styani is known as the Chinese subspecies and is distributed in 
Sichuan and a part of Yunnan Province (Glatston, 1994; Wei, Feng, 
Wang, & Hu, 1999).

Despite its wide geographic range across the Himalayas, red 
panda is distributed patchily and occurs at low densities (Thapa 
et al., 2018; Wei, Feng, Wang, & Hu, 1999; Yonzon & Hunter, 
1991). Habitat loss, fragmentation, and degradation are major 
threats to wild red pandas (Pradhan, Saha, & Khan, 2001; Wei, 
Feng, Wang, & Hu, 1999; Yonzon & Hunter, 1991). These factors 
have accelerated declines in wild populations, and the species is 
listed as endangered by the IUCN (Glatston, Wei, Than, & Sherpa, 
2015). Likewise, occurring in a remote part of the Himalayan land-
scape, the red panda species remains poorly studied, and available 
database of the total species population is likely an underestimate 
due to scant occurrence records. Most studies to date have re-
lied on observational surveys of indirect signs such as feces and 
pugmarks (Pradhan et al., 2001; Wei, Feng, Wang, & Hu, 1999; 
Yonzon & Hunter, 1991) as well as consultations with experts and 
local communities in small units (Jnawali, Leus, Molur, Glatston, & 
Walker, 2012; Wei, Traylor-Holzer, Leus, & Glatston, 2014). This 
work has yielded qualitative information only and may not be 
representative of the entire geographic range. In addition, logis-
tical constraints associated with frequent surveying of the often 
elusive and remote red panda explain occurrence data paucity 
(Kandel et al., 2015; Wei, Feng, Wang, & Hu, 1999). A comprehen-
sive potential habitat map for the red panda across its entire range 
remains a gap in our understanding of this species and hampers 
effective, integrated, and holistic conservation. The species distri-
bution model (SDM) is an appropriate solution to such challenges 
that can overcome sampling problems and generate reliable con-
sistent and transparently derived estimate over large areas (Drew, 
Wiersma, & Huettmann, 2010) and that is appropriate to a species 
with a narrow ecological range (Hernandez, Graham, Master, & 
Albert, 2006) such as the red panda.

Climate plays an important role in determining species’ distri-
butions, and evaluating the influence of climatic variables across 
a large geographic area (Morelle & Lejeune, 2015) to provide in-
formation about suitable habitat for a given species. Climatic 
variables are the dominant driving factors as opposed to distal 
variables such as elevation and topography, which are used fre-
quently but have a low predictive performance (Bradie & Leung, 
2017) . In an earlier study, Yonzon, Yonzon, Chaudhary, and 
Vaidya (1997) built a potential habitat model incorporating annual 

precipitation that was presumed as a good red panda (A. f. fulgens) 
distribution model in the Himalayas. In addition, temperature-
associated variables have contributed greatly to predicting red 
panda habitat in the vast Hindu Kush Himalaya region (Kandel 
et al., 2015). Additionally, temperature is a greater influencing fac-
tor than precipitation when building giant panda habitat models 
(Liu, Guan, Dai, Li, & Gong, 2016), where both the giant panda and 
the red panda (A. f. styani.) are sympatric macrohabitat dwellers. 
With these understandings, building potential distributions sepa-
rately for subspecies is biologically meaningful, a fact that is not 
incorporated in previous studies. Furthermore, potential distribu-
tion modeling of the red panda based on species presence records 
only from Nepal (Kandel et al., 2015; Mahato, 2010) resulted in 
biased estimates for the large portion of red panda habitat located 
in Sichuan, China (Choudhury, 2001; Hu et al., 2011; Wei, Feng, 
Wang, & Hu, 1999; Wei et al., 2014). Here, we asked how well bio-
climatic variables and topographic features predict the red panda’s 
potential distribution range by comparing spatially filtered occur-
rence records from the entire range and least correlated climatic 
variable sets including both red panda subspecies.

Species distribution models are statistical models that use 
observed species distributional record data to infer species eco-
logical requirements and map their potential distribution (Austin, 
2002) . SDMs relate species presence records to mainly environ-
mental factors to predict the potential distribution of a species 
across an area of interest (Elith, Ferrier, Huettmann, & Leathwick, 
2005; Elith et al., 2006; Guisan & Thuiller, 2005; Pearson, Dawson, 
& Liu, 2004). SDMs have been implemented in managing biologi-
cal invasions (NAT, 2009), identifying and protecting critical hab-
itats (Heinrichs, Bender, Gummer, & Schumaker, 2010), selecting 
and translocating reserves (Seki, 2011), and building global spe-
cies distribution range maps by the IUCN (Cord & Rodder, 2011; 
Jimenez-Valverde, 2012). The most frequently used top five SDMs 
include MaxEnt, random forest, boosted regress trees, generalized 
additive models, and multivariate adaptive regression spines, all 
of which have similar predictive performances (García-Callejas & 
Araújo, 2016). In this study, we used the maximum entropy algo-
rithm (MaxEnt) because it is among the high-performing, highly 
popular SDMs that use widely available presence-only data, even 
dealing powerfully with limited occurrence data and small sample 
sizes (Fourcade, Engler, Rodder, & Secondi, 2014; Merow, Smith, 
& Silander, 2013; Phillips, Anderson, & Schapire, 2006; Phillips & 
Dudik, 2008). In addition, MaxEnt requires only species presence 
data, and both continuous and categorical environmental data can 
be used as input variables.

This study’s goals were to (a) predict potential distribution of the 
red panda habitat across the entire range, (b) determine relevant 
influencing bioclimatic variables, (c) evaluate habitat conservation 
within existing protected areas (PAs), and (d) recommend conserva-
tion priority areas for future effective conservation. These findings 
provide insight into red panda habitat protection at the national and 
regional levels.
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2  | MATERIAL AND METHODS

2.1 | Occurrence data and environment variables

We compiled red panda occurrence records from Nepal, India, 
Bhutan, Myanmar, and China (Supporting Information Table S1). 
Occurrence locations were based on presence data obtained from 
recent field studies (2015/2016 in Nepal), previous survey data 
(Nepal, China, and Bhutan), published work (Bhutan, India, Nepal, and 
Myanmar), museum specimen records (China and Nepal), and GBIF 
(http://www.gbif.org/). Feces, recognized by their distinct shape, 
was treated as the main indicator of red panda occurrence based on 
recommendations made by previous studies (Pradhan et al., 2001; 
Wei, Feng, Wang, & Hu, 1999; Yonzon & Hunter, 1991). Occurrence 
locations consisted of 3,050 presence records complied from distri-
bution ranges in Nepal, India, Bhutan, Myanmar, and China to cap-
ture the westernmost and easternmost biogeographic distribution 
limits of the target species (Figure 1, Supporting Information Table 
S1). To model potential distribution, 19 bioclimatic raster layers were 
obtained from WorldClim (www.worldclim.com) which were 30 arc 
sec 9 (~1 km) in spatial resolution (Hijmans, Cameron, Parra, Jones, & 
Jarvis, 2005) (Supporting Information Table S2). These climatic lay-
ers represent annual trends (mean annual temperature and precipi-
tation), seasonality (annual range in temperatures and precipitation), 
and limiting environmental factors (temperature and precipitation of 
a certain quarter) (Hijmans et al., 2005). Additionally, we derived as-
pect and slope from elevation data of WorldClim, which have similar 
resolution with climate variables.

2.2 | Potential habitat prediction

To minimize collinearity among predictors, the variance inflation 
factor (VIF) was used under R v 2.15.0 (R Development Core Team, 
2012); this factor has been implemented in many SDMs (Lauria, 
Gristina, Attrill, Fiorentino, & Garofalo, 2015; Ranjitkar, Xu, Shrestha, 
& Kindt, 2014; Ranjitkar, Kindt, et al., 2014). Here, we removed VIFs 
>10 (Supporting Information Tables S4 and S5) because strong collin-
earity affects model performance (Quinn & Keough, 2002). Finally, 
10 statistical and biologically meaningful variables were used to 
model habitat distribution for the red panda (Supporting Information 
Tables S3, S4, and S9). To minimize the effect of spatial sampling 
bias (Su, Aryal, Nan, & Ji, 2015), we built spatial filters of grid sizes 
2.5 km × 2.5 km (target animal’s mean home range), 5 km × 5 km 
(Boria, Olson, Goodman, & Anderson, 2014), and 10 km × 10 km 
(Mainali et al., 2015), found to improve predictive performance in 
other studies. Our approaches included without spatial filter and 
with spatial filters of 2.5 km × 2.5 km and 5 km × 5 km grids from 
single occurrence locations extracted randomly from each grid 
(Supporting Information Table S1).

We employed the maximum entropy algorithm (MaxEnt 3.3.3k), 
one of the most robust and superior bioclimatic modeling ap-
proaches for presence-only data (Elith et al., 2006, 2011; Wisz, 
Tamstorf, Madsen, & Jespersen, 2008) to map potential red panda 
habitat. MaxEnt has a few limitations that have been well discussed 
elsewhere, such as sampling bias of occurrence, the region used for 
background sampling, selection of features, and manipulation of 
the regularization multiplier (Elith et al., 2011; Kramer-Schadt et al., 

F IGURE  1 Occurrence records of red pandas in Nepal, India, Bhutan, Myanmar, and China. Circle indicates high clustered of occurrence 
records

http://www.gbif.org/
http://www.worldclim.com
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2013; Radosavljevic & Anderson, 2014). Our occurrence data (pres-
ence only) fit with MaxEnt (Elith et al., 2006; Phillips et al., 2006). 
Occurrence data collected in the field may possess sampling biases 
(e.g., numerous points near roads) that influence model performance 
due to increases in the spatial autocorrelation of localities (Boria 
et al., 2014). To control for potential bias, we used the spatial filter 
grids of different sizes mentioned above. We used mostly default 
settings in MaxEnt, except for the following settings: random test 
percentage equals 25% with 10-fold cross-validation and vary-
ing the values of the regularization multiplier. We manipulated the 
regularization multiplier values setting to 0.5, 1, 2, 3, 4, and 5 fol-
lowing recommendations (Anderson & Gonzalez, 2011; Aryal et al., 
2016; Muscarella et al., 2014; Radosavljevic & Anderson, 2014; Su 
et al., 2015). We averaged the results of multiple runs from differ-
ent models using three scenarios and six regularization multipliers. 
We selected linear, quadratic, and hinge features to avoid overfitting 
(Merow et al., 2013; Phillips & Dudik, 2008). Area under the curve 
(AUC) of the receiving operating curve was used to evaluate the ac-
curacy of the model. AUC values range from 0 to 1 where the AUC 
values >0.5 show the model to be better than the randomly gener-
ated model (Phillips et al., 2006).

2.3 | Model selection and validation

Akaike’s information criteria (AICc) (Burnham & Anderson, 2002) 
have outperformed all others, even when other methods corrected 
for small sample sizes (Warren & Seifert, 2011). Here, AICc values 
were used to determine the best fit models with the lowest values 
in ENMTools (Warren, Glor, & Turelli, 2010) using MaxEnt output 
files. The 10th percentile training presence as the suitability thresh-
old was applied to build a potential suitability map, and the jackknife 
procedure was used to evaluate each predictor’s relative impor-
tance. We imported reclassified data into three classes of habitat 
suitability, low (0.22–0.50 probability of occurrence), moderate 
(0.50–0.75 probability of occurrence), and high (<0.75 probability 
of occurrence), by omitting the values below the threshold as un-
suitable habitat (Shrestha & Bawa, 2014). We applied FRAGSTATS 
(v 4.2) (McGarigal, Cushman, & Ene, 2012) to calculate the num-
ber of patches, mean patch size, and fragmental index in different 
countries.

We used two approaches to validate our model. First, expert 
opinion based on the Population and Habitat Viability Analysis data-
base of Nepal and China (Jnawali et al., 2012; Wei et al., 2014) was 
used to cross-validate whether confirmed districts/counties were 
predicted accurately by the model (Supporting Information Figure 
S4). Second, we validated the accuracy using the red panda pres-
ence databases of China (Biodiversity Profile Database of China) and 
Nepal (Database in Alaska Institutional Repository; https://schol-
arworks.alaska.edu/handle/11122/1012). Accuracy of the habitat 
suitability model was tested using the proportion of signs in each 
predicted habitat suitability probability index (HSPI) (higher the pro-
portion of signs corresponded to higher accuracy). We used reclas-
sified suitability maps (low, moderate, and high) in all countries to 

assess expert opinion and judgment (three red panda experts from 
each country) and cross-validated these with our suitability maps.

2.4 | Conservation assessment

We downloaded PA data for Nepal, India, Bhutan, and Myanmar 
from the World Database on Protected Areas (http://www.protect-
edplanet.net), and PA data for China from (Wu et al., 2011). To assess 
conservation status, we overlaid existing PAs with habitat suitabil-
ity class and calculated the percentages of area included in PAs. 
Because red panda distribution is not equally partitioned among 
all countries, we calculated the proportion of the total area in each 
country; priority conservation areas were identified by overlaid ras-
ter layers of occurrence kernel density, predictive habitat suitability, 
and PAs using a raster calculator in ArcGIS. On the basis of the visual 
observation of the predicted map, we identified highly suitable habi-
tat across international borders as habitat for transboundary con-
servation. Large areas of high suitability were identified as the most 
preferred for transboundary conservation.

3  | RESULTS

3.1 | Model selection, performance, and influencing 
variables

Of 72 candidate models, the best-performing model for both sub-
species was evaluated with the lowest AICc value (Supporting 
Information Tables S5 and S6). Eight variables for A. f. fulgens and 
seven for A. f. styani were not correlated (VIF > 10) and contrib-
uted significantly in the models. The lowest average AICc value 
(AICc = 4,762.66) was found for the 5 km × 5 km spatial filter and 
regularization parameter of 0.5 for A. f. fulgens representing Nepal, 
India, Bhutan, Myanmar, and Tibet (Supporting Information Table 
S5). For A. f. styani, a spatial filter of 5 km × 5 km and the regulari-
zation parameter of 1 had the lowest AICc (6,312.40) (Supporting 
Information Table S6), indicating that temperature-associated vari-
ables predict habitat. The best models have a higher average training 
AUC (>0.97) and test AUC (>0.96), meaning they performed better 
than random when predicting habitat suitability of A. fulgens.

The MaxEnt predictive probability index (0.22-1 based on 10 
percentile threshold) has an average suitability value above 0.6 in 
the density plot (Figure 2). A combination of the Biodiversity Profile 
China database and occurrence database from the Alaska reposi-
tory found that 76% of occurrence location records had a habitat 
suitability probability above 0.5 according to the frequency distri-
bution (Supporting Information Figure S9). This result indicates that 
our model has high precision and supports further model validation. 
The highly suitable habitat class encompassed 42.4% of occurrence 
records, followed by moderately (33.3% of records) and less suitable 
habitat (9.5% of records).

Temperature-associated variables highly influenced habitat pre-
diction for A. f. styani. Precipitation-associated variables were pre-
dictive for A. f. fulgens. Annual precipitation was the most important 

https://scholarworks.alaska.edu/handle/11122/1012
https://scholarworks.alaska.edu/handle/11122/1012
http://www.protectedplanet.net
http://www.protectedplanet.net
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variable in the A. f. fulgens model that contributed 63.1% in the 
model followed by maximum temperature in the warmest months 
(BIO 5), precipitation in the coldest quarter (BIO 19), precipitation 
seasonality (BIO 15), and precipitation in the driest month (BIO 14), 
accounting for relative gain contributions of 14.5%, 10.6%, 5.4%, 
and 2.9%, respectively (Figure 3). The relative contribution of three 
variables (BIO5, BIO3, and BIO7) accounted for more than 85% of 
habitat suitability prediction for A. f. styani in the model represented 
in the mountain ranges of Sichuan and Yunnan. The maximum tem-
perature of the warmest month had the highest contribution (42.5%) 
to the model; followed by isothermality (33.0%), temperature an-
nual range (11.7%), and precipitation in the driest quarter (6.3%) 
(Figure 3). Overall, climatic variables had a greater contribution than 
topographic variables (slope and aspect).

3.2 | Predictive habitat suitability patterns

Global red panda habitat is predicted to cover 134,975 km2 across 
China, Myanmar, Bhutan, India, and Nepal (Table 1 and Figure 4). 
China has a large amount of red panda habitat (61.24% of total 

habitat) compared to other countries (50% base on ≥0.5 probabil-
ity), followed by Nepal, Myanmar, Bhutan, and India (Table 1). The 
HSPI aggregated mostly in high-suitability and moderate-suitability 
habitat (~above 50%) and not low-suitability categories in all coun-
tries except China, indicating a large area of potential red panda 
habitat (Table 2). The western biogeographic distribution limit of 
Nepal has 20,150 km2 (14.93%) of predicted habitat, representing 
13.69% of the total area of Nepal. Myanmar and Bhutan contain al-
most equal portions (~9%) of habitat, and India has only 5.29% of 
global red panda habitat. Our model predicted that 40% of habitat 
is highly or moderately suitable and 60% is low-suitability habitat. 
Based on habitat classes in each country, moderately and highly suit-
able habitat comprises a significant proportion of suitable habitat in 
India (56.80%), Nepal (56.68%), and Myanmar (54.14%) but slightly 
low in Bhutan (45.24%) and China (32.30%) (Table 2 and Figure 5). 
Landscape matrix analysis showed that Tibet has a high number 
of patches, whereas Meghalaya has few patches, and Nepal and 
Sichuan have an equal number of patches (Supporting Information 
Table S7 and Figure S1). Sichuan, Yunnan, and Meghalaya have a low 
fragmentation index compared to Nepal, Bhutan, Myanmar, Sikkim, 

F I G U R E   2 Density plot of the habitat 
suitability values of locations where 
red panda were recorded. MB_Occ is 
spatial filtered (5 km × 5 km) occurrence 
location used to build model. Valid_Occ 
is red panda occurrence information 
of red panda from Biodiversity Profile 
Database of China and open-access 
database of Nepal (https://scholarworks.
alaska.edu/handle/%2011122/1012). 
WOSP_Occ is red panda occurrence of 
red panda without spatial filtered. Dotted 
vertical lines indicate the mean predictive 
suitability for different occurrence data

F I G U R E   3 Relative importance of 
predictor variables in the predicted 
distributions of red panda subspecies

https://scholarworks.alaska.edu/handle/ 11122/1012
https://scholarworks.alaska.edu/handle/ 11122/1012
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and Tibet. Highly and moderately suitable habitat classes have less 
fragmentation than poorly suitable habitat (Supporting Information 
Table S8 and Figure S3).

3.3 | Conservation status and priority areas

Of the 134,975 km2 of predicted habitat, 37,711 km2 (27.93%) lie 
within 85 existing PAs in different IUCN categories (Table 3 and 
Supporting Information Figure S2). Overall, China contains 48.96% 
of red panda habitat, and other countries include 51% habitat in-
side PAs, was composed of 17.42%, 14.32%, 12.02%, and 7.29% 

for Nepal, Bhutan, Myanmar, and India, respectively. Across all 
PAs, Bhutan has the highest percentage of protected habitat, cov-
ering 43.52% (5,400 km2), followed by Myanmar (38.52%), Nepal 
(35.90%), India (32.60%), and China (22.33%). China’s existing nature 
reserves (NRs) cover 18,459 km2 of habitat, accounting for 13.67% 
of the total predicted red panda habitat and 22.33% of the total NRs 
area, indicating a low percentage in comparison to other countries 
PAs (Table 3). PAs in Nepal and Bhutan include a large proportion 
of highly suitable habitat, whereas Myanmar, China, and Nepal 
have a large proportion of moderately suitable habitat. Current pre-
dicted habitat splits across management systems including national 

TABLE  1 Predicted red panda habitat across its entire range. The prediction is based on probability above 0.22 (10 percentile logistic 
threshold) and above 0.5 (core suitable habitat) and prediction within forest cover (land cover data of ICIMOD and land cover data of China)

Country
Habitat >0.22 probability  
(10 percentile threshold) (km2, %) Habitat >0.5 probability (km2, %) Habitat within forest (km2, %)

China 82,653 (61.24) 26,703 (49.90) 63,005 (76.23)

India 7,142 (5.29) 2,939 (5.49) 6,529 (91.41)

Nepal 20,150 (14.93) 5,614 (10.49) 15,721 (78.02)

Bhutan 12,407 (9.19) 6,835 (12.77) 12,171 (98.10)

Myanmar 12,623 (9.35) 11,422 (21.34) 9,195 (72.84)

Total 134,975 (100) 53,513 (100)

F I G U R E   4 Predictive potential distribution map

TABLE  2 Habitat classes based on predictive probability range with area (km2, %) and distribution within each country

Habitat class China India Nepal Bhutan Myanmar

Low suitability (0.22–0.5) 55,950 (67.69) 2,235 (43.19) 8,728 (43.31) 6,793 (54.75) 578 (49.85)

Moderate suitability 
(0.5–0.70)

23,774 (28.76) 2,531 (48.91) 8,541 (42.38) 4,086  (32.93) 6,207 (45.17)

High suitability (>0.70) 2,929 (3.54) 408 (7.88) 2,881 (14.29) 1,528 (12.31) 628 (4.97)
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reserve, national park, wildlife sanctuary, hunting reserve, and bio-
logical corridor. China shares transboundary habitat with all coun-
tries including Tibet with Nepal, Bhutan, India, and Myanmar, and 
Yunnan with Myanmar (Supporting Information Figures S8 and S9). 
Moderate- and high-suitability habitat predominately occur in cen-
tral and eastern Nepal, central Bhutan, northern Myanmar, Sikkim 
(India), Yunnan, and Sichuan.

4  | DISCUSSION

4.1 | Influence of predictor variables

Climatic space for both subspecies identified by our modeling cor-
responds to the actual distribution of red pandas in the Himalayas 
and mountain ranges of Sichuan and Yunnan in China. However, ac-
tual habitat is likely smaller than predicted habitat because climatic 
variables are not the only determinants of red panda habitat suit-
ability. Other factors such as edaphic and biogeographic factors limit 
the species distribution, even in areas that are climatically suitable 
(Ranjitkar, Kindt, et al., 2014). MaxEnt modeling approach has been 
implemented successfully to build current and future habitats under 
climate change scenarios for the sympatric macrohabitat dwellers 
red and giant panda (Li, Xu, Wong, Qiu, Li, et al., 2015; Li, Xu, Wong, 
Qiu, Sheng, et al., 2015; Liu et al., 2016; Songer, Delion, Biggs, & 
Huang, 2012; Sun, 2011). However, MaxEnt modeling has certain 
limitations, and recent studies suggest species-specific tuning of 
the default manipulation improves model performance (Anderson & 
Gonzalez, 2011; Aryal et al., 2016; Radosavljevic & Anderson, 2014). 
Here, our model was corrected for sampling biases, calibrated with 
MaxEnt default settings, and model evaluation was based on robust 
evaluation statistics to overcome limitations. Use of spatial filtering 
reduces AICc values in models, increasing predictive performance 

and decreasing overfitting (Aryal et al., 2016; Boria et al., 2014). We 
adapted AIC as a model evaluation technique (Warren & Seifert, 
2011), but solely using AUC has been criticized in many studies 
(Peterson, Papes, & Soberon, 2008). Our selected model has AUC 
values >0.9, which is recognized as an excellent model (Phillips et al., 
2006). Our results and model trends remain consistent; impor-
tantly, 76% of the red panda occurrence records contained in the 
Biodiversity Profile Database of China and database of Alaska re-
pository were overlaid within HSPI values above 0.5, indicative of 
high precision (Figure 2 and Supporting Information Figure S10).

One specific outcome in our model was to demonstrate whether 
environmental variables separately predict suitable habitat for each 
subspecies. Our results clearly show that the red panda subspecies 
can be separated in bioclimatic space in the Himalayas and moun-
tain ranges of Yunnan and Sichuan (Supporting Information Figure 
S11). This result is consistent with Ranjitkar, Kindt, et al. (2014), who 
noted separate bioclimatic space in habitat suitability modeling of 
rhododendron trees in the Himalayas (Ranjitkar, Kindt et al., 2014), a 
major component of vegetation in red panda habitats. Temperature-
associated bioclimatic variables have great importance in predicting 
habitat suitability for A. f. styani, whereas precipitation-associated 
bioclimatic variables were the most important habitat predictor for 
A. f. fulgens. Temperature and precipitation have a great influence 
over the growth rates of bamboo understories (Rao, Zhang, & Zhu, 
1991), a primary food source for red pandas (Pradhan et al., 2001; 
Thapa & Basent, 2015; Wei, Feng, Wang, Zhou, et al., 1999; Yonzon, 
1989; Zhang, Hu, Yang, Li, & Wei, 2009). High seasonality occurs in 
the eastern Himalaya and Hengduan Mountain, with high precipita-
tion received during summer monsoonal rainfall (Kattel, Yao, Yang, 
Gao, & Tian, 2015). This corresponds with higher humidity during 
the warmest months in summer. Mostly bamboo species prefer to 
grow in the mild- and high-humid climate (Li, Xu, Wong, Qiu, Li, et al., 

F I G U R E   5 Habitat suitability of red panda based on predictive probability habitat class
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2015; Li, Xu, Wong, Qiu, Sheng, et al., 2015) which is influenced by 
the humidity (Hu, Xiang, & Zhu, 1997). The moist areas and high-
humid condition contribute to the growth of bamboo shoot in the 
habitat during monsoon season that provides food resources for 
panda. Temperature also has a larger impact on giant panda distri-
bution than rainfall (Songer et al., 2012). We assume environmental 
variables that affect giant pandas may directly influence red pandas 
because both the sympatric species have similar macrohabitat and 
dietary requirements (Wei, Feng, Wang, Zhou, et al., 1999; Zhang 
et al., 2004). Temperature is essential to individual growth, devel-
opment, and survival and is thought to be the principal factor limit-
ing giant panda geographic range (Wang, Ye, Skidmore, & Toxopeus, 
2010; Xu et al., 2006). Meteorological data show that the climate in 
giant and red panda habitat has become warmer and drier in recent 
decades (Wang, Fan, Liu, & Chen, 2010) and that this pattern will 
continue.

Our model identified a strong response of A. f. fulgens to 
precipitation-associated bioclimatic variables in the Himalayas, 
particularly annual precipitation, precipitation in the coldest quar-
ter, precipitation seasonality, and precipitation in the driest month. 
Annual precipitation may increase in most parts of the regions (Liu, 
Xu, Henderson, & Qi, 2005). High precipitation occurs during the 
monsoon seasons in the Himalayas, which plays an important role 
in the growth of bamboo shoots that contribute highly nutritious 
food during the red panda breeding season. Furthermore, high pre-
cipitation implies increased cloud cover, leading to a significant re-
duction in soil temperature, reduced radiation input and high cloud 
albedo (Takahashi, Tokumitsu, & Yasue, 2005) resulting in delayed 
soil warming in spring, reduced tree growth, and slow understory re-
generation. Precipitation seasonality and precipitation in the coldest 
quarter were recognized as important environmental factors, limit-
ing red panda distribution in the Himalayas.

The topographic factors of slope and aspect emerged as contrib-
utive factors in our habitat model. Slope is a key factor determining 
feeding adaptation strategies in both panda species (Zhang, Wei, Li, 
& Hu, 2006). Elevation may indirectly affect red panda distribution, 
and it has a direct effect on the climatic condition of the given areas. 
Our results suggest that temperature and precipitation largely pre-
dict habitat suitability at a landscape level and may have a key role 
in shaping vegetation composition of the habitat. Climate-associated 
variables are typically considered the most important determinant 
of species occurrence (Pearson & Dawson, 2003), when the model 
is extended to a large geographic area, and it provides basic infor-
mation on suitable habitat for the species. Climate change can cause 
substantial species range contractions and extinctions and lead to 
a disproportionate distribution of a species along ecological zones 
(Wilson, Gutierrez, Gutierrez, & Monserrat, 2007), a factor not in-
corporated in our modeling.

4.2 | Habitat patterns

Our model of current red panda habitat suitability performed 
well with biologically and statistically meaningful environmental TA
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variables (Supporting Information Table S9). Our best model esti-
mated 134,975-km2 potential red panda habitat across the entire 
range based on 10 percentile threshold. Kandel et al. (2015) esti-
mated potential red panda habitat at approximately 47,000 km2 in 
the Hindu Kush Himalaya, which included 47.5% of predicted habitat 
within Nepal and at least 1% in Bhutan. Our model predicted the 
largest portion of red panda habitat in China, with more than half of 
the total habitat (61%) occurring in three provinces (Sichuan, Yunnan, 
and Tibet). Kandel et al. (2015) estimated only 27% red panda habi-
tat in China, which was less than half of our estimated area; 5.5%, 
22.7%, and 22.7% less habitat was estimated by Wei et al. (2014), 
Wei, Feng, Wang, & Hu (1999), Wei, Feng, Wang, Zhou, et al. (1999), 
and Choudhury (2001), respectively.

China has the largest amount of red panda habitat globally, 
and previous studies may have underestimated red panda habitat 
(Choudhury, 2001; Kandel et al., 2015; Wei, Feng, Wang, & Hu 1999). 
Importantly, our model prediction is robust and more comprehensive 
than prior methods (Choudhury, 2001; Kandel et al., 2015; Mahato, 
2010; Wei, Feng, Wang, & Hu, 1999; Wei et al., 2014; Yonzon, Jones, 
& Fox, 1991). Our analysis is based on a machine-learning algorithm, 
species records from the entire distribution range, and a separate 
set of climatic variables for both subspecies, which were not incor-
porated in previous studies by Wei, Feng, Wang, and Hu (1999), Wei, 
Feng, Wang, Zhou, et al. (1999), Yonzon et al. (1991), Choudhury 
(2001), Kandel et al. (2015), and Mahato (2010). In addition, Kandel 
et al. (2015) used occurrence records from Nepal, which include the 
Himalayan subspecies A. fulgens fulgens only, and this fact raises 
questions about undersampling, while predicting habitat across the 
landscape consists of climatic patterns and heterogeneous topogra-
phy. Additionally, the Kandel et al. (2015) distribution map showed 
that the predicted presence was distributed beyond its western-
most biogeographic distribution limit (the Mugu District in Nepal), 
including Pakistan and Afghanistan, where the red panda is absent 
in wild habitat. Numerous studies have recognized that the MaxEnt 
algorithm produces highly accurate predictions over a wide range of 
species and geographic regions (Elith et al., 2006; Hernandez et al., 
2006). Climate is a better driving factor than elevation, suggesting 
that microclimates in the Himalayas make for a powerful driver of 
red panda ecological niche and distribution (Kandel et al., 2015). 
At a given landscape, precipitation, temperature and elevation are 
highly correlated (Hof, Jansson, & Nilsson, 2012), and two or more 
correlated environmental variables can significantly decrease SDM 
accuracy.

Wei, Feng, Wang, and Hu (1999) and Wei, Feng, Wang, Zhou, 
et al. (1999) estimated red panda habitat in Sichuan, Yunnan, and 
Tibet to be 17,228.3 km2, 10,634.1 km2, and 9,574.1 km2, respec-
tively, but we predicted it in Sichuan, Yunnan, and Tibet to be 
25,962 km2, 28,196 km2, and 28,495 km2 based on a 10 percentile 
threshold (Figure S7). More recent estimates of red panda habitat in 
Sichuan (68,000 km2), Yunnan (42,000 km2), and Tibet (43,000 km2) 
(Wei et al., 2014) are roughly double our estimates. Among the Wei, 
Feng, Wang, and Hu (1999), Wei, Feng, Wang, Zhou, et al. (1999), 
Choudhury (2001), and Wei et al. (2014) estimates, estimated habitat 

in China varied greatly although similar methodological approaches 
were implemented. This fact may be due to recently updated survey 
information (Supporting Information Figure S7). Estimates by Wei 
et al. (2014) and Choudhury (2001) relied on forest cover in counties 
based on expert opinion, which excluded other ecological variables 
and species occurrence. Our model predicted 41 counties in China; 
however, Wei et al. (2014) identified 58 counties, and that might be 
a reason for habitat estimation variation (Supporting Information 
Table S1).

Our model predicted 20,150 km2 of suitable red panda habitat 
in Nepal, accounting for 17% of predicted habitat and compris-
ing 60% of moderate- and high-suitability habitat. Our prediction 
identified Nepal as a central area for conservation of A. f. fulgens 
in the Himalayas, similarly suggested by Kandel et al. (2015). 
Kandel et al. (2015) and Mahato (2010) predicted 22,400 km2 and 
20,397 km2, respectively; however, Choudhury (2001) may have 
underestimated it at only 8,200 km2. Yonzon et al. (1997) esti-
mated only 912 km2 of suitable habitat for red pandas in Nepal, 
which recorded the occurrence of the red panda only in 11 oc-
currence districts and used three parameters: fir forest (Abies 
spectabilis), elevation (3,000–4,000 m), and annual precipitation 
(>2,000 mm). Recently, the red panda was confirmed in 21 dis-
tricts in Nepal. For example, Dolkha, Ramechhap (Thapa, Thapa, 
& Poudel, 2013), Kalikot (Bhatta, Shah, Devkota, Paudel, & Panthi, 
2014), and Jajarkot (Baral, 2014) have been recorded beyond 
PAs and with an elevation range as low as 2,200 m in Ilam (RPN, 
2016a, 2016b) in eastern Nepal and 2,400 m in Singalila National 
Park in India (Pradhan et al., 2001). Recently, occurrence of the red 
panda was confirmed in Rasuwa, Nuwakot, Myagdi, Baglung, and 
Dhading districts in central Nepal (Bista et al., 2017), which was 
predicted in our model. Likewise, the model estimated 12,623 km2 
(9.3%) of red panda habitat in northern Myanmar, which is close to 
the estimate of Kandel et al. (2015) but different from Choudhury 
(2001). Due to limited studies on the red panda in Myanmar, it is 
difficult to justify clearly Myanmar’s habitat estimation. MaxEnt’s 
result suggested 46% of predicted habitat under PAs, 16% in bi-
ological corridors, and 38% outside the PA system in Bhutan 
(Glatston et al., 2015). Our result showed 17 districts suitable for 
the red panda in Bhutan, similar with Dorji, Vernes, and Rajaratnam 
(2011), who found 11 confirmed presence districts.

4.3 | Conservation status

Existing PAs cover 27.93% (37,711 km2) of the predicted red panda 
habitat. This means that 72.07% of habitat important to red panda 
conservation does not currently have any legal protection, indicat-
ing a high probability of risk under growing anthropogenic activity 
and climate change. This region has recently had 39% of the Hindu 
Kush Himalayas converted to a PA network across eight countries 
(including Afghanistan and Pakistan), which is significant when com-
pared to the global target of 10% (Chettri, Shakya, Thapa, & Sharma, 
2008). PAs have proven to be effective for the protection of spe-
cies against ongoing human threats but many species may shift their 
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distributions outside existing PAs under climate change scenarios 
(Alagador, Cerdeira, & Araujo, 2014; Araujo, Alagador, Cabeza, 
Nogues-Bravo, & Thuiller, 2011).

Protected area networks are good at representing the red 
panda habitat in Bhutan where PAs cover 43.52% of the red panda 
habitat, and represent 32.98% of Bhutan’s PA network. In a for-
mer study, MaxEnt modeling showed that 46% of predicted the 
red panda habitat was within PAs, 16% was in biological corridors, 
and 38% was outside the PA system in Bhutan (Glatston et al., 
2015). China contains a large amount of red panda habitat, but only 
22.33% of habitat is under legal protection. Our model predicted 
46 PAs suitable as red panda habitat in agreement with Wei and 
Zhang’s (2011) 47 PAs, but in contrast to Wei, Feng, Wang, and 
Hu, (1999) and Wei, Feng, Wang, Zhou, et al. (1999) 31 reserves 
protecting 42.4% of habitat.

Ten mountainous PAs harbored suitable red panda habitat in 
Nepal representing 35.90% of predicted habitat and 19.29% of 
Nepal’s PA network, indicating insufficient protection. PAs were 
skewed toward high mountains in Nepal leading to misrepresen-
tation of important ecosystems, ecoregions, habitat, and species 
whereby current PAs provide insufficient protection for geo-
physical and biological entities (Shrestha, Shrestha, Chaudhary, & 
Chaudhary, 2010). Occurrence data showed that species records 
were more frequent within PAs than outside PAs, indicating sur-
veys were focused in PAs in Nepal despite the fact that 64% of 
the habitat lies beyond PAs where recent field survey recorded 
additional new occurrence locations (e.g., Bhojpur, Dolpa, Ilam, 
Jajarkot, Kalikot, Lamjung, Myagdi, and Rolpa districts in Nepal) 
(Bista et al., 2017).

Red panda habitat is well predicted in northern parts of 
Myanmar, particularly in Hkakaborazi, Hponkanrazi, Bumhpabum, 
and Hukawng Valley PAs, representing 16.18% inside PAs. Other 
studies have recorded red pandas in Hkakaborazi and Hponkanrazi 
PAs (Zaw et al., 2008). Our model has good prediction across border 
areas between Yunnan and Myanmar, from where Dollman (1932) 
has recorded occurrence previously and Pocock (1941) (as citied 
in Zaw et al., 2008). Suitable habitat for red pandas was predicted 
in 11 PAs in India including in Sikkim and West Bengal State, but 
Meghalaya’s habitat remains outside PAs. Approximately 50% of 
habitat is outside in PAs in Sikkim, similar to other studies that sug-
gest up to 60% of habitat lies outside PAs (Glatston et al., 2015).

4.4 | Priority habitat areas

Basically, it is expected that the higher the predictive presence 
probability/suitability at a site, the higher the site is to spe-
cies survival. If the goal is to explore new populations and re-
cords, the highly suitable areas predicted in Nyirong, Nyalam, 
and Dinggye between Nepal and Tibet are recommended to 
initiate field survey. Tibet contains good habitat for red pandas 
and should be a high priority because of limited field studies. 
We recommend these potential habitats to initiate transbound-
ary conservation (Supporting Information Figure S8). The large 

areas of predicted habitat and high occurrence kernel densities 
in central and eastern Nepal and Sikkim in India make this a good 
target for establish transboundary conservation (Supporting 
Information Figure S8). We recommend field surveys in the fol-
lowing mountain ranges because they contain predicted habi-
tat beyond PAs: Shangri La, Meili Snow Mountain, Chall Snow 
Mountain, Gaoligong Mountain, Baima Snow Mountain, and 
Biluo Snow Mountain in Yunnan (Supporting Information Figure 
S5). Last, genetic studies suggest that the Xiaoxiangling popula-
tion has different genetic types to A. f. styani compared to other 
mountains (Hu et al., 2011), and our model predicted highly suit-
able habitat and high kernel densities in the area (Supporting 
Information Figure S6).

4.5 | Implications for red panda conservation

Our results showed that red panda conservation could not rely on ex-
isting PAs. Conservation beyond existing PAs should now be a focus 
of international effort. Around 70% of potential habitat is outside 
PAs, suggesting a need for buffer zone areas, community conser-
vation sites, transboundary conservation zones, wildlife corridors, 
and special conservation sites. Due to the international distribution 
of red pandas and degree of cross-border habitat, we recommend 
urgent initiation of a multilateral red panda conservation platform to 
secure the remaining wild population.
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