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Radiotherapy has become a common treatment option for head and neck (H&N) cancer, and organs at risk (OARs) need to be
delineated to implement a high conformal dose distribution. Manual drawing of OARs is time consuming and inaccurate, so
automatic drawing based on deep learning models has been proposed to accurately delineate the OARs. However, state-of-the-art
performance usually requires a decent amount of delineation, but collecting pixel-level manual delineations is labor intensive and
may not be necessary for representation learning. Encouraged by the recent progress in self-supervised learning, this study
proposes and evaluates a novel multiview contrastive representation learning to boost the models from unlabelled data. +e
proposed learning architecture leverages three views of CTs (coronal, sagittal, and transverse plane) to collect positive and negative
training samples. Specifically, a CT in 3D is first projected into three 2D views (coronal, sagittal, and transverse planes), then a
convolutional neural network takes 3 views as inputs and outputs three individual representations in latent space, and finally, a
contrastive loss is used to pull representation of different views of the same image closer (“positive pairs”) and push repre-
sentations of views from different images (“negative pairs”) apart. To evaluate performance, we collected 220 CT images in H&N
cancer patients. +e experiment demonstrates that our method significantly improves quantitative performance over the state-of-
the-art (from 83% to 86% in absolute Dice scores). +us, our method provides a powerful and principled means to deal with the
label-scarce problem.

1. Introduction

Radiotherapy is an important treatment option for many
cancers, and the complex anatomy and distribution of normal
organs in head and neck cancer may lead to damage of organs
at risk (OARs), resulting in complications such as the oral
mucosa damage, larynx edema, and dysphagia. To mitigate
the toxic side effects of radiotherapy, modern radiotherapy
techniques, such as intensity-modulated radiotherapy and
volumetric-arc-modulated therapy, are capable of imple-
menting highly conformal dose distribution for the target
areas of tumors, reducing the radiation dose that endangers
OARs, therefore reducing radiation-induced toxicity [1]. A
key step in reducing the toxic effects of radiation exposure is

the accurate delineation of OARs, which is usually performed
manually by clinicians based on computed tomography (CT)
scans and requires a great deal of time and effort. In the head
and neck case, for example, many tumors are treated over a
large area, covering a large number of OARs that have
complex anatomical structures. +erefore, OARs delineations
in head and neck cancer are time consuming and laborious to
outline manually.

Traditional automatic delineation methods are mostly
based on Atlas [2], with the drawbacks of the large com-
putational burden and the reliance on Atlas templates.
Recently, deep learning methods show their capability of
learning anatomical features for delineation directly from
the images without templates [3, 4]. Given enough
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delineation labels, a supervised deep learning model can
produce clinically acceptable results. Usually, decent per-
formance requires hundreds of labels. However, collecting
manual delineations is expensive and hard to be scaled up.
Considering the amount of unlabelled data is substantially
more than a limited number of clinician curated labelled
data, it is kind of wasteful not to use them. However, the
unsupervised learning is very hard and usually works much
less efficiently than supervised learning. Recently, self-su-
pervised learning and contrastive learning have shown great
promise, achieving state-of-the-art results [5, 6].

To address the label-scarce issue, a novel contrastive
learning framework was developed and evaluated on a large-
scale head and neck cancer dataset. Clinical validation of the
accuracy and efficiency of the new method lays the foun-
dation for its clinical application.

2. Methods

2.1. Multiview Contrastive Learning. Inspired by recent
contrastive learning algorithms [5, 6], this study proposes a
novel method that learns representations by maximizing
agreement between different views of the same patient via a
contrastive loss in the latent space. As illustrated in Figure 1,
this method comprised the 3D CT image is first projected
into three 2D views (coronal, sagittal, and transverse planes),
then an existing deep convolutional neural network is used
to obtain the representations of the three views, and finally, a
contrastive loss is used to pull representation of different
views of the same image closer (“positive pairs”) and push
representations of views from different images (“negative
pairs”) apart.

As shown in Figure 1, a 3D CT scan is first projected to
three correlated views of the same patient, denoted x1, x2,
and x3, which are considered as the positive pair. A con-
volutional neural network- (CNN-) based feature encoder
f(x) extracts representation vectors h from previous 2D
images. For the easily adaption to the segmentation task, we
choose the commonly used UNet [7]. Only the encoder part
of UNet is used during this self-learning stage. +e whole
UNet is joint trained later during the full-supervised stage. A
multiple-layer perceptron (MLP) g(h) projects represen-
tations to the space where contrastive loss is applied. An
MLP with one hidden layer and batch normalization is used
to obtain the projected z. Finally, a contrastive loss function
is defined to distinguish between similar and dissimilar
representations:

Li,j �
−log exp z

T
i zj/τ􏼐 􏼑

􏽐k1[k≠i]exp zT
i

zj/τ( 􏼁

, (1)

where the contrastive loss is defined for a positive pair (i, j),
1[k≠i] is the indicator function whose value equates to 1 if and
only if k≠ i, and τ is the temperature. +e loss is computed
across all positive pairs in a minibatch. Typical contrastive
training relyies on large minibatch sizes such as 4098, but we
avoid such hardware demanding setting by adopting the
memory banks technology, which uses a slow-moving av-
erage network (momentum encoder) to maintain consistent

representations of negative pairs drawn from a memory
bank. Formally, denoting the parameters of query encoders
f andg as θq and those of key encoders as θk, we update θk as

θk � mθk +(1 − m)θq, (2)

where m is a momentum parameter that exponentially
moving averages parameters. +e network parameter θq is
optimized as usual. +e advantage of this design is that it
provides a principle way to discriminate information from 3
views for the same patient to obtain the improved repre-
sentations for a downstream segmentation task.

2.2. Data. We used two datasets in this study. Dataset 1
contains an in-house collection of 188 CT scans from
Shanghai Huashan Hospital. We manually annotate 24
OARs for this dataset, which include the brain, brain stem,
spinal cord, spinal cord cavity, left eyeball, right eyeball, left
crystal, right crystal, left optic nerve, right optic nerve, optic
nerve cross, pituitary gland, left parotid gland, right parotid
gland, oral cavity, mandible, left mandibular joint, right
mandibular joint, left temporal lobe, right temporal lobe,
larynx, pharynx, trachea, and thyroid. +e organs were
divided into 4 categories based on their importance. Among
them, organ class A distributes among many CT slices, and
the automatic delineation can reduce the repetitive manual
drawing; organ class B has few slices but is delineated more
frequently; organ class C is used less for planning; and class
D involves critical physiology functions but is smaller and
has less time-consuming drawing. Dataset 2 consists of a CT
scans Head-Neck Cetuximab (HNC) dataset, which is col-
lected from +e Cancer Imaging Archive (TCIA) which is
publicly available [8]. HNC consists of 32 patients’ data from
a clinical trial for stage III and IV head and neck carcinomas.
We followed the same procedure as described in generating
dataset 1 to annotate OARs in each of the CT scans.

2.3. Experiment Organization. We first train the network
with all available samples from two datasets in the proposed
self-supervised way and then fine tune the network on the
150 labelled patients in dataset 1. +e remaining 38 patients
in dataset 1 and 32 patients in dataset 2 are used to evaluate
the performance. Four NVIDIA TITAN 3090 GPUs and
PyTorch [9] deep learning framework are used to develop
codes. We implement the details suggested in literature [6]
to boost the performance, i.e., LARS, cosine learning rate,
and the MLP projection head. +e initial learning rate is set
to 0.001 for 60,0000 iterations during the unsupervised
training stage, and the initial learning rate is set to 0.0001 for
5,000 iterations during the fine tuning stage.

2.4. Quality Evaluation Metrics. Dice coefficients and
Hausdorff distances are used to quantify and analyze the
accuracy of the automatic delineation. +e Dice is used to
evaluate the accuracy of the inner region of OARs, and
Hausdorff is used to evaluate the accuracy of the OARs
boundaries.
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3. Results and Discussion

3.1. Contour Accuracy. In order to verify the quality of the
new method’s delineations, it is compared with the Ua-Net
[3] and Anatomy-Net [4] methods. Ua-Net was published in
Nature 2019 and is the current best deep learning-based
method. Anatomy-Net is another deep learning method
dedicated to OARs of head and neck cancer, published in
Medical Physics in 2018.+eDice score of the three methods
are reported in Table 1. As shown in the table, the accuracy of
our method was better than the other methods for most
OARs.+e average Dice score of the three methods was 0.86,
0.83, and 0.80, respectively. Our method improved the ac-
curacy by 3.5% over Ua-Net and by 6.5% over Anatomy-Net.
Ua-Net outperformed our method on the brain stem, oral
cavity, and trachea, whichmay be attributed to its 3D nature,

which is advantageous for organs with a large transverse
span.

To validate the organ boundary accuracy of our method
over the supervised deep learning method, Figure 2 reports
the Dice difference and Hausdorff difference of the two
methods. (a) Dice difference of >0 indicates that our method
is superior, and a Hausdorff difference of <0 indicates that
our method is superior. As shown in the figure, the Dice
difference between the two methods is very small (Dice
difference on the left vertical axis) with a mean value of
0.0001. However, the Hausdorff difference between the two
methods is very large (Hausdorff difference on the right
vertical axis) with a mean value of −5.96, indicating that our
method has better organ boundary accuracy.

Figure 3 compares the delineation results of our method
and the supervised deep learning method [7] on two sets of

Projection
MLP
g ()

Contrastive
loss

Projected
representations: z

CNN
f ()

3-view
representations: h

Sagittal plane
3-view 2D images: x

a 3D CT scan of a patient

Transverse plane

Coronal plane

Figure 1: A overall illustration of the multiview self-supervised learning.

Table 1: Comparison of the proposed method with the state-of-the-art supervised methods (the higher the Dice, the better).

OARs Our’s Ua-Net [3] Anatomy-Net [4]
Brain 0.970 N/A N/A
Brain stem 0.860 0.881 0.826
Spinal cord 0.862 0.856 0.803
Spinal cord cavity 0.891 N/A N/A
Eye L 0.927 0.897 0.884
Eye R 0.927 0.919 0.892
Len L 0.801 0.793 0.772
Len R 0.821 0.746 0.78
Optical nerve L 0.798 0.693 0.725
Optical nerve R 0.750 0.718 0.729
Chiasm 0.770 0.618 0.605
Pituitary 0.724 N/A N/A
Parotid L 0.837 0.839 0.822
Parotid R 0.872 0.847 0.822
Oral cavity 0.901 0.948 0.876
Mandible 0.921 0.925 0.919
Mandible joint L 0.873 0.824 0.816
Mandible joint R 0.865 0.837 0.817
Temporal lobe L 0.896 0.8478 0.866
Temporal lobe R 0.901 0.8413 0.857
Larynx 0.899 0.933 0.83
Pharynx 0.794 N/A N/A
Trachea 0.866 0.812 0.793
+yroid 0.857 0.827 0.718
Mean 0.86 0.83 0.80
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data. As seen in the figure, the delineation from the su-
pervised method misses the optic nerves while our method
delineates the optic nerves correctly. Similarly, the super-
vised method incorrectly predicts the chiasm, while our
method correctly delineated this organ.

4. Conclusions

+is study proposes and evaluates a novel deep-learning-
based delineation method. Clinical evaluations show that
our method has a delineation accuracy of 3.5% (Dice) and a
boundary accuracy of 5.96 (Hausdorff) higher than the
current best method. +e advantage of our method is the
integration of information from all three views of the CT to
achieve better delineations than a single view.

+is study has the following limitations. First, only CT
images were used to delineate OARs. Some anatomical
structures, such as crystals, have a low contrast on CT and
are difficult to delineate with CT alone. +erefore, it is very
important to integrate information from othermodal images
(e.g., MRI). Secondly, although delineation labels are defined

by a senior physician, there will always be errors in manual
delineation. +erefore, a standard delineation dataset is
required in the future. One advantage of deep learning in
this regard is that it ensures that the delineations are con-
sistent across hospitals and individuals.+ird, the number of
delineation labels is still small, which limits the capacity of
the deep network. +ere is a need to collect more standard
delineation frommore sources to improve the cross-domain
adaptability and generalization of the deep network in the
future.

In summary, a novel deep learning method is proposed
in this study, which can delineate OARs in head and neck
cancer, with better accuracy than the current state-of-the-art
methods. +e new method can save the clinician’s manual
delineation time and, thus, is clinically applicable and has the
potential of clinical promotion.

Data Availability

+e CT data used to support the findings of this study have
not been made available because of patient privacy.
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Figure 2: Quantitative comparison of our method with the supervised deep learning methods.

(a) (b)

Figure 3: Qualitative comparison of our method with supervised deep learning methods. (a) Supervised deep learning methods. (b) Our
method.
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