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Organisms often cooperate through the production of freely available public goods.
This can greatly benefit the group but is vulnerable to the “tragedy of the commons” if
individuals lack the motivation to make the necessary investment into public goods pro-
duction. Relatedness to groupmates can motivate individual investment because group
success ultimately benefits their genes’ own self-interests. However, systems often lack
mechanisms that can reliably ensure that relatedness is high enough to promote cooper-
ation. Consequently, groups face a persistent threat from the tragedy unless they have a
mechanism to enforce investment when relatedness fails to provide adequate motiva-
tion. To understand the real threat posed by the tragedy and whether groups can avert
its impact, we determine how the social amoeba Dictyostelium discoideum responds as
relatedness decreases to levels that should induce the tragedy. We find that, while
investment in public goods declines as overall within-group relatedness declines, groups
avert the expected catastrophic collapse of the commons by continuing to invest, even
when relatedness should be too low to incentivize any contribution. We show that this
is due to a developmental buffering system that generates enforcement because insuffi-
cient cooperation perturbs the balance of a negative feedback system controlling multi-
cellular development. This developmental constraint enforces investment under the
conditions expected to be most tragic, allowing groups to avert a collapse in coopera-
tion. These results help explain how mechanisms that suppress selfishness and enforce
cooperation can arise inadvertently as a by-product of constraints imposed by selection
on different traits.
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Individuals often perform cooperative acts that are costly to the actor but benefit all
members of their group, regardless of individual contributions (1, 2). While this type
of cooperation through public goods can be hugely beneficial for the group, the self-
sacrifice it requires may outweigh the incremental benefits that an individual’s own
contribution adds to group success (3, 4). As a result, individuals will often lack moti-
vation to contribute to public goods, which can lead to the tragedy of the commons
(5), where selfish behaviors that maximize personal interests reduce the success of the
whole group (4). The potential risk that the tragedy represents to societies has long
been recognized in economics (6, 7), and its role in shaping the evolution of coopera-
tion and group organization in nature has become increasingly recognized in biology
(3, 8, 9). Despite this, we still have a limited understanding of the conditions under
which groups actually suffer from the tragedy, the factors that determine how bad the
outcome is, and the mechanisms that mitigate its impact and allow groups to avert the
most catastrophic consequences where public goods are not produced at all.
In biological systems, groups can decrease the threat of the tragedy by ensuring that

relatedness is high enough to motivate public goods investment (3). Relatedness is a
powerful motivator of group-beneficial behaviors at a genetic level because the benefits
accrued by copies of the actor’s genes present in groupmates can more than offset the
cost of the self-sacrifice by the actor (10). However, many systems lack mechanisms
that can always reliably ensure high relatedness (11–13). Reduced relatedness can be
problematic for groups because it can shift the balance of selection away from favoring
individuals acting for the good of the group toward maximizing their selfish interests.
However, under all relatedness conditions, selection should favor individuals who are
able to contribute to public goods at the level that maximizes their inclusive fitness
(given their relatedness), which can be accomplished by strategically adjusting contribu-
tions depending on their relatedness to the group (2, 14–18). The logic of such strate-
gic cooperation is captured in the “Collective Investment” game (17, 18) in which the
“players” are different genotypes interacting in groups and each player decides what
fraction of their resources to invest into production of public goods. Group members
benefit (at a rate given by b) from the total collective amount of public goods
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produced, while individuals pay a personal cost (at a rate of c
per unit contributed) in terms of reduced direct reproduction
or some other component of direct fitness (see Materials and
Methods for a brief presentation of the model). Given some
benefits and costs of public goods production, the optimal level
of investment for each player will depend on their relatedness
to the group (ri) (Fig. 1). When a player has a relatedness of 1
to the group (i.e., only one genotype is present in the group),
they should invest at a level that maximizes the total fitness of
the group (denoted by θ, which equals ½b� c�=2bc). However,
as relatedness declines from 1, motivation to invest in public
goods declines, eventually reaching 0 when relatedness drops
below the level where the costs outweigh the benefits (which
occurs once ri < c/b, following Hamilton’s rule) (10). The
degree to which this will occur will depend on the level of relat-
edness within a group and the magnitude of benefits from pub-
lic goods relative to their costs, which shapes motivation to
invest across the range of relatedness (Fig. 1). Furthermore, the
catastrophic collapsing tragedy is guaranteed to arise under condi-
tions where no group member is motivated to invest, unless there
is some form of enforcement. Indeed forms of enforcement have
been reported in nature (3, 14, 19–23), but we still have a very
limited mechanistic understanding of their evolution, their mode
of action, the role they play in the face of strategic cooperation,
and the extent to which they provide a solution to the tragedy of
the commons.
To understand the threat posed by the tragedy of the com-

mons in a natural system, and the potential for enforcement to
avert its impact, we measured the pattern of relatedness-
dependent public goods investment in groups containing multi-
ple strains of Dictyostelium discoideum (replicated across several
different sets of strains) and used these to estimate the parame-
ters of the Collective Investment game. In this system, single-
celled individuals aggregate to collectively form a fruiting body
constructed of a stalk (the public good) that facilitates dispersal
of spores (the benefit from public goods) (24–26). Data on the
frequency of clonality/chimerism in nature indicate that both
clonality and chimerism are relatively common (27). Clonality

should provide strong selection for a system of canalization (28)
that ensures adaptive fruiting body proportioning to optimize
clonal group success. Similarly, the high frequency of chimerism
in nature [with about a quarter of aggregations containing multi-
ple genotypes (27)] provides ample opportunities for selection to
shape adaptive responses to chimerism. Indeed, D. discoideum
has been shown to exhibit strategic adjustment of contributions
to the stalk in response to relatedness (17) and an allorecognition
mechanism that can increase relatedness by causing partial segre-
gation in chimeric aggregations (29–31). However, while segre-
gation can potentially limit opportunities for selfishness to
undermine group success, it does not allow strains to completely
avoid the threat of the tragedy because the extent of segregation
varies depending on the genotypes of the interacting strains and,
even when high, it does not result in clonality (31). Instead, it
simply increases the variance in relatedness across fruiting bodies,
which allows some groups to escape the worst of the tragedy by
ending up with one strain with high relatedness (which can
ensure adequate stalk investment), although many other groups
remain highly heterogeneous and potentially suffer the tragedy
(31). Moreover, strains with low relatedness to their group show
lower levels of segregation (17), which means that groups con-
taining a large number of strains, each with low relatedness, are
expected to show relatively low levels of segregation. These pat-
terns of imperfect segregation mean that high relatedness cannot
be ensured and, critically, strains can be trapped in the most
tragic conditions, where no strain has high enough relatedness to
be motivated to invest while strains are able to segregate away
from the group. Under these conditions, natural selection could
favor processes that enforce cooperation and limit selfish behav-
ior to avert the catastrophic collapse of stalk production.

Results and Discussion

To understand how the motivation to contribute to stalk pro-
duction changes with relatedness (and thus the threat of the
tragedy), we examined stalk investment in three-strain groups.
This allows a broader range of relatedness patterns to be
explored than using pairwise groupings, where the frequencies
of the two strains are always counterbalanced. The three-strain
groups were constructed over a range of patterns of relatedness
where we held the relatedness of one strain constant while vary-
ing the relatedness of the others (see Fig. 2A). Our approach
(both here and in the analysis of multistrain groups described
below) assumes that all strains are unrelated (so all pairwise
relatedness values are 0). This assumption implies that all
strains can distinguish all other strains from self and treat them
equally as nonself.

Investment into the stalk was inferred from changes in num-
bers of spores produced by chimeric aggregations relative to
that expected based on the numbers produced when clonal (see
Materials and Methods for a discussion of the rationale for and
caveats associated with the use of relative spore numbers as a
means of inferring stalk investment). As expected, we see a
decline in stalk investment as relatedness declines in groups
(Fig. 2B). The best fit of these data from three-strain groups to
the Collective Investment game (adapted to allow for biological
error in the estimated level of relatedness inferred by individu-
als; see Materials and Methods) occurs when the benefits from
stalk investment far exceed the costs (b = 12 and c = 1, which
makes the optimal level of investment, θ = 0.46). Experimental
measures of collective investment in three-strain groups show a
relatively close match to that expected (r = 0.75 between model
prediction and experimental measures), suggesting that the

Fig. 1. A player’s investment in public goods as a function of their related-
ness to the group. The different lines correspond to different benefits rela-
tive to costs (b/c) (see inset legend). Each line corresponds to a value of
1
2

1
c � 1

bri

� �
whenever ri > c/b, and a value of 0 otherwise. The y axis scales

investment relative to that which optimizes group fitness (θ).
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model provides robust predictions, at least for three-strain
groups (Fig. 2B). The very high benefit relative to the cost sug-
gests that strains should still be incentivized to invest into stalk
production even as relatedness declines well below the levels
examined in the three strain groups. However, we would expect
that, when relatedness drops below ∼0.1 it will be too low to
incentivize any level of investment, and hence collective invest-
ment should be 0.
To examine the impact of the tragedy in groups with lower

levels of relatedness than can be achieved in three-strain mixes,
and hence determine whether they ultimately suffer cata-
strophic collapse of stalk investment as predicted, we created
groups across a wide range of relatedness levels. For this we
mixed sets of N strains in equal proportions, such that related-
ness of all strains to the group equals 1/N (and declines as more
strains are added to the groups). As predicted, collective

investment deteriorates as relatedness declines but, while we see
the expected plateau of collective investment at very low relat-
edness, investment does not fall to the expected catastrophic
level of zero stalk investment, where groups would be unable to
take advantage of stalk-facilitated dispersal to escape environ-
ments devoid of resources (Fig. 3A). Indeed, despite expecta-
tions to the contrary, it is clear that very low-relatedness groups
still build complete fruiting bodies (with stalks), even if their
structure is heavily compromised by their suboptimal stalk
investment (Fig. 3B). Quantification of fruiting body integrity
reveals that the proportion of fruiting bodies that spontaneously
collapse increases as relatedness declines (linear model: F1,88 =
103.5, P < 10�15) (Fig. 3B), which is almost perfectly corre-
lated with the level of collective investment (Pearson correla-
tion: r = �0.98, P < 10�4). These results suggest the presence
of a mechanism that enforces contributions to stalk production
despite a lack of necessary motivation to invest, which allows
groups to avert the expected catastrophic outcome.

Investment of cells into stalk production versus spore forma-
tion is ultimately a developmental cell-fate decision. Stalk/spore
fate choice in D. discoideum is a well-studied model for under-
standing basic mechanisms governing cell-fate choice and pro-
portioning (32–37). Hence, this knowledge can provide clear
hypotheses for how enforcement could arise under conditions
where strategic investment results in skewed stalk/spore propor-
tions. Indeed, D. discoideum has been shown to possesses a neg-
ative feedback mechanism that can buffer clonal development
against initial errors in stalk:spore proportioning (32, 34, 35)
and which also provides an explanation for how slugs with
extreme perturbations in cell type proportioning adjust cell pro-
portions (36–39). The mechanism is based on the idea that dif-
ferentiation of precursors of stalk cells (prestalk cells) is induced
by factors that are produced by the precursors of spore cells
(prespore cells) and broken down by the prestalk cells (34, 38,
39). Consequently, if the proportion of prespore cells increases,
then the level of stalk-inducing factors will rise (due to
increased production and insufficient breakdown), causing
some prespore cells to transdifferentiate into prespore cells.

Predic�on Empirical
A B

Fig. 2. Predicted and observed pattern of stalk investment in three-strain
groups. The ternary plot shows the total (collective) level of investment by
a group as a function of group composition in terms of the relatedness of
the three strains to the group (r1, r2, and r3), which is equal to their fre-
quencies in the group). (A) The predicted level of collective investment in
stalk is indicated by the shading from yellow (high investment) to red (low
investment). (B) Empirically measured investment in groups across a range
of compositions, where each circle indicates the mean investment (calcu-
lated from n = 20 replicates) by groups with a given composition (where
relative investment is inferred from the numbers of spores produced by
clonal relative to chimeric groups). Shading matches that for A.

CBA

Fig. 3. The pattern of collective stalk investment and associated fruiting body stability as a function of relatedness. All N strains in a group have equal relat-
edness (= 1/N). (A) Stalk investment inferred from the number of spores produced by groups with different compositions relative to that expected when
clonal. Points and error bars represent means ± one SE from replicated experiments (average n = 22 per group) using different combinations of naturally
cooccurring strains. The solid line is the pattern predicted using the best-fit model parameters from three-strain groups and the gray shaded area the 95%
confidence interval. Empirical estimates of stalk investment are scaled so that they represent proportions of the model predicted optimal level of investment
(θ). (B) Representative images of fruiting bodies from clonal development and from low relatedness mixes (for mixes of 10 strains at equal frequency).
Images are of aggregations generated for the smFISH experiment (and so do not directly correspond to the ones measured in A or B). (C) The proportion of
fruiting bodies that spontaneously collapsed (after 48 h) as a function of the relatedness of strains within a group. Individual points and error bars
are means ± SE from replicates (average n = 11.25 per group) using different groupings of natural strains. The solid line is included for visualization and
was fitted by polynomial regression using relatedness cubed.
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Similarly, high prestalk proportions will result in insufficient
production of stalk-inducing factors to maintain prestalk cell
differentiation, resulting in transdifferentiation into prespore
cells. The production and breakdown of these factors is
expected to reach an equilibrium around the optimal prestalk:-
prespore ratio. We hypothesized that this mechanism could
also prevent aggregations with very low overall relatedness from
showing the predicted zero investment into stalk. In these chi-
meras, the severe underrepresentation of prestalk cells (owing
to a dearth of cells initially committing to the stalk cell fate)
would be expected to cause stalk-inducing factor levels to rise
significantly (due to increased production and decreased break-
down), which would force some cells to switch from the
prespore to the prestalk cell fate. This provides a form of
enforcement that would occur as overall relatedness declines,
which would increase in importance under the conditions
where groups are most at risk for the collapsing tragedy.
To test this idea, we first incorporated a transdifferentiation

effect into the Collective Investment game as a pressure on stalk
investment that increases as aggregations deviate from the opti-
mal level of investment. The strength of this effect, denoted D,
is proportional to how far the aggregation is from the optimal
stalk–spore proportioning (θ). Hence, the presence of transdif-
ferentiation has relatively little effect on investment when
groups have high relatedness because most cells in the group
will be motivated to invest in stalk and, consequently, the
group will not deviate greatly from the optimal level of invest-
ment (Fig. 4A). However, when groups approach the level of
overall relatedness where they would show zero investment,
strains are “forced” to invest some proportion of their cells into
stalk, despite lacking motivation to do so. As a result, groups
can avert the collapsing tragedy even when the strategic
response to the low level of relatedness would be zero invest-
ment. More generally, the realized pattern of collective invest-
ment will depend on the composition of the group since that
determines both the inherent level of investment into stalk
made by each strain and also the level of transdifferentiation
pressure experienced by members of the group. To test this
hypothesis, we refitted the model to the data from groups con-
taining different strains at equal frequency (i.e., the data shown
in Fig. 3A) with the addition of the transdifferentiation

parameter D. For this, we constrained all other model parame-
ters and simply added the parameter D since this approach
would ensure that the model still fits the three-strain pattern
(since transdifferentiation has a relatively small impact on
observed investment in three-strain groups; see Fig. 4A). We
find that the addition of the transdifferentiation parameter D
greatly improves the fit of the model to the data (where the
model without D explains 50% of variation in average stalk
production across groups containing different numbers of
strains, corresponding to the model predictions in Fig. 3A,
while the model with D explains 89% of the variation, corre-
sponding to the model predictions in Fig. 4B). Importantly,
the addition of transdifferentiation predicts the plateau in
investment below a relatedness of ∼0.1 that is above a realized
investment level of 0, whereas the naïve model without trans-
differentiation predicts that the plateau represents a value of
zero investment.

Next, we used two complementary approaches to experimen-
tally test the hypothesis that transdifferentiation allows groups
to avoid the catastrophic tragedy of zero investment at low
relatedness. First, we tested whether strains at very low related-
ness show higher investment when in a complex group, where
all other strains have low relatedness to the group, than when
in a group with one other strain (see Fig. 4A). This test reflects
the model prediction that, when a strain has low relatedness in
a group containing only two strains, it will experience very little
pressure for transdifferentiation because its partner strain in the
group necessarily has higher relatedness to the group, and so
invests close to the optimal level. As a result, a strain with the
same low relatedness level should be more able to “defect” by
withholding a contribution to the stalk under the conditions
where the group is least threatened by the tragedy of the com-
mons (when it is with one other strain), while being forced to
invest more when groups are most at risk for the tragedy. To
test this prediction, we compared the average level of invest-
ment of strains, each at a frequency of 0.05 in groups com-
posed of 20 strains, all at the same frequency, and by strains at
a frequency of 0.05 in two-strain groups (where the other strain
therefore has a frequency of 0.95). As predicted, we find that
strains show significantly lower stalk investment when in two-
strain groups than in 20-strain groups (t3 = 3.64, P = 0.036).

A B

Fig. 4. Patterns of stalk investment in the presence of by-product enforcement caused by transdifferentiation. (A) The pattern of investment predicted by the
model in the absence of transdifferentiation and with transdifferentiation in groups composed of either two strains or N strains (where all N strains are at equal
frequency, making the relatedness of each to the group 1/N). Note that, when a strain has very low relatedness to the group, the level of stalk investment they
make is much lower when they are in a two-strain group (where their partner strain necessarily has high relatedness) than in groups containing N strains (where
all N have the same low relatedness). (B) The empirically measured level of collective investment (where data points match those shown in Fig. 3) with the model
predicted investment for the best fit measure of transdifferentiation (where D = 0.15) where the remaining model parameters correspond to those fitted without
transdifferentiation (see Fig. 3A).
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Second, we used single-molecule fluorescence in situ hybridiza-
tion (smFISH) to test whether strains in chimeric aggregations
show molecular signatures of transdifferentiation. Previous
studies have used smFISH probes to the pspA and ecmA genes
to examine prespore and prestalk cell differentiation, respec-
tively (40). In clonal aggregations, expression of these two genes
can be used to accurately assign cells to these cell-fate popula-
tions since cells show almost no overlap in expression. How-
ever, if cells transdifferentiate, then they would be expected to
transiently express both markers. We thus took this approach
to compare the expression of these genes in clonal and chimeric
aggregations of naturally cooccurring strains. For this, strains
were developed clonally or in a mix with 8 to 10 other strains
until just before slug formation (14.5 h). Clonal and chimeric
developmental timing was indistinguishable (SI Appendix, Fig.
S2). Cells were dissociated, fixed, and hybridized with ecmA
and pspA smFISH probes, and the number of transcripts of
each gene was counted in individual cells. Cells were assigned
to the prestalk, prespore, or transdifferentiated classes based on
an index that captures the relative expression of each gene. The
clonal measure of prestalk:prespore proportioning from
smFISH gives a prestalk proportion of 43% in clones, which is
very close to the predicted optimal level of investment given by
the best fit of the data based on spore counts to the model
(which is 46%; see above). Given that we expect to see an aver-
age level of stalk investment in clones that is near the optimum,
this close match between these estimates based on two very
different methods further supports the fit of the model to the
data and the validity of our methods for inferring stalk invest-
ment based on spore production. Furthermore, as expected,
clonal aggregations show very low levels of transdifferentiation
(Fig. 5) regardless of the thresholds used to define these groups,
which is consistent with previous findings. As predicted, chime-
ric aggregations show significantly higher levels of transdifferen-
tiation compared with clonal aggregations (29% of cells in
chimeras, compared with ∼4% in clones: χ21 = 26, P < 10�6).
There are also significantly fewer prestalk cells in chimeras relative
to clones (43% in clones versus 26% in chimeras, χ21 = 6.3,
P = 0.012), which is consistent with the observation that chi-
meric groups show reduced stalk production. This pattern is
consistent with the idea that a high proportion of cells in chi-
meras initially adopt the prespore cell fate and then expresses
prestalk markers (and eventually adopt stalk-cell fate) as the
pressure to transdifferentiate influences cell-type-specific gene
expression. Interestingly, our inference that the proportion of
cells allocated to the stalk is ca. 43 to 46% (based both on
spore counts and markers of cell fate) is higher than the values
frequently mentioned in the literature [which are typically in
the 20 to 30% range (41–43)]. Inspection of the sources of
these previous estimates reveals that they are almost entirely
based on many independent measurements from a single widely
used strain (NC-4) or strains derived from it (e.g., AX4).
Measurement of stalk:spore proportioning in an array of natural
isolates (44, 45) has demonstrated that strains vary in their pro-
portioning and that NC-4 (which is equivalent to the strain
NC96.1 that was used in these studies) shows well-below-average
stalk proportioning (and at a level consistent with its difference
from the average proportioning we report here). Therefore, to
confirm the accuracy of our estimated stalk proportioning relative
to the widely reported estimates from the NC-4 related strains,
we carried out the same smFISH experiment on clonal aggrega-
tions of AX4, yielding an overall estimate of 29% of cells showing
prestalk cell fate (versus prespore cell fate), which is in line with
the estimates in the literature.

Our finding that the underlying mechanisms controlling
realized contributions to cooperation can act to constrain selfish
cheating and enforce contributions to group-beneficial public
goods has important implications for understanding the evolu-
tion of cooperative traits, including the origin of complex cells,
multicellularity, and societies. The emergence of mechanisms
that ensure high relatedness or that enforce cooperation
between unrelated individuals is considered fundamental for
these major evolutionary transitions (13, 46). In our study, we
show that transdifferentiation acts to enforce cooperation in
low relatedness groups, promoting enhanced cooperation under
the conditions where individuals are expected to lack motiva-
tion to contribute to cooperation. However, we suggest that
this is an inadvertent by-product (13) of selection on clonal cell
proportioning that has evolved independently from its effect on
cooperation. In this scenario, selection for optimal fruiting
body architecture shapes the central mechanism of cell-fate sig-
naling to allow it to buffer clonal groups against perturbations
in cell-type proportioning [e.g., from variation in the energetic
states of cells at the time of aggregation (32, 34)], which could
otherwise threaten the success of the group. Consistent with
this idea, we see very little transdifferentiation in normal clonal
development where allocation to stalk versus spore is presum-
ably close to optimal, whereas forced transdifferentiation mark-
edly increases as a by-product of perturbations in proportioning
within chimeras. Furthermore, although enforcement from
transdifferentiation would affect fitness of chimeras, providing
a potential source of selection, the expected effect it would have
on the fitness of high- and low-relatedness members of a group

pspA index rank

ps
pA

in
de

x

Prespore

Prestalk

Transdifferen�ated

Clonal
Chimeric

Fig. 5. The signatures of transdifferentiation in clonal and chimeric aggre-
gations from smFISH. The pspA index provides a measure of the propor-
tion of expression associated with prespore cell fate. Points represent
individual cells from both experimental replicates, which are a mixture of
the 10 different genotypes listed in the text. The cells are ranked based on
their pspA index to illustrate the overall distribution of index values. Index
values below 0.3 are shaded as having a prestalk cell fate and those above
0.7 as having a prespore cell fate. Those in between show mixed cell-fate
signatures associated with transdifferentiation. Very few cells in clonal
mixes (n = 140 cells) show a signature of transdifferentiation, whereas a
large proportion of cells from chimeric mixtures (n = 154 cells) show clear
signatures of transdifferentiation.
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makes it logically consistent with it being a by-product of selec-
tion in clonal development, not chimeric development. This is
because its effect on fitness is opposite to what would be
expected for it to have evolved as an adaptive mechanism to
enforce cooperation in chimeric groups. The strains that dis-
proportionally produce enforcement (i.e., the stalk-inducing
factors that lead to transdifferentiation) are the ones at the low-
est relatedness in the group (and hence have the highest pre-
spore initial cell fate), but they are the members of the group
that least benefit from being enforced. At the same time, group
members at high relatedness, who would most benefit from
enforcement, are those who are providing the least enforcement
pressure (and given their higher initial commitment to prestalk
cell fate, they are actually actively reducing the enforcement
pressure by breaking down the stalk-inducing factors).
Thus, while we see widespread tuning of strategic investment

in chimeras (see also ref. 15), our results strongly suggest that
patterns of strategic investment are constrained by transdifferentia-
tion, which presumably evolved due to selection for developmen-
tal canalization to ensure appropriate stalk:spore proportioning in
clones. The presence of transdifferentiation can, thus, be viewed
as imposing a functional constraint (47) on the developmental
system that prevents genotypes from implementing a stalk invest-
ment strategy that would maximize their success across all con-
texts. For example, when a strain has very low relatedness to the
group, the dispersal benefit of sacrificing a proportion of its cells
to provide a tiny incremental increase in stalk size will almost cer-
tainly not counter the direct fitness cost in terms of lost potential
spore production, making zero investment the best strategy under
these conditions. However, the presence of transdifferentiation
can prevent the strain from actually achieving this strategy (even if
their initial cell fate decision follows this optimal pattern), and
hence it acts as a constraint on the realization of that strategy. In
this way, this enforcement mechanism may be analogous to the
origin of worker policing in social insects (48, 49), where workers
consume other workers’ eggs. Worker policing ultimately increases
altruism, but the trait likely evolved as a consequence of the selfish
benefits of workers consuming eggs they are not highly related to,
rather than because of its effect on the level of altruism (50). Such
similarities highlight the hitherto unappreciated role of by-product
enforcement in the stabilization of cooperation.

Materials and Methods

The Collective Investment Game. We use the Collective Investment game to
model strategic cooperation through public goods. The full model is outlined in
ref. 18 and so is only briefly described here. Players in the game are considered
to be competing genetic variants that interact in groups, making their related-
ness to the group (ri) equal to the frequency of their particular variant in the
group. Given their relatedness to the group, players strategically invest a portion
of their resource budget (xi) into public goods, while their residual budget
(1� xi) determines a direct fitness component. Each unit of investment incurs a
cost of c to their direct fitness and generates a benefit to the group of rib (where
the player’s relatedness to the group dictates the degree to which their contribu-
tion is diluted as a group-level benefit). Setting the total budget that individuals
have to invest in public goods at 1 (such that xi is constrained to be ≥0 and
≤1), makes the total personal cost Ci ¼ 1� cxi and group-level benefit
Bi ¼ 1þ ribxi. The costs and benefits form a trade-off between investment in
personal fitness (survival and/or fecundity) and group benefit (which raises
personal fitness by enhancing survival and/or fecundity), making the two multi-
plicative (hence fitness, ωi ¼ BiCi). For example, in D. discoideum, dispersal
benefits arising from production of the stalk (the public good) are realized via
the spores produced (24, 25), so any contribution to public goods means that a
strain essentially sacrifices their ability to reap those rewards (because they pro-
duce fewer spores through which the dispersal benefit can be realized).

The optimal investment in public goods for a player (̂xi) (in terms of the mar-
ginal effect its contribution has on its own fitness) as a function of its relatedness
to a group can be solved by finding the level of contribution that maximizes
fitness with respect to the personal costs and benefits associated with that contri-
bution, which gives

x̂ i ¼
1
2

1
c
� 1
bri

� �
, if

1
2

1
c
� 1
bri

� �
> 0

0, otherwise
,

8<
: [1]

where the conditional statement captures the fact that investment has to be
nonnegative. The relationship between Eq. 1 and Hamilton’s rule (10) can be
seen by examining the threshold between contributing and not contributing to
stalk formation (i.e., the threshold given by the condition in Eq. 1), which occurs
when rib� c > 0, meaning players should stop investment when relatedness
drops below c/b. The sum of the individual contributions from all players in a
group gives the total collective investment for the group: xG ¼∑N

i¼1 x̂ iri (note ri
represents the frequency weighting in the summation since the whole group
relatedness for a player is equal to its frequency in the group). Groups composed
of a single player (where ri = 1) will invest at a level (θ) that maximizes the total
fitness of the group, which is given by ðb� cÞ=2bc. Therefore, we can evaluate
the extent of the tragedy of the commons by considering how far groups are
from the level of investment into public goods that maximizes group success
(i.e., the distance between θ and xG), and likewise can evaluate how individual
players undermine potential for group success by evaluating how far their indi-
vidual investment is from this value (i.e., the distance between θ and xi).

Information and Error. The Collective Investment game implicitly assumes
that players have perfect information about their relatedness to the group, but in
biological systems organisms will almost certainly make some degree of error in
estimating their relatedness to the group. This error could reflect the fact that
individuals are only able to sample information from a limited number of group
members, or it could reflect noisiness in the signals or in the system used to
assess the signals that provide information on relatedness. The nonlinear rela-
tionship between optimal investment and relatedness means that the presence
of error is expected to alter the pattern of investment, which will therefore alter
the fit of the model to empirical data. We include error by assuming that
error in the estimation of relatedness by the cells from a given strain follows a
Gaussian probability density function (PDF), where the mean of the PDF repre-
sents their true relatedness (meaning that the assessment of their relatedness is
correct, on average, but shows error among cells within a group) and the SD rep-
resents the level of noisiness among cells. Because group complexity and the
nature of information can change systematically with relatedness, we also allow
for frequency-dependent error (where a strain’s frequency in a group is equal to
its relatedness to the group). For this we allow the level of nosiness to change
with frequency of a strain in the group such that the SD of the error function is
weighted by 4t½rið1� riÞ�t , where again ri is the relatedness of the strain to the
group, while the exponent t indicates the degree of frequency dependence (i.e.,
if t = 0, then there is no frequency dependence, while increasing values
of t above 1 increasingly concentrate error at intermediate levels of relatedness)
(SI Appendix, Fig. S3). This function is based on the logic that signals are likely
more reliable if relatedness is very low or approaches 1, whereas it is likely to be
more difficult to distinguish between different possible levels of intermediate
relatedness. Error is incorporated by calculating the average expected investment
by a strain using numerical iteration over all levels of relatedness for each value
of true relatedness. Cells from a given strain are assumed to make an invest-
ment decision that follows the optimal pattern (given by Eq. 1), but which is
based on their independent measure of relatedness (which reflects error), rather
than their true relatedness.

Robustness to Model Assumptions. The Collective Investment game
assumes that benefits from public goods are a linear function of investment.
However, benefits could potentially be nonlinear. Therefore, we evaluated the
robustness of the main model predictions to nonlinearity of benefits by using
two general shapes of nonlinear benefit functions: diminishing and accelerating
returns (SI Appendix, Supplementary Information Text). Importantly, we find that
these different functions do not alter the qualitative pattern of investment by
strains, but rather they shift the expected level of investment above or below
that expected from the linear function (SI Appendix, Fig. S4). Because these pat-
terns are analogous to those expected from the linear benefits function with a
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different value of benefits and costs (compare SI Appendix, Fig. S4 with Fig. 1),
the model based on the assumption of linearity is used for fitting empirical data.

Transdifferentiation and By-Product Enforcement. To consider how nega-
tive feedback associated with transdifferentiation changes patterns of investment
we incorporate a biologically motivated component into the Collective Invest-
ment game. For this we make a critical distinction between the initial allocation
of cells to stalk made a given strain (Ai), which is based on the strain’s related-
ness to the group (ri), and the realized investment of cells to stalk (xi, which
matches the symbol used for the model without transdifferentiation to reflect
the fact that it is the realized allocation to stalk that determines fitness in both
cases), the latter of which depends on how the initial allocation of cells is modi-
fied by transdifferentiation. We refer to the initial decision as “inherent invest-
ment” since it represents the actual strategy being invoked by the player and
the latter as “realized investment” since it represents the level actually shown
(which is what determines fitness). We assume that the mechanism of transdif-
ferentiation arises from a negative feedback system that is at equilibrium if the
group makes an initial allocation of cells to stalk that matches the level that opti-
mizes group fitness, θ (which implies the system has evolved as a mechanism of
developmental buffering to ensure adaptive allocation of cells in clonal groups).
This assumption matches evidence from clonal groups, where the proportion of
cells showing molecular signatures of transdifferentiation is near 0 (40). As
the proportion of cells allocated to the stalk by the group deviates from θ (mean-
ing inherent investment is below optimal investment) the group experiences a
pressure for transdifferentiation determined by the parameter D. Hence, the total
pressure from transdifferentiation is D(θ � AG), which makes the allocation of
cells to stalk by a given strain equal to xi = Ai + D(θ � AG), meaning that
a strain will be pushed to allocate more cells to the stalk than their initial
allocation whenever the group allocates less than the optimal level (i.e.,
whenever θ > AG).

We assume that natural selection shapes Ai at each level of relatedness to the
group to maximize the player’s fitness. Because fitness depends on realized
investment (xi), the optimal initial allocation of cells to stalk (Âi) will depend on
the total allocation of cells to stalk by the entire group (AG, because it determines
the pressure for transdifferentiation), which depends on the expected (i.e., aver-
age) group composition. For simplicity we assume that patterns of investment
have evolved in groups containing large numbers of strains, which means that
the initial allocation of cells to stalk for all nonfocal strains is 0. The pattern of
expected initial allocation for this scenario is largely the same as that under the
other extreme, which is groups containing only two strains (so the relatedness of
the nonfocal strain is 1 – ri). Under this scenario, the optimal initial investment is

ÂiðriÞ ¼
1
2

1� D
cð1� DriÞ �

1
bri

� �
, if

1
2

1� D
cð1� DriÞ �

1
bri

� �
> 0

0, otherwise

8<
: [2]

(where ri logically is bounded between 0 and 1). This expression generally
means that the presence of transdifferentiation will reduce the initial allocation
of cells to stalk when ri < 1 (compared with the model without transdifferentia-
tion; i.e., where D = 0) because transdifferentiation makes the realized invest-
ment in stalk higher than the initial allocation of cells to stalk whenever groups
are chimeric (and hence the initial allocation to stalk would be expected to
evolve to be lower to compensate). Transdifferentiation then transforms the value
of Â iðriÞ into a realized value, and fitness is determined as in the case with no
transdifferentiation (above).

Empirical Methods. We tested model predictions using a set of 24 naturally
occurring strains of D. discoideum from North Carolina (NC), which have previ-
ously been used in many studies (17, 44, 45): NC28.1, NC34.1, NC34.2,
NC39.1, NC43.1, NC52.3, NC54.2, NC58.1, NC60.1, NC60.2, NC63.2, NC67.2,
NC69.1, NC71.1, NC73.1, NC76.1, NC78.2, NC80.1, NC85.2, NC87.1, NC88.2,
NC96.1, NC99.1, and NC105.1.

Manipulation of Group Composition. In the first set of experiments we cre-
ated groups containing three different strains. Because there is such a huge array
of possible frequency combinations that can be constructed from sets of three
strains, we explored frequency space by varying frequencies along “transects”
through this space, where each strain was held constant at a frequency of either
0.2 or 0.8 while the frequencies of two other strains in the group were varied

across a set of 10 frequency combinations. This yielded a total of 60 unique fre-
quency combinations for a set of three strains (which represent 20 different fre-
quency combinations, but with each of three strains in a triplet being treated as
the focal strain while the other two were varied gives 60 different combinations).
These frequency combinations are indicated by the positions of the data points
in Fig. 1 across the three-strain frequency space. Each frequency combination
was replicated an average of 21 times, for a total of 420 measurements of collec-
tive investment in three-strain groups. Each experimental replicate also included
replicates of clonal development. Clonal development for each strain was inde-
pendently replicated an average of 10.25 times, with each independent replicate
including an average of 2.9 technical replicates, for a total of 239 separate meas-
ures (see Dataset S1 for details on the frequencies used in the mixes and the
strain IDs).

In the second set of experiments, we explored a wider range of relatedness
values by increasing the number of strains in each group. For this we created
groups of N strains (where N was 4, 5, 6, 7, 8, 9, 10, 15, or 20) in which all
strains were at a frequency of 1/N in the group, which means that the average
relatedness in each group is 1/N. Each of the nine frequency combinations was
replicated an average of 22 times, for a total of n = 198 measurements of collec-
tive investment in N-strain groups. As with the three-strain group experiment,
each experimental replicate also included replicates of clonal development.
Clonal development for each strain was independently replicated an average of
3 times, with each independent replicate including an average of 2.7 technical
replicates, for a total of 165 measures (see Dataset S2 for details on replication
and group composition).

Measurement of Spore Production. The protocols for quantifying spore allo-
cation in D. discoideum are well documented (26, 44) and so described only
briefly here. Strains were grown on Klebsiella aerogenes as a food source. After
growth, amoebae were harvested and washed by centrifugation in KK2 buffer
(16.1 mM KH2PO4 and 3.7 mM K2HPO4). Amoebae were then counted on a
hemocytometer and resuspended in KK2 at a density of 108 cells per mL. Chime-
ric or clonal groups were created by adding cells from each strain at the relevant
relative frequency in a 1.5-mL Eppendorf and mixing thoroughly. Cells (107) of
each mix were then spread evenly on a 6-cm Petri dish containing 1.5%
nutrient-free agar in KK2 and left to develop for 24 h in an incubator at 22 °C.
For collective investment measures (see below), all fruiting bodies were har-
vested in 5 mL of spore buffer and counted on a hemocytometer. The measure-
ments of total number of spores in chimeric (TG) and clonal (Ti) groups were
used infer stalk investment in chimeric groups relative to that expected from
clones (see below).

Measurement of Fruiting Body Stability. To measure fruiting body stability,
we created groups of N strains following the same approach as described above
in which all strains were at a frequency of 1=N in the group, with a total of eight
different types of groups being measured (where N was 4, 5, 6, 7, 8, 9, 10, or
20). Briefly, cells were deposited on nonnutrient agar within each well of a
24-well dish in 10-μL spots containing 108 cells per mL (so each spot contained
∼106 cells). Plates were left undisturbed for 48 h to allow for spontaneous col-
lapse of fruiting bodies. The percentage of total fruiting bodies within each well
that had fallen over (collapsed) was counted directly from plates using a stereo-
microscope (17). Each of the eight group types were replicated an average of
11.25 times for a total of 90 measurements of fruiting body collapse (see
Dataset S3 for details on replication and group composition). We tested for a
relationship between fruiting body collapse and average relatedness (which is
equal to 1/N, where N is the number of strains in a group, with all at equal relat-
edness) using a mixed model fitted by maximum likelihood, where average
relatedness was a fixed effect (as a continuous variable) and the group composi-
tion (which identified each unique combination of strains) was a random effect
(which controlled for variation in the collective behavior of different strain
combinations).

Estimating Stalk Investment. Direct quantitative measurement of cell num-
bers in stalks is not possible due to the nature of stalk cells. Instead, the total
level of collective investment in stalk by a chimeric group was estimated using a
proxy that compares their production of spores (TG) relative to that expected
based on spore production by clonal groups. This approach is based on the idea
that if strains do not respond to chimerism then a chimera will produce the
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same number of spores as the weighted average of the constituent strains
(where each is weighted by its frequency in the group). This approach is built on
the underlying assumption that differences in the number of spores produced
by groups that differ in composition/relatedness are caused by shifts in the pro-
portional allocation of cells to stalk versus spores. The success of this approach
depends on whether relatedness-dependent changes in spore numbers are
indeed primarily caused by changes in stalk:spore proportioning or whether
they instead reflect systematic biases that alter the relative number of spores pro-
duced. For example, if other phenomena such as the proportion of nonaggregat-
ing cells (51–53) or the degree of cell division (45) change systematically with
relatedness, then changes in spore numbers would not directly reflect changes
in stalk investment. However, there are several lines of evidence that support
the validity of using changes in spore numbers to estimate changes in stalk
investment. First, to provide direct experimental evidence in support for this
approach we used strains transformed with a constitutively expressed RFP
reporter gene to track cells in stalk and spore cell tissues in clonal and low
relatedness groups (see SI Appendix, Supplementary Information Text for a
description of these methods and information on the associated datasets). By
characterizing their distribution in both slugs and fruiting bodies, this approach
reveals that, as expected, cells with low relatedness to the group are underrepre-
sented in both the prestalk region of slugs (relative to the pattern in clonal
groups; F1,26 = 146, P < 10�11) and in fruiting body stalks (F1,19.6 = 55.3,
P < 10�6) (see also SI Appendix, Fig. S1). These findings are thus consistent
with the inferences based on more indirect measures that suggest chimeric fruit-
ing bodies allocate more cells to spores. Second, previous studies have shown
that the absolute number of spores recovered from fruiting bodies of chimeras
composed of strain pairs is higher than for clones of the same strains (44). Simi-
larly, both absolute and relative numbers of spores recovered from chimeric
groups (in relation to the production by equivalent clonal groups) increases as
overall relatedness declines (17). Finally, the assumption that changes in spore
numbers reflect changes in stalk investment is supported by studies that have
linked these changes to meaningful variation in fruiting body architecture. They
have been shown to correspond to estimates of stalk:spore proportioning
derived from fruiting body morphology (44) and are very highly correlated to
measures of fruiting body stability (17) (and hence are predictive of apparent
functional changes in fruiting body architecture). While it is conceivable that pro-
cesses other than the relative allocation to stalk and spore fates could lead to
higher absolute and relative spore production as a function of differences in
relatedness, the parsimonious explanation is arguably that the patterns mostly
reflect changes in stalk investment. Thus, this collective body of evidence
together supports the use of measures of relative spore production as a means
of estimating of stalk investment.

Because strains vary in their clonal level of investment in stalk (44), we esti-
mated the expected spore production for each chimeric group (EG) by taking the
mean of the clonal values (Ti) for the constituent strains (where the clonal spore
production by strains is weighted by their frequency in the group, ri):

EG ¼ ∑
N

i¼1
riTi: [3]

To generate a measure of relative spore production for a chimeric group we
divided the value expected based on clonal spore production, EG, by the mea-
sured spore production of the group, TG:

SG ¼ EG
TG
: [4]

Because we expect strains to be investing at a level that corresponds to the opti-
mum (θ) when clonal, we infer that, when SG ¼ 1 strains are showing the opti-
mal level of investment (θ), and values less than 1 represent a reduction in stalk
investment compared that which is optimal for the group (i.e., compared with
the clonal expectation EG). Therefore, to relate our empirical measures of invest-
ment to the model expectations, we label a value of SG ¼ 1 as θ and scale val-
ues <1 as a level of investment (IG) given by

IG ¼ θ� 1þ SG
SG

: [5]

These values can be expressed as a proportion of θ (yi) by simply dividing the
value in Eq. 5 by the inferred value of θ.

Comparing Empirical Data with Model Predictions. To allow a direct com-
parison between model predictions and empirical data, we calculated collective
investment from the model using the same method that we used to estimate
the measure from empirical data (based on Eq. 4). For this we need to express
collective investment in terms of spore production scaled to the clonal expecta-
tion for spore production. Therefore, the predicted collective investment from the
model (̂xG) has the expected value (denoted XG) of

XG ¼ 1� θ

ð1� x̂GÞ [6]

when rescaled to match the empirical methods. To plot empirical results along
with model predictions on a meaningful scale, we generated a predicted value of
θ from the model and used it in Eq. 5 to calculate the inferred level of investment
(IG), which is then plotted in the same space as the model predictions based
on XG.

Comparing Investment in Two-Strain Groups with 20-Strain Groups.

We compared the level of collective investment made by 20-strain groups with
the level made by individual strains in two-strain groups when at a frequency of
5%. In both cases, this provides a measure of investment that strains make
when they have a relatedness to their group of 5%, but with the background
level of relatedness differing between these group types. That is, because each
individual strain in a 20-strain group is at the same 5% frequency, collective
investment represents the average individual investment of the constituent
strains (and hence separate measurements of individual strains are not needed).
The dataset for two-strain groups contains measures of investment for three dif-
ferent strains that show a frequency-dependent response to chimerism (each rep-
licated seven independent times) from ref. 17. This set was measured using the
same experimental conditions as the data from the 20-strain groups, making
the two comparable (Dataset S4). To account for among-pair variation caused by
systematic differences in numbers of spores produced by different strains (see
ref. 44), we adjusted the representation of each strain the pairwise chimeric
mixes to account for the overall difference in their representation in 50:50
mixes, which were done at the same time. The relative representation of strains
in the 50:50 mixes allows us to identify the systematic overrepresentation of
either strain in the pairwise mix, which could bias the estimate of investment at
5% if unaccounted for. These two measures of investment were compared using
a mixed model, where replicate ID was a random effect (corresponding to either
the strain ID for two-strain groups, or N for 20-strain groups) and group type
(two-strain versus 20-strain) was a fixed effect. To account for the data structure,
we enforced the minimal degrees of freedom on the significance test (based on
the number of replicate groups).

Molecular Analysis of Signature of Transdifferentiation. To identify molec-
ular signatures of transdifferentiation we created clonal and chimeric groups and
used an approach based on FISH to quantify markers of prespore and prestalk
cell fate. For clonal development, we used 10 different strains (NC28.1, NC34.2,
NC52.3, NC60.1, NC63.2, NC69.1, NC71.1, NC80.1, NC99.1, and NC105.1) that
were independently cultured and allowed to develop on separate agar plates.
For chimeric development, equal quantities of these 10 strains were mixed and
allowed to develop. All plates were harvested after 14.5 h of development, when
all were at the early slug stage of development. Structures from individual plates
were dissociated into single cells in KK2/20 mM ethylenediaminetetraacetic acid
(EDTA) buffer by passing through a 25-gauge needle several times. Cells were
washed with KK2 twice and resuspended in KK2 at a cell density of 2 × 106 cells
per mL. For clonal developments, cells from each clone were mixed in equal pro-
portions to generate a pool with the same representation of each strain as from
chimeric development. Cells were fixed on a coverslip by treatment with 3.7%
formaldehyde/phosphate-buffered saline (PBS) for 10 min. Fixed cells were
washed twice with PBS and stored in 70% of ethanol at 4 °C before performing
single-molecule hybridization chain reaction (smHCR) using the Multiplexed in
Situ HCR v3.0 protocol for tissue sections on slides provided by Molecular Tech-
nologies (54). Two biological replicates were performed. HCR probe sets and
fluorophore-labeled HCR hairpins were purchased from Molecular Technologies.
Samples were hybridized overnight with 4 nM of each HCR probe. HCR amplifi-
cation was performed overnight with 60 nM of each HCR hairpin (conjugated to
Alexa 488 or Alexa 594 to visualize pspA and ecmA messenger RNA transcripts,
respectively). For the first biological replicate, 19 separate images of cells from
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clonal development were taken, containing a total of 253 individuals cells, and
12 images were taken of cells from chimeric development containing a total of
217 individual cells. In the second replicate, four images were taken from clonal
development (n = 112 individual cells) and four images were taken from chime-
ric development (n = 110 individual cells). We obtained the number of dots of
Alexa 488 and Alexa 594 signals in individual cells using FISH-quant software
(55). Cells with fewer than 17 dots from either gene were excluded from analy-
ses because low counts give ambiguous cell fate assignments. After censoring,
we normalize the expression level of pspA to that of ecmA in the individual cells
by multiplying the pspA counts by the ratio of the ecmA to pspA mean counts.
Data from the separate replicates were normalized independently to account for
differences in the efficiency of the hybridization in the two experiments. This pro-
duced a set of individual cell counts for pspA and ecmA with the same mean
(which arbitrarily corresponds to the mean of ecmA), allowing us to use the two
sets of counts to construct an index that indicated the relative expression of the
two genes in each cell. Using the normalized dots number of pspA and raw dots
number for ecmA, we calculate this pspA index for each cell as pspAnorm./(ecmA
+ pspA norm.), which indicates the proportion of all dots that were from pspA.
Cells with a pspA index ≤0.3 were classified as prestalk, those with an index
≥0.7 were classified as prepore, and all cells in between these thresholds were
considered to be transdifferentiated. Proportions of cells in each of these catego-
ries (prespore, prestalk, and transdifferentiated) in clonal vs. chimeric groups
were compared independently using χ2 tests with one degree of freedom. The
independent replicates of the experiment yielded very similar proportions of
cells in the three categories across the clonal replicates (χ22 = 1.66, P = 0.44),
across the chimeric replicates (χ22 = 2.29, P = 0.32), and across the two repli-
cates overall (χ22 = 3.95, P = 0.41).

These methods were also used to estimate prestalk:prespore proportioning
and the incidence of transdifferentiation in clonal groups of the commonly used
AX4 laboratory strain. Two replicates were performed, one in which plates were
harvested after 14 h (n = 161 cells) and one in which plates were harvested
after 16 h (n = 156 cells). The two replicates yielded almost identical proportions
of cells in the prespore, prestalk, and transdifferentiated categories (χ22 = 1.96,
P = 0.37).

Fitting the Collective Investment Game to Data. We used a process of
numerical iteration to identify the set of parameters (b, c, e, and f) that provided the
best fit of the model to the average stalk investment for each composition of three-
strain groups. To find the best fit model, we first defined a large search-space of the
four variables, b, c, e, and f (2 ≤ b ≤ 10;1 ≤ c < 2;0 ≤ e ≤ 1; 0 < f ≤ 1),
with 20 values chosen for each parameter. For each unique combination of b, c, e,
and f, we then derived the optimal strategy (Eq. 6) for each combination of b, c, e,
and f. We then used our approach to modeling error (see Information and Error) to
calculate the optimal strategy with error. Individual investment from the model was
converted to predicted collective investment on the empirical scale (Eq. 6) corre-
sponding to each of the unique social scenarios (relative relatedness of all players)
for which we had empirical data.

For model fits when using the model that allows transdifferentiation through
the parameter D, we took the best-fit parameters from the model without trans-
differentiation and used an iterative approach to search for the value of D (in
intervals of 0.01 such that D ≥ 0 and D ≤ 0.25) that gives the best fit to

empirical data. For each possible value of D, we calculated the optimal strategy
(Eq. 2) and converted it to a value comparable to empirical data (Eq. 6). We then
compared the fit of the model prediction with empirical data.

The fit between predictions and the empirical data were always assessed using
a least-squares approach. To test the quality of the model fit to data, we used a
paired t test of each pair of empirical data and corresponding model prediction.

To calculate confidence intervals around the best-fit model we use a resam-
pling approach. Briefly, we took samples of each data point from distributions
corresponding to the empirical data and calculated the best-fit parameters using
the same approach as above. We then repeated this approach for 100 iterations.
To calculate confidence intervals for each parameter, we used the range between
the 5th and 95th percentiles of the deviations between the parameter value of
the overall best-fit model and the parameter value of each iteration. For plotting,
we calculate a single confidence interval around the overall best fit as the combi-
nation of upper and lower confidence intervals of all three parameters that gives
the greatest deviation in predicted investment from the overall best-fit model. As
such, our confidence interval is a conservative estimate of confidence in the true
values of the parameters.

To assess the utility of adding another variable, error in relatedness estima-
tion, to the model fit, we first used a broad search space of parameters b and
c and a least-squares approach to fit the perfect information model with the
b and c values that best matched the data. Next, we added another parameter,
e, to make an imperfect information model, where e is the SD of the error in
measuring relatedness (see Information and Error). To test for the significant of
difference in fit between perfect and imperfect information models we used an
F test.

All statistical analysis and data processing was conducted in the statistical pro-
gram R. Ternary plots for the three-player game were plotted using the ggtern
package in R. All other figures were plotted using the package ggplot2 in R.

Data Availability. All data for all experiments are included in the datasets. The
dataset corresponding to each experiment is noted in Materials and Methods at
the point where the experimental design is described. The R code used for fitting
the Collective Investment game to data is available on GitHub via github.com/
lauriebelch/tragedy_of_the_commons (56). All other study data are included in
the article and/or supporting information.
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