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Abstract: Background: Obesity is associated with several comorbid disorders, ranging from
cardiovascular diseases to insulin resistance. In this context, visceral adipose tissue (VAT) seems
to have a close connection with insulin resistance. In our study, we hypothesized that the
expression profile of key adipogenic genes, such as proliferator-activated receptor γ type 2 (PPAR-γ2),
CCAAT/enhancer-binding protein type α (C/EBP-α), and forkhead box protein class O type 1 (FOXO1)
in VAT should shed light on their association with obesity-related insulin resistance. Methods: To test
this idea, we studied the expression profile of C/EBP-α, FOXO1 and PPAR-γ2 in VAT from non-obese
individuals, and low insulin (LIR-MO) and high insulin morbidly obese (HIR-MO) subjects, through a
combination of RT-qPCR, co-immunoprecipitation, ELISA, Western blot analysis and EMSA assays.
Results: Our results show that C/EBP-α and PPAR-γ2 were down-expressed in HIR-MO individuals,
while FOXO1 was overexpressed. In addition, the PPAR-γ2–RXR-α heterodimer showed weak
activity and bound weakly to the putative IGFBP-2–PPRE promoter sequence in VAT from HIR-MO
subjects when compared with LIR-MO individuals. Conclusions: These results show that PPAR-γ2,
C/EBP-α, FOXO1 and IGFBP-2 have a close relationship with insulin resistance in VAT of morbidly
obese individuals.
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1. Introduction

Obesity is a serious public health problem that has become a global epidemic, and its incidence is
dramatically increasing [1]. Overall excess of fat has long been linked to many different underlying
non-communicable diseases, including cardiovascular diseases, certain cancers and metabolic disorders,
such as type 2 diabetes and insulin resistance [2]. The adverse health consequences of obesity
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and insulin resistance are well-documented, particularly with respect type 2 diabetes mellitus,
and it was recently linked to neurological disorders, including Alzheimer’s disease [3,4]. In this
sense, both adipocytes differentiation and expandability of adipose tissue are key players in the
physiopathology of obesity-related insulin resistance [5]. During adipogenesis, several transcription
factors activate/repress the expression of crucial adipogenic genes in the visceral adipose tissue (VAT)
to induce insulin sensitivity [6,7].

Peroxisome proliferator-activated receptor γ type 2 (PPAR-γ2) and CCAAT/enhancer-binding
protein typeα (C/EBP-α) are two transcription factors that are considered the masters of adipogenesis [8].
PPAR-γ2 is highly expressed in adipose tissue, although it has been reported that PPAR-γ2 in mice is
ectopically induced in important metabolic tissue, such as the liver and skeletal muscle, in response to
overnutrition and genetic obesity [9]. The majority of promoters/enhancers of principal adipogenic
genes have PPAR-γ DNA binding sites [10]. Therefore, the activation of PPAR-γ by ligands has
antidiabetic actions and improve insulin sensitivity, although the mechanism is not fully understood [11].
Alternatively, C/EBP-α is expressed during adipocytes differentiation in culture cells at later stages,
and it stays active in mature adipocytes [12]. Ectopic expression of C/EBP-α in NIH-3T3 fibroblastic
cell line are sufficient to induce them to differentiate into adipocytic cells. Although cells deficient in
C/EBP-α were able to initiate adipocyte differentiation, these cells were insulin resistant [8,13].

The forkhead box protein class O type 1 (FOXO1) also participates in adipogenesis, by preventing
adipose tissue differentiation through the inhibition of PPAR-γ transcription. The mechanism of
PPAR-γ inhibition occurs by physically interacting with PPAR-γ and binding to its promoter site [14–17].
Additionally, FOXO1 directly interacts with C/EBP-α, regulating its function and link the insulin
signaling to C/EBP-α [18]. Thus, FOXO1 is one of the crucial metabolic links between PPAR-γ and
C/EBP-α, suggesting an interesting role that FOXO1 must play in adipogenesis and insulin resistance.

Insulin growth factor-binding proteins (IGFBPs) have been shown to have an interesting effect to
promote adipocyte differentiation [19]. In fact, IGFBP type 2 (IGFBP-2) is predominantly produced
by preadipocytes during adipogenesis [20]. Circulating levels of IGFBP-2 are suppressed in obese
individuals, an effect which is more linked to visceral adiposity, suggesting a novel role of IGFBP-2 in
obesity prevention [21–23]. A previous study showed that the incubation of adipocytes with insulin
triggered the recruitment of C/EBP-α to the proximal region of the IGFBP-2 promoter, indicating that
C/EBP-α could regulate IGFBP-2 expression in an insulin-dependent manner [24]. Nevertheless,
no data are available on whether PPAR-γ2 can activate IGFBP-2 by binding on its promoter site.

Considering the complex role of PPAR-γ2, C/EBP-α and FOXO1 in adipogenesis and insulin
resistance, we propose that their expression profile in VAT from non-obese individuals and low insulin
(LIR-MO) and high insulin morbidly obese (HIR-MO) subjects might shed light on their possible
association with obesity-related insulin resistance. In addition, given the anti-obesity and anti-diabetic
properties of IGFBP-2, we suggest that IGFBP-2 might interact with PPAR-γ2 to protect against insulin
resistance in obese individuals. To test this hypothesis, we set out to undertake a new context to
determine the gene expression of PPAR-γ2, C/EBP-α and FOXO1 from morbidly obese individuals
with high and low insulin resistance in VAT, to understand their association with obesity and insulin
resistance. Further, we determined the PPAR-γ2–RXR-α heterodimer activity in VAT, especially its
interaction on the IGFBP-2 promoter to test its association with obesity and insulin resistance.

2. Materials and Methods

2.1. Study Designs and Participants

In the present study, we included 38 participants from the “Virgen de la Victoria” University
Hospital (Málaga, Spain). Twenty-three were morbidly obese (MO) (body mass index (BMI) > 40 kg/m2)
subjects and the remaining 15 were non-obese (BMI < 25 kg/m2) individuals. The MO group was
also classified in two groups according to their insulin resistance state: 11 low insulin resistance
MO (LIR-MO) (Homeostasis model assessment of insulin resistance (HOMA-IR) < 5) and 12 high
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insulin resistance MO (HIR-MO) (HOMA-IR > 8) subjects [7,25–30]. The weight of MO and non-obese
individuals was stable in the last six months prior to participation in the study. The exclusion criteria
were patients who have diabetes mellitus, coronary artery disease, acute or chronic inflammatory
diseases, renal and infectious diseases, patients who have received treatment that alters the glucose
profile such as metformin and lipid profile as statins, have altered others metabolic parameters,
or consumed > 20 g of ethanol per day at the time of inclusion in the present study. Non-obese
subjects had undergone laparoscopic surgery for elective cholecystectomy or hiatal-hernia surgery and
VAT samples were obtained from mesenteric depot. MO patients had undergone Bariatric surgery
procedures and VAT biopsies were obtained from the greater omentum. All tissues were frozen
immediately after surgery in liquid nitrogen and stored at −80 ◦C for RNA and protein isolation.
All participants were anonymized and gave their written informed consent. The study was performed
in accordance with the “Declaration of Helsinki” and approved by the Ethics Committees of “Virgen de
la Victoria” University Hospital (Málaga, Spain, 0311/PI7).

2.2. Analytical Methods and Laboratory Measurements

Blood samples from all participants were obtained after an overnight fast and before surgery.
Glucose, triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL) and C-reactive
protein (CRP) measurements were performed using a Dimension Autoanalyzer (Dade Behring Inc.,
Deerfield, IL, USA). The insulin was measured by an immunoradiometric assay (BioSource International,
Camarillo, CA, USA). All biochemical parameters were measured in duplicate. Calculated values for
low-density lipoprotein cholesterol (LDL) was obtained by the Friedewald formula [31]. The HOMA-IR
was determined using the following equation: HOMA-IR = fasting insulin (µIU/mL) × fasting glucose
(mmol/L)/22.5 [32].

2.3. Total RNA Extraction and qPCR

Total RNA isolation from VAT (~100 mg) was performed using RNeasy Lipid Tissue Mini
Kit (Qiagen GmbH, Hilden, Germany), according to the manufacturer’s instructions. To generate
first-strand cDNA synthesis, we used 1 µg of total RNA, Moloney Murine Leukemia Virus reverse
transcriptase and random hexamers primers (Roche Diagnostic, Rotkreuz, Switzerland), as indicated
by the manufacturer. The specific primers for PPAR-γ2, C/EBP-α and FOXO1 were designed using
Primer-Blast (NCBI) and were synthesized at Sigma-Aldrich (Sigma Aldrich, Madrid, Spain). qPCR was
performed using LightCycler technology as described by the provider (Roche Diagnostic, Rotkreuz,
Switzerland), with SYBR Green detection. Gene expression was normalized using β-actin as internal
control; β-actin gene was selected as an appropriate reference gene from validation methods described
previously and used to determine ∆Ct values [33,34]. Changes of gene expression were calculated by
the 2−∆∆Ct method [35]. The results of the expression were represented as the target gene/β-actin ratio.

2.4. Protein Isolation, Specific Detection and Quantification

Cytoplasmic and nuclear extracts from VAT of non-obese, LIR-MO and HIR-MO subjects were
prepared using NE-PER nuclear and cytoplasmic extraction reagent kit (Thermo Scientific, Rockford,
IL, USA). Total cytoplasmic and nuclear protein concentration were quantified by the Bradford assay
(Bio-Rad, Richmond, CA, USA), using bovine serum albumin as a standard. Thirty micrograms of total
protein extracts were separated by SDS-PAGE. After that, total proteins were blotted onto Polyvinylidene
difluoride (PVDF) membrane, and then incubated with specific antibodies, polyclonal anti-C/EBP-α and
anti-FOXO1 (Santa Cruz Biotechnology-Sigma Antibodies, Heidelberg, Germany). PVDF membrane
containing blotted protein was incubated with the respective secondary polyclonal anti-IgG antibodies
(Santa Cruz Biotechnology-Sigma Antibodies, Heidelberg, Germany). Protein signals were visualized
using Supersignal West Pico Western blot detection kit (Thermofisher Scientific Pierce Protein Biology,
Waltham, MA, USA) and visualized by electrochemiluminescence detection Auto-Chemi system
analysis software Labworks 4.6 (UVP; Bio-Imaging Systems DBA Analytik Jena US). To confirm Western
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blot analysis of C/EBP-α, we used the ELISA assay to quantify C/EBP-α in VAT. Nuclear extracts
were prepared with a commercially available kit (Nuclear Extract Kit, Active Motif, Carlsbad, CA,
USA), according to the manufacturer’s guidelines. Nuclear extracts were quantified for C/EBP-α using
ELISA-based kits (TransAM™, Active Motif, California, Cat No. 44196), following the manufacturer’s
instructions. To specifically detect the heterodimer PPAR-γ2–RXR-α, a ligand-immunoblot analysis
was performed, in the presence of rosiglitazone (10 µM), as previously published [26].

2.5. PPAR-γ2 Immunohistochemistry

Immunostaining for PPAR-γ2 was performed on 25 µm of adipose tissue sections. Sections were
fixed overnight at 4 ◦C in 4% paraformaldehyde and processed for standard paraffin embedding.
The sections were treated with PBS containing 10% methanol and 10% hydrogen peroxide for
30 min at room temperature. After that, the sections were incubated overnight, with the polyclonal
anti-PPAR-γ2 antibodies (Santa Cruz Biotechnology-Sigma Antibodies, Madrid, Spain). After washing,
sections were incubated at room temperature with biotinylated secondary antibodies, for 90 min for
Extravidin-peroxidase. The immune peroxidase activity was developed in 3,3′-diaminobenzidine
hydrochloride (Vector Laboratories, Peterborough, UK). Sections were counterstained with Mayer’s
Hematoxylin (Sigma Aldrich, Madrid, Spain) and mounted in Entellan (Merck, Darmstadt, Germany).

2.6. Electrophoretic Mobility Shift Assay (EMSA) for PPAR-γ2

EMSA were performed using 25–50 mg of nuclear extracts from VAT. For supershift assays,
1 µg of polyclonal anti-PPAR-γ2 antibody (Santa Cruz Biotechnology, Inc., CA, USA), 5 µg of
bacterially expressed Glutathione S-transferase steroid receptor co-activator type 1 (GST-SRC1597-791)
or Glutathione S-transferase (GST) as a negative control, were added to 1 ng of the 32P-labeled
double-stranded oligonucleotides (50,000 cpm) corresponding to four copies of the human CPT1
gene DR1-type PPRE (core sequence 5′-GTAGGGAAAAGGTCA-3′). The mixture was incubated
for 15 min at room temperature. Protein–DNA complexes were resolved by electrophoresis through
8% non-denaturing polyacrylamide gels in 0.5× TBE buffer. To evaluate the effect of PPAR-γ2 on
the IGFBP-2 promoter, 5 µg nuclear extracts were tested using consensus oligonucleotide for PPRE.
Biotin 3′end-labeled probes (Eurogentec, Liège, Belgium) were prepared by annealing oligonucleotides
(oligonucleotides for hIGFBP-2 PPRE (5′-ATACGGGAAAGGTCATGAG-3′)). The reaction was
performed for 20 min at room temperature. The reaction mixture was revealed in an electrophoresis
gel on a 5–10% native polyacrylamide gel in 0.5× TBE buffer and transferred to a nylon membrane
(Thermofisher Scientific Pierce Protein Biology, Waltham, MA, USA). Protein-DNA complex was fixed
to the nylon membrane by UV and detected by a nonradioactive nucleic acid detection, using the
LightShift chemiluminescent EMSA kit (Thermofisher Scientific Pierce Protein Biology, Waltham, MA,
USA). For competition studies, DNA binding reaction mixtures were preincubated with unlabeled
double strand DNA oligos of the wild type and mutant response element sequences. For supershift
assays, 1 µL of specific anti-PPAR-γ2 antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA)
was preincubated in the binding reaction for 10 min before the probe was added.

2.7. Statistical Analysis

The statistical analysis was performed using SPSS (Version 11.5 for Windows; SPSS, Chicago, IL).
Comparison among LIR-MO, HIR-MO and non-obese individuals were made using Student’s test
for parametric variables. Kruskal–Wallis test was used to evaluate the difference among LIR-MO,
HIR-MO and non-obese subjects for non-parametric variables. Wilcoxon test was used to perform
the comparison of the results obtained from different adipose tissue. The results are given as mean ±
standard deviation (SD). Values were considered to be statistically significant when the p < 0.05.
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3. Results

3.1. General Characteristic Data of the Participants

The anthropometric and biochemical variables of the non-obese, LIR-MO and HIR-MO individuals
are summarized in Table 1, and partially previously published by our group [26]. While there were no
significant differences in sex, age, total cholesterol, triglycerides, HDL and LDL among study groups,
MO individuals showed significantly increased value of weight, waist circumference, BMI, insulin and
HOMA-IR when compared to non-obese subjects (p < 0.05). Within the MO group, the HIR-MO
subjects presented significantly higher levels of glucose, insulin and HOMA-IR in comparison with
LIR-MO individuals (p < 0.05).

Table 1. Anthropometric and biochemical variables of non-obese and morbidly obese patients.

Variables Non-obese LIR-MO HIR-MO

Sex (male/female) 15 (8/7) 11 (5/6) 12 (5/7)
Age (years) 47.0 ± 15.6 45.6 ± 11.7 37.8 ± 9.6
Weight (kg) 66.2 ± 11.8 a,b 150.0 ± 26.9 156.2 ± 18.7
Waist circumference (cm) 83.3 ± 10.5 a,b 141.0 ± 16.3 143.7 ± 20.2
BMI (kg/m2) 23.1 ± 2.45 a,b 56.5 ± 7.1 55.4 ± 3.9
Insulin (µIU/mL) 9.2 ± 3.9 a,b 14.1 ± 4.0 c 44.5 ± 7.8
Glucose (mg/dL) 84.6 ± 14.7 b 93.0 ± 10.1 c 102.3 ± 10.9
HOMA-IR 1.99 ± 0.09 a,b 3.27 ± 0.94 c 11.28 ± 2.43
Cholesterol (mg/dL) 193.2 ± 44.0 204.5 ± 39.8 200.4 ± 23.5
Triglycerides (mg/dL) 90.3 ± 50.4 111.3 ± 35.2 136.4 ± 91.2
HDL-cholesterol (mg/dL) 55.5 ± 17.2 46.8 ± 14.8 42.2 ± 17.9
LDL-cholesterol (mg/dL) 119.6 ± 37.2 135.4 ± 29.9 130,9 ± 44.2

The results are given as the mean ± SD. Different letters indicate significant differences between the means of the
different groups of subjects (p < 0.05; a, non-obese vs. LIR-MO; b, non-obese vs. HIR-MO; c, LIR-MO vs. HIR-MO)
according to Student’s t-test. Abbreviations: LIR-MO, Low insulin resistance-morbidly obese individuals; HIR-MO,
High insulin resistance-morbidly obese subjects; BMI, Body mass index; HDL, High density lipoprotein; LDL,
low density lipoprotein; HOMA-IR, Homeostasis model assessment of insulin Resistance.

3.2. The Expression Profile of C/EBP-α and FOXO1 are Altered in VAT from Morbidly Obese Individuals and
Associated with Insulin Resistance

A specific gene expression profile of C/EBP-α was found, according to the insulin resistance in
morbidly obese individuals (Figure 1a). RT-PCR analysis showed that the expression of C/EBP-α
was decreased in morbidly obese subjects (p < 0.05). In fact, this expression profile was tightly
related to insulin resistance, since HIR-MO individuals had significantly decreased expression of
C/EBP-α, in comparison with LIR-MO subjects (p < 0.05) (Figure 1a). To confirm these results, we next
investigated C/EBP-α protein levels by ELISA and immunoblotting assay. Our results show similar
profiles according to RT-PCR assay (Figure 1b,c). In both assays, C/EBP-α was abundantly present in
the nuclear extract from non-obese subjects, but only a small amount was detected in LIR-MO and
HIR-MO individuals. This amount was significantly decreased in HIR-MO individuals, in comparison
with LIR-MO subjects.

We further investigated the gene expression profile of FOXO1 in VAT from non-obese and MO
subjects. The finding profile in our study showed that FOXO1 was overexpressed in MO group,
for which the mRNA levels of FOXO1 were significantly increased in comparison with non-obese
individuals (p < 0.05) (Figure 1d). Moreover, within the MO group, FOXO1 expression was significantly
higher in VAT from HIR-MO individuals, when compared to LIR-MO individuals (p < 0.05). We further
examined FOXO1 protein levels in nuclear extracts, to affirm the RT-PCR results. In support of our
results, the Western blot assay was similar to mRNA expression FOXO1, showing significantly higher
FOXO1 protein levels in MO individuals (p < 0.05) and significantly increased FOXO1 protein levels in
HIR-MO in comparison with LIR-MO (p < 0.05) (Figure 1b,e).
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Figure 1. C/EBP-α and FOXO1 gene expression profile in obesity-related insulin resistance.
(a) Quantitative RT-PCR was used to determine the expression of C/EBP-α mRNA in VAT from
non-obese (black bar) (n = 15), LIR-MO (grey bar) (n = 11) and HIR-MO (white bar) (n = 12) individuals.
The mRNA expression of C/EBP-α was normalized to β-actin expression. The results are given as
the mRNA relative mean expression ± SD. (b) Thirty micrograms of total protein extracts from VAT
of non-obese (n = 15), LIR-MO (n = 11) and HIR-MO (n = 12) subjects were immunoblotted with
anti-C/EBP-α, anti-FOXO1 and anti-β-actin antibodies. (c) ELISA assay was used to quantify the
C/EBP-α protein from nuclear extract from VAT of non-obese (n = 15), LIR-MO (n = 11) and HIR-MO
(n = 12) subjects. The results are presented as OD at 450 nm. (d) Quantitative mRNA of FOXO1
from VAT from non-obese (n = 15), LIR-MO (n = 11) and HIR-MO (n = 15) subjects. The expression
of FOXO1 was normalized using β-actin. (e) Total protein extracts from VAT of non-obese (n = 15),
LIR-MO (n = 11) and HIR-MO (n = 12) subjects were immunoblotted with anti-FOXO1 and anti-β-actin
antibodies. Different letters indicate significant differences between the means of the different groups
of subjects (significance of difference: a, p < 0.05 controls vs. LIR-MO; b, p < 0.05 non-obese vs.
HIR-MO; c, p < 0.05 LIR-MO vs. HIR-MO), Kruskal–Wallis test followed by Dunn’s test. Abbreviations:
C/EBP-α, CCAAT/enhancer-binding protein type α; VAT, Visceral adipose tissue; LIR-MO, Low insulin
resistance-morbid obese; HIR-MO, High insulin resistance-morbid obese; FOXO1, Forkhead box protein
class O type 1; KDa, Kilodalton; OD, Optical density.

3.3. The Expression of PPAR-γ2 is Decreased and Related to Insulin Resistance in VAT from Morbidly
Obese Individuals

We first determined the profile of gene expression of PPAR-γ2 in VAT from non-obese and obese
morbid subjects. RT-PCR analysis showed decreased gene expression of PPAR-γ2 in morbidly obese
individuals (p < 0.05). Our present analysis confirms the results other published studies [36] that
PPAR-γ2 expression was decreased in VAT [29]. This profile was insulin-dependent in morbidly obese
patients, since HIR-MO individuals showed decreased expression levels in comparison with LIR-MO
subjects (Figure 2a) (p < 0.05). Consistently with the RT-PCR analysis, the immunohistochemical analysis
showed similar results according to the PPAR-γ2 expression profile. While non-obese individuals
showed strong staining and more positive immunoreactivity, the morbidly obese individuals (LIR-MO
+ HIR-MO) had a moderate/weak staining and less immunoreactivity for PPAR-γ2 (Figure 2b).
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To amplify the findings of the immunohistochemical analysis and verify the recruitment of PPAR-γ2
and RXR-α as a heterodimer to activate specific adipocyte gene expression, we next investigated
its activation in VAT in MO to determine its association with insulin resistance. For this purpose,
we performed a series of co-immunoprecipitation experiments using nuclear extracts from VAT from
morbidly obese individuals, treated with rosiglitazone before co-immunoprecipitation. This assay
showed a positive staining for PPAR-γ2 that was co-immunoprecipitated with RXR-α in VAT from
morbidly obese individuals. However, the LIR-MO subjects showed strong staining in comparison
with HIR-MO individuals (Figure 2c, Lanes 3 and 6). Furthermore, these results were similar to the
mRNA expression and immunohistochemistry of PPAR-γ2 in HIR-MO and LIR-MO subjects.

Figure 2. PPAR-γ2 in VAT: A broader view. (a) RT-PCR analysis of PPAR-γ2 gene expression in VAT
from non-obese (black bar) (n = 15), LIR-MO (grey bar) (n = 11) and HIR-MO (white bar) (n = 12)
individuals. Gene expression of PPAR-γ2 was normalized to β-actin expression. The results are given
as the mRNA relative mean expression ± SD. (b) Immunohistochemical staining for the identification
of PPAR-γ2 isoform in adipose tissue section from non-obese (n = 15) and morbidly obese individuals
(LIR-MO+HIR-MO) (n = 23), using specific anti-PPAR-γ2 antibodies. PPAR-γ2 positive staining are
showed by arrows. (c) PPAR-γ2 coimmunoprecipitates with RXR-α in nuclear extracts from VAT of
the LIR-MO (n = 11) and HIR-MO (n = 12) subjects. One hundred micrograms of nuclear extracts of
the VAT expressing PPAR-γ2 were preincubated with rosiglitazone (PPAR-γ2 agonist) (10 µM) for
4 h before being subjected to immunoprecipitation using rat antihuman RXR-α antibodies (Lanes 3
and 6) and purified rat IgG (Lanes 2 and 5) as a control. PPAR-γ2–RXR-α heterodimer recovered by
immunoprecipitation were detected by Western immunoblot analysis using rabbit antihuman PPAR-γ2
antibodies. Ten micrograms of the soluble nuclear (Lanes 1 and 4) extracts were also analyzed to
evaluate the relative abundance of the protein target. Different letters indicate significant differences
between the means of the different groups of subjects (significance of difference: a, p < 0.05 controls
vs. LIR-MO; b, p < 0.05 non-obese vs. HIR-MO; c, p < 0.05 LIR-MO vs. HIR-MO), Kruskal–Wallis test
followed by Dunn’s test. Abbreviations: VAT, Visceral adipose tissue; RT-PCR, Real time polymerase
chain reaction; PPAR-γ2, peroxisome proliferator-activated receptor γ type 2; LIR-MO, Low insulin
resistance-morbid obese; HIR-MO, High insulin resistance-morbid obese; KDa, Kilodalton. RXR-α,
Retinoid X receptor type α.

3.4. PPAR-γ2 Activity is Reduced in VAT from Morbidly Obese Individuals and Associated with
Insulin Resistance

To test PPAR-γ2 activity through RXR-α interaction, we first compared whether PPAR-γ2 could
bind as a heterodimer with RXR-α and activate the functional PPRE sites on DNA by EMSA assay.
The last lane represents the probe alone without nuclear extract, used as a negative control (Figure 3,
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Lane 10). The binding affinity of the PPAR-γ2–RXR-α heterodimer to the functional PPRE site was
decreased in HIR-MO individuals (Figure 3, Lane 3), in comparison with LIR-MO (Figure 3, Lane 2)
and non-obese subjects (Figure 3, Lane 1). In fact, this affinity of PPAR-γ2–RXR-α heterodimer to
recruit the co-activator GST-SRC1 was remained markedly decreased in HIR-MO subjects (Figure 3,
Lane 6). Since many transcription factors can bind to DR-1 type PPRE sites, and that could induce
errors when interpreting the data, we next performed supershift assay with specific anti-PPAR-γ2
antibodies to test the specificity of our results. As shown in Figure 3, the amount of supershifted
complex (PPAR-γ2–RXR-α) on CPT1 gene on DR1-type PPRE site was also decreased in HIR-MO
individuals (Figure 3, Lane 9).

Figure 3. PPAR-γ2 activity in VAT: A specific-pathway view. Combined gel shift and supershift
experiments were performed with nuclear extracts from VAT from non-obese (Lanes 1, 4 and 7) (n = 15),
LIR-MO (Lanes 2, 5 and 8) (n = 11) and HIR-MO (Lanes 3, 6 and 9) (n = 12) individuals, to test the binding
ability of PPAR-γ2–RXR-α heterodimer to the 32P-labeled CPT1 PPRE probe. Nuclear extracts were
pre-incubated with rosiglitazone. After that, we added 5–10 µg of bacterially expressed wild-type GST
(Lanes 1–3), GST-SRC1 (Lanes 4–6), and specific anti-PPAR-γ2 antibodies (Lanes 7–9). Protein–DNA
complexes were revealed through 8% non-denaturing polyacrylamide gels. Lane 10 corresponds the no
extract-free probe, used as a negative control in this assay. Abbreviations: VAT, Visceral adipose tissue;
PPAR-γ2, peroxisome proliferator-activated receptor γ type 2; LIR-MO, Low insulin resistance-morbid
obese; HIR-MO, High insulin resistance-morbid obese; RXR-α, Retinoid X receptor type α; GST,
Glutathione S-transferase; GST-SRC1, Glutathione S-transferase steroid receptor co-activator type 1.

3.5. PPAR-γ2–RXR-α Physically Interact with the IGFBP-2 Promoter through the Functional PPRE Domain

We tested by EMSA whether PPAR-γ2 was able to bind to IGFBP-2 promoter sequence in an
insulin-dependent manner, in VAT from morbidly obese individuals. For all that, double-stranded
IGFBP-2–wild type-PPRE and IGFBP-2–mutant type-PPRE oligonucleotides were incubated with
nuclear extracts of VAT from LIR-MO and HIR-MO individuals. Our results show that a weak
specific DNA–PPAR-γ2–RXR-α complex was formed in the presence of IGFBP2–PPRE, in HIR-MO
(Figure 4, Lane 9) in comparison with LIR-MO individuals (Figure 4, Lane 2). To confirm the specific
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presence of PPAR-γ2 in the IGFBP2–PPRE complex, anti-PPAR-γ2 antibodies were added for supershift
assays. We observed that the IGFBP2–PPRE sequence was bound by proteins recognized by PPAR-γ2
antibodies, thus producing a supershift complex, weaker in HIR-MO (Figure 4, Lane 14) than LIR-MO
individuals (Figure 4, Lane 7). In addition, when a 500-fold molar excess of unlabeled oligonucleotide
of IGFBP2–wild type-PPRE, was added, the signal was diminished (Figure 4, Lanes 3 and 4 for LIR-MO
subjects and Lanes 9 and 10 for HIR-MO subjects). In contrast, when an unlabeled oligonucleotide
containing mutations in the 5′sequence (IGFBP2–mutant type-PPRE) was added, the DNA-binding
was no longer competed (Figure 4, Lanes 5 and 6 for LIR-MO subjects and Lanes 12 and 13 for HIR-MO
individuals). No complex was formed when nuclear extract was not added (Figure 4, Lane 1 for
LIR-MO individuals and Lane 9 for HIR-MO subjects).

Figure 4. IGFBP-2 and PPAR-γ2: A tight collaboration in insulin resistance pathway. Specific binding
activity of PPAR-γ2 to the putative IGFBP2–PPRE sequence was shown using EMSA assay by
non-radioactive method. Nuclear extract from VAT from LIR-MO (n = 11) and HIR-MO (n = 12)
individuals was incubated in the presence of rosiglitazone. We used both wild-type non-labeled
IGFBP2–wild type-PPRE and mutant non-labeled IGFBP2–mutant type-PPRE. Combined gel shift and
supershift experiments were performed. Lane 1 of the panel represents the probe alone without nuclear
extract, used as a negative control of the system. Abbreviations: PPAR-γ2, activated receptor γ type 2;
VAT, Visceral adipose tissue; LIR-MO, Low insulin resistance-morbid obese; HIR-MO, High insulin
resistance-morbid obese. SS- PPAR-γ2, Supershift PPAR-γ2.

4. Discussion

Most published gene expression analyses to determine a specific expression profile for obesity
were done in typical metabolic tissues such as adipose tissues, muscle or liver. However, VAT, as an
interesting metabolic tissue to notice that some of the differentially regulated genes, have strong
associations not only with obesity, but with important comorbidities, such as insulin resistance. In our
study, we have demonstrated that the expression of C/EBP-α is decreased in VAT from morbidly
obese subjects. This expression profile seems to have a close association with insulin sensitivity,
since HIR-MO individuals showed decreased expression patterns of C/EBP-α when compared to with
LIR-MO subjects. Indeed, a study reported that the expression of C/EBP-α in human adipose tissue was
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correlated with metabolic parameters, suggesting a tightly cross-regulation of C/EBP-α in adipogenesis
and insulin sensitivity [37].

The physiological/clinical role of C/EBP-α has previously been extensively studied during adipose
tissue differentiation. Although both insulin and C/EBPα have been known to regulate gluconeogenesis,
the link between insulin and C/EBPα has not been clarified yet [13]. However, the role of C/EBP-α
in the liver is well established, since it is involved in many metabolic processes such as glucose
and lipid metabolism [38]. Nevertheless, our findings support the relevance of C/EBP-α could be
a potential aspirant to protect against insulin resistance in an alternative pathway associated with
adipocyte differentiation, and maybe its participation could partially be, one of the possible links
between adipogenesis and insulin resistance. As the C/EBPα expression alone cannot explain the
expression of metabolic and specific adipogenic-genes in VAT, involved in adipogenesis and insulin
resistance, additional evidence is necessary for the dramatic dysregulation of metabolic genes [7].
For that, we next added that FOXO1 expression in VAT was significantly overexpressed in morbidly
obese individuals. In fact, FOXO1 expression was greater in HIR-MO individuals in comparison with
LIR-MO subjects, suggesting a possible relationship between FOXO1 and insulin resistance during
adipocyte differentiation. Indeed, a recent study has shown that FOXO1 links insulin signaling to
C/EBP-α and regulates gluconeogenesis, by directly interacting, which FOXO1 bind to the response
elements of C/EBP-α, only in the presence of C/EBP-α. Furthermore, the C/EBP-α–FOXO1 complex,
may exhibit different functions, depending on the cellular context [18].

FOXO1 actively participates in the development of insulin resistance by modulating the
transcription of several transcription factors involved in adipogenesis and lipid and glucose metabolism.
This modulation results in an increasing rate of gluconeogenesis and production of glucose by the liver,
resulting in an increasing of glucose and insulin production [39,40]. Alternatively, previous studies
have reported that FOXO1 represses PPAR-γ transactivation in an insulin-dependent pathway [41].
This repression is carried out by directly FOXO1–PPAR-γ interactions. FOXO1 antagonizes PPAR-γ
activity and vice versa, indicating a reciprocal antagonistic manner between FOXO1 and PPAR-γ,
by disrupting of DNA binding sites of the heterodimer PPAR-γ–RXR-α [42]. In this study, we found that
PPAR-γ2 was decreased in VAT from morbidly obese individuals. Within the MO group, the HIR-MO
subjects showed decreased levels of PPAR-γ2 both free protein and as PPAR-γ2–RXR-α heterodimer,
suggesting that PPAR-γ2 are also associated with insulin resistance during adipocyte development,
and confirming that PPAR-γ2, similar to C/EBP-α and FOXO1, could be a potential candidate to protect
against insulin resistance pathways during adipocyte differentiation.

In fact, PPAR-γ activation through agonists PPAR-γ markedly improves whole-body insulin
sensitivity, leading to improved circulating insulin and glucose levels. The mechanism by which
PPAR-γ improves insulin sensitivity is complex, because it involves many tissue types, such as adipose
tissue, skeletal muscle or the liver. It is known that PPAR-γ activation affects the insulin pathway
through direct modulation of specific gene expression such as adipocyte fatty acid binding protein
(aP2), phosphoenolpyruvate carboxykinase (PEPCK), lipoprotein lipase (LPL) or fatty acid transport
protein (FATP) [43]. These genes increase free fatty acid uptake, clearance and recycling, since is one of
the mechanisms through which PPAR-γ can improve the systemic insulin sensitivity. PPAR-γ are also
able to activate the AMPK pathway. The activation of AMPK decreases the level of plasma glucose
and triglycerides, leading to increase the expression of genes involved in fat oxidation, resulting in the
improvement of the systemic insulin sensitivity as well [44]. PPAR-γ2 also cooperates with C/EBP-α,
to activate gene expression involved in adipogenesis and insulin sensitivity, since C/EBP-binding sites
are found in the promoters of PEPCK, aP2 and GLUT4 [8]. Thus, there must be a tight cross-regulation
C/EBP-α, FOXO1 and PPAR-γ2 that modulates adipogenesis linked to insulin resistance in an alternative
insulin pathway and common alternative pathway, since it has been reported that they physically
interact, cooperate and activate each other.

As PPAR-γ binds as heterodimers with RXR-α to PPREs [45], we further investigated the
activation of the PPAR-γ2–RXR-α heterodimer in the promoter region of the CPT1 gene in the context
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of obesity related to insulin resistance. Our results show that the formation of the PPAR-γ2–RXR-α
complex was weakly staining in HIR-MO individuals, according to the gene expression analysis,
co-immunoprecipitation, immunohistochemistry and EMSA assay. Our study suggests that the
activity of the PPAR-γ2–RXR-α heterodimer, either through the increased activation of co-activators,
specific co-activator or specific PPAR-γ agonists, could have an interesting role in obesity and obesity
related-insulin resistance. We also found for the first time that PPAR-γ–RXR-α heterodimer was
able to bind to the IGFBP-2 promoter to modulate its transcriptional activity. In fact, this activation
was dependent to insulin resistance grade, since the HIR-MO individuals showed less staining than
LIR-MO subjects, suggesting that HIR-MO subjects have less activity of PPAR-γ–RXR-α, and further,
less activity of IGFBP-2. Our experiments showed that PPAR-γ2 only interacts with IGFBP-2, of the
IGFBP family (IGFBP-1–4, data not shown).

Indeed, several studies have reported that circulating IGFBP-2 was related to insulin sensitivity,
metabolic syndrome and antidiabetic effect by regulate the expression of leptin gene [46–48].
For instance, the activation of PPAR-γ2, which cannot be blocked by FOXO1, may up-regulated
IGFBP-2 expression to protect adipocyte cells towards metabolic alterations associated with obesity.
Although the IGFBP-2 gene transcription is regulated by several metabolic conditions in endocrine
organs, the underlying regulatory mechanism of IGFBP-2 gene expression remains unknown,
and further studies are needed [49]. Moreover, the functional roles of IGFBP-2 in metabolic diseases
and signaling are still unclear and controversial.

A study has showed the capacity C/EBP-α to activate the expression of IGFBP-2. In this way,
insulin stimulates IGFBP-2 mRNA levels in mature 3T3-L1 adipocytes through the stimulation of PI3K
and mTOR, which induces C/EBP-α recruitment and transactivation of the IGFBP-2 promoter [24].
Indeed, IGFBP-2 promoter already has a binding site for C/EBP-α, which indicates that they physically
interact. A study conducted by Heald et al. indicated that IGFBP-2 circulating levels are a solid
marker of metabolic syndrome in humans in individuals with type 2 diabetes. Blood IGFBP-2 levels
was also correlated negatively with some lipid markers, such as triglycerides and total cholesterol,
and positively with insulin sensitivity. Thus, IGFBP-2 might protect against the development of obesity
and insulin resistance in humans. Therefore, the relevance of IGFBP-2 to metabolic disorder could
be a main driver in the investigation of IGFBP-2’s underlying physiological function and may be an
important candidate to protect against insulin resistance to diabetes, in obese individuals. However,
more studies are needed to clarify the physiological/clinical role of this association.

Our study had several limitations, among which was the small sample size. Although the number
of study participants met the requirement for analysis, the present sample size was relatively small.
However, it would be interesting to provide more body composition characteristics of the participants
and put in context the results presented in this study. Moreover, data from subcutaneous adipose tissue
and culture cells may provide other insights about the expression patterns of these genes, especially the
effect of IGFBP-2 and its activation by PPAR-γ. Because no data about the interaction of IGFBP-2
and PPAR-γ have been reported, the evidence cannot rule out the importance of PPAR-γ2–IGFBP-2
interaction, especially in insulin resistance and obesity. Thus, more specific studies in obese individuals
with insulin resistance will be necessary to confirm these findings using transcriptomic tools to put in
context the physiological/clinical role of PPAR-γ2–IGFBP-2 interaction.

We have presented in this study that C/EBP-α, FOXO1, PPAR-γ2 and IGFBP-2 have an interesting
association in insulin resistance associated with obesity: their expression profile was found altered in
adipose tissue in an insulin-dependent manner. Thus, these genes might provide a novel characteristic
to protect against the development of obesity and improve insulin sensitivity during adipogenesis.

5. Conclusions

We provide data that support the idea that C/EBP-α, FOXO1, PPAR-γ2 and IGFBP-2 in visceral
adipose tissue are related to obesity-related insulin resistance. We show a down-expression of C/EBP-α
and PPAR-γ2 and an overexpression of FOXO1 in VAT from high insulin resistance morbidly-obese
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(HIR-MO), and weak binding of PPAR-γ2 to RXR-α to form heterodimer in HIR-MO. Finally,
PPAR-γ2–RXR-α heterodimer was able to bind to IGFBP-2 promoter, but it was weaker in HIR-MO
subjects. Our study suggests the relevance of better understanding these transcription factors in visceral
adipose tissue to determine their possible role in the etiology of obesity-related insulin resistance in an
insulin-independent manner, which could lead to new therapeutic and anti-diabetic strategies.
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