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Abstract  

 
Sleep deprivation (SD) has negative effects on brain function. Sleep problems are prevalent in 
neurodevelopmental, neurodegenerative and psychiatric disorders. Thus, understanding the 
molecular consequences of SD is of fundamental importance in neuroscience. In this study, we 
present the first simultaneous bulk and single-nuclear (sn)RNA sequencing characterization of 
the effects of SD in the mouse frontal cortex. We show that SD predominantly affects 
glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of 
thousands of transcripts. At both the global and cell-type specific level, SD has a large 

repressive effect on transcription, down-regulating thousands of genes and transcripts; 
underscoring the importance of accounting for the effects of sleep loss in transcriptome studies 
of brain function. As a resource we provide extensive characterizations of cell types, genes, 
transcripts and pathways affected by SD; as well as tutorials for data analysis. 

INTRODUCTION 
Sleep is an evolutionary conserved powerful drive, but its function remains a mystery. It is well 
established that sleep deprivation (SD) has negative effects on brain function and affects a wide 
array of molecular processes1. Sleep problems are widely observed in neurodevelopmental, 
neurodegenerative and psychiatric disorders2,3. Thus, understanding the molecular 

consequences of SD is of fundamental importance in neuroscience. We and others have shown 
that in rodents SD strongly affects the brain transcriptome4–13. It was initially thought that there 
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was little agreement on the effects of SD. However, we have shown that if biological and 
technical noise are properly accounted for, hundreds of genes are differentially expressed after 
SD in the mouse brain regardless of technology, site or brain region14. Currently, studies of the 
effect of SD on the brain transcriptome are focused on genes. However, in mammals cells often 

express multiple transcripts of the same gene (isoforms). Also, most current studies also lack 
resolution at the cell type level with sufficient statistical power.  
 
To further our understanding of the molecular consequences of acute SD, in this study we 
present the first simultaneous bulk and single-nuclear (sn)RNA sequencing characterization of 
the effects of SD in the frontal cortex of adult male mice at high resolution. We chose the frontal 
cortex because in humans it is the brain region most strongly affected by SD15. Using snRNA-
seq we show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 

5. Using bulk RNA-seq we performed differential gene and transcript expression (DGE/DTE), as 
well as differential transcript usage (DTU) analysis. We show that at the bulk level SD affects 
half of the frontal cortex transcriptome and produces isoform switching of thousands of 
transcripts. Both bulk and snRNA-seq analysis show that SD has a large repressive effect on 
transcription, down-regulating thousands of genes and transcripts both globally and in specific 
cell types. This large yet cell-specific effect underscores the importance of controlling or 
accounting for the effects of sleep loss in any transcriptome studies of brain function. As a 

resource to the neuroscience community we provide extensive characterization of which genes, 
transcripts and pathways are affected by SD and in which cell types; as well as guided tutorials 
for reproducible snRNA-seq differential expression, ask well as bulk-RNA-seq simultaneous 
DGE, DTE and DTU analysis. 

 

RESULTS 

Sleep deprivation preferentially affects gene expression in neurons 
It is currently unknown how different cell types respond to sleep deprivation (SD) in the mouse 
frontal cortex, and which genes and pathways are differentially affected across different types of 
neurons (e.g. glutamatergic and GABAergic). To address this, we carried out single-nuclear 
(sn)RNA-seq using 10X Genomics Chromium v3 technology followed by Illumina sequencing of 
adult male mice either allowed to sleep in their home cages (HC) or sleep deprived (SD, n=3 
per group). After gene abundance quantification, we performed cell type label assignment using 
a reference dataset obtained from the Brain Initiative cell Census Network (BICCN) to avoid the 
lack of reproducibility of cell-type labels that can arise from cluster-based assignment 16. Nuclei 
counts for each replicate for each cell type are available in Extended Data Figure 1. Cell type 
nomenclature follows BICCN guidelines as per Yao et al., 2021. Glutamatergic neurons are 
labeled based on the layer in which they reside (L1-6) as well as where they project. Across the 
cortex, there are three main classes of projection neurons: IT (intratelencephalic tract), PT 
(pyramidal tract) and CT (Corticothalamic tract). GABAergic neurons are labeled based on 
marker expression (e.g Parvalvumin, Somatostatin, ViP). Figure 1A depicts a UMAP 
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visualization of the top principal components after transfer of all cell type labels in all biological 
replicates (3 HC, 3 SD). We then tested the robustness of cell type assignments. First, we used 
an independent dataset from the BICCN as a gold standard and show that our pipeline shows 
good consistency with known cell labels when the Yao et al., 2021 dataset is used as a 
reference (Extended Data Figure 2) even when two different methods are used (Azimuth and 
SingleR). This indicates that the reference dataset seems to be the most important aspect when 
assigning cell-type labels. Subsequently, to further validate the cell-type assignments in our 
datasets, we created heatmaps using known mouse cortex cell-specific marker expression in 
each cell type, showing good consistency between marker expression and cell-type assignment 
(Extended Data Figure 3).  
 
To uncover which factors drive differences in gene expression after SD across cell types, we 
performed multidimensional scaling (MDS) of the pseudo-bulk sum of all nuclei assigned to a 
cell type per independent biological replicate (color-coded by cell type and shaped by condition, 
HC as circles, SD as triangles). Our data shows that SD has a larger effect on glutamatergic 
(Figure 1B) than GABAergic neurons (Figure 1C). SD does not seem to cause major differences 
in gene expression in non-neuronal cell types such as Astrocytes, Oligodendrocytes or Microglia 
(Extended Data Figure 4A). Differences between conditions cannot be detected if we restrict the 
MDS plot to genes less likely to be differentially expressed by SD according to publicly available 
data (Extended Data Figure 4B). A tutorial for mouse brain reference-based cell-type 
assignment is available through GitHub and at the following website: 
https://rissolab.github.io/AtlasCortexSD/ 
 

Sleep deprivation disproportionally affects glutamatergic neurons of the 
deeper layers of the cortex, particularly layer 4/5  
 
To define differentially expressed genes (DEGs) after SD in each neuronal cell-type we 
performed pseudo-bulk analysis after normalization to remove unwanted variation17,18. Figure 
2A summarizes, for each cell type, the number of nuclei, DEGs and positive controls, defined on 
the basis of publicly available data (see Online Methods). A full list of DEGs per cell type is 
available in Figure 2 Supplementary Table 1. To determine which cell types were 
disproportionately affected by SD, we compared the proportion of DEGs relative to the 
abundance (number of nuclei) of each cell-type (Figure 2B). Since the number of DEGs is 
expected to increase linearly with the number of nuclei sequenced due to the distributional 
properties of count models, cell-types above the line are affected more than expected by SD, 
while those below the line are affected less than expected. Consistent with our MDS plots, the 
number of DEGs was only more than expected in glutamatergic cell-types, specifically in 
neurons in layers 4/5 and 5 that project to the intra-telencephalic tract (L4/5 IT and L5 IT) and 
neurons in layers 6 (L6b). 
 
Glutamatergic neurons of L4/5 IT, which express high levels of Ror-beta (Extended Data Figure 
3) were the most affected with 1492 DEGs (522 upregulated, 970 downregulated, and 142 
positive controls, Figure 2C). In contrast, the most affected of the GABAergic neurons, Pvalb 
interneurons only had 395 DEGs after SD (129 upregulated, 266 downregulated, 37 positive 
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controls, Figure 2D). Most cell types had more down regulated than upregulated DEGs, thus SD 
seems to disproportionately repress transcription. Principal component analysis (PCA) and 
histograms of uncorrected p-values to ensure accurate normalization as well as volcano plots of 
DEG per cell type are available in Extended Data Figures 5 and 6. A tutorial for pseudo-bulk 
differential gene expression analysis in response to treatment of sc/snRNA-seq data is available 
through GitHub and at the following website: https://rissolab.github.io/AtlasCortexSD.  
 
 

Sleep deprivation affects distinct pathways and molecular functions in 
glutamatergic and GABAergic neurons  

 
To better understand which genes and pathways are shared between or unique across cell-
types we first intersected the union of all DEGs in glutamatergic neurons with the union of all 
DEGs in GABAergic neurons (Figure 3, Figure 3 Supplementary Table 1). Glutamatergic 
neurons contain almost 20-fold more DEGs after SD that are unique relative to GABAergic 
neurons (2236 vs. 109). The majority of DEGs in GABAergic neurons are shared with 
glutamatergic neurons (416) and contain immediate early genes (IEGs, Arc, Homer1, Bdnf) and 
stress response genes (Hspa5, Hspa8, Figure 3A). To further understand which pathways 
(KEGG), molecular functions (MP, Interpro) and biological processes (BP, Interpro) were 
affected by SD in GABAergic versus glutamatergic neurons more often than expected by 
chance, we carried out functional enrichment analysis (Figure 3B and 3C, Figure 3 
Supplementary Table 2) of the unique sets of DEGs. When multiple molecular functions (MF), 
biological processes (BP) or pathways (KEGG) had overlapping sets of genes, they were 
clustered for ease of interpretation (see methods). Neurotransmitter receptors were 
downregulated in response to SD in both glutamatergic and GABAergic neurons (KEGG 
pathway: Neuroactive-ligand receptor interaction, Vip, Sst, Gria4, Grin2d). However, 
neurogenesis (Figure 3C Cluster 1 in red, BP and MF), Cell adhesion (Figure 3C Cluster 2 in 
red, BP and KEGG),  MAPK-Akt-PI3K signaling (Figure 3C Cluster 3 in red, MF and KEGG), 
circadian rhythms (KEGG in red) were enriched in genes upregulated by SD. Genes that belong 
to development and differentiation (Figure 3C Cluster 1 in blue, BP and MF) were 
downregulated by SD only in glutamatergic neurons. 
 
We then asked which pathways (KEGG), molecular functions (MP) and biological processes 
(BP) were affected by SD more often than expected by chance only in some cell types (Figure 
4, Figure 4 Supplementary Table 1). We first determined which DEGs were unique to each cell-
type (Figure 4A). Glutamatergic neurons had the largest numbers of unique DEGs, specifically 
those in layers 2/3 and 4/5 that project to the intratelencephalic tract (L4/5 IT and L2/3 IT). 
Despite similar numbers of DEGs after SD, functional enrichment analysis shows a higher level 
of KEGG, MP and BP specificity for DEGs on L 4/5 IT (Figure 4B), relative to L2/3 IT (Figure 
4C). Only in L4/5 IT glutamatergic neurons (ROR-beta positive), SD upregulates certain 
components of the PI3K, Akt, Ras and MAPK signaling pathways (Figure 4B, Cluster 1 in red, 
KEGG), such as Gadd45a, Reln, p27 and Sgk1. 
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Sleep deprivation affects half of the cortical transcriptome and elicits 
extensive differential isoform usage  
 
Although the effect of SD on brain gene expression is well-documented, it has never been 
investigated at the isoform level. We chose to perform isoform-level analyses in bulk RNA-seq, 
in contrast to 10X Chromium snRNA-seq data which has a 3’ bias and limited our ability to 
recover all transcripts of a gene. We performed differential transcript and gene expression (DTE 
and DGE) as well as differential transcript usage (DTU) analysis using nonparametric testing of 
inferential replicate counts after correcting for unwanted variation17–19.  
 
Figure 5 shows that after SD we detect 8,505 DEGs (q-value <0.05, Figure 5A, Extended Data 
Figure 8C, Figure 5 Supplementary Table 1) of 18,334 expressed genes, including several 
genes previously shown to be affected by SD (highlighted in Figure 5C). These include 83% of 
positive control genes (558/671) we previously detected across multiple published studies14. We 
then chose the optimal log2 fold-change threshold based on the balance between recovery of 
positive control genes, while simultaneously not recovering genes less likely to be differentially 
expressed after SD from public data (Extended Data Figure 9). This resulted in a log2 fold-
change >0.2 for downstream analysis. Following DGE analysis, we investigated DTE. We show 
that 15,525 transcripts (from 10,439 genes) are differentially expressed after SD (q-value <0.05, 
Figure 5B, Extended Data Figure 8D, Figure 5 Supplementary Table 1), of which 9,709 are 
downregulated and 5,816 are upregulated after SD. This indicates that transcript level analysis 
increases our ability to detect differentially expressed genes. Given the discrepancy in 
downregulated transcripts, we investigated which genes were shared between or unique to 
DGE and DTE analyses (Figure 5C and 5D): 3,269 upregulated, and 3,836 downregulated 
genes were shared between analyses, while an additional 3,117 downregulated genes were 
detected at the transcript level, but not the gene level. This suggests there is more variation 
happening at the transcript-level, which is obscured when aggregating to the gene-level. To 
further explore this we focused on eukaryotic initiation factors, which were previously reported to 
be repressed by SD and are known to mediate the detrimental effects of SD on learning and 
memory13,20. We show that, several eukaryotic initiation factors were significantly differentially 
expressed at the transcript level that were not detected at the gene level (Extended Data Figure 
8E; q-value < 0.05, |log2FC| > 0.20). Our DTE analysis also shows that several genes have 
both upregulated and downregulated transcripts after SD (e.g. Bdnf). To investigate potential 
opposing effects on transcripts of the same gene we performed differential transcript usage 
analysis (DTU), to detect which genes changed the proportion of isoforms expressed after SD. 
We detected 2,314 transcripts (corresponding 1,575 genes, Figure 6 Supplementary Table 1) 
with significant changes in usage (q-value < 0.05) in response to SD (Figure 6A). These include 
transcripts that were upregulated at both the gene and transcript level, but SD changes which 
transcript is primarily transcribed (e.g. Homer1, Figure 6B and 6C, Figure 6 Supplementary 
Table 2), as well as transcripts in which the gene level analysis obscured transcripts being both 
up and downregulated (e.g. Bdnf, Figure 6D and 6E, Figure 6, Supplementary Table 2). For 
Bdnf in particular, Bdnf I (201, somatic) increases in proportion, while Bdnf VI (205, dendritic) 
decreases in proportion. These examples suggest that SD may have an effect on splicing and 
perhaps RNA-binding and transport of somatic versus dendritic isoforms. To further understand 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569011doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569011
http://creativecommons.org/licenses/by-nc-nd/4.0/


which kinds of processes and pathways were affected by isoform switching after SD, we carried 
out functional enrichment analysis (Figure 7), which revealed 16 enriched pathways/biological 
processes with 3 clusters of related pathways (Figure 7 Supplementary Table 1). Genes that 
undergo isoform usage switching in response to SD are related to RNA binding/splicing (e.g. 
Rbmx), chromatin regulation (e.g. Hdac3), and kinases (e.g. Cm1). Tutorials to perform DGE, 
DTE and DTU analysis are available through GitHub and at the following website: 
https://rissolab.github.io/AtlasCortexSD/. 
 

Discussion  

In this study we performed for the first time snRNA-seq and bulk RNA-seq in parallel with 
multiple independent biological replicates in response to sleep deprivation (SD) in the adult 
male mouse frontal cortex. Prior analyses have focused on bulk gene-level analysis4–13,21, or do 
not include independent biological replicates22. Thus to date it was not possible to define what 
may be occurring at the isoform level or to detect changes specific to particular cell types in 
response to SD. Because SD has a profound effect on brain function and insufficient sleep is a 
hallmark of many brain disorders, understanding its molecular impact is not only important to 
understand the function of sleep but also to understand how behavioral impairments in 
response to SD arise.  

 
We focused on the frontal cortex because in humans it is the brain area most affected by acute 
SD15. The frontal cortex plays an essential role in higher-order brain processes, including 
cognition, attention, reward and emotion processing, all of which are affected by lack of sleep. 
Our snRNA-seq results indicate that SD has a disproportionate effect on neurons (Figure 1). 
Surprisingly, we do not detect a strong effect of SD on the transcriptome of glia, despite the 
documented role of glia such as Astrocytes in sleep homeostasis23. The low proportion of glia 
present in our snRNA-seq data (Extended data Figure 1) suggests that to detect the effect of 
SD in glia it may be necessary to first enrich those populations using glia-specific marker 
sorting. Even after enrichment, previous transcriptome studies find that only ~1.4% of the 
astrocyte transcriptome seems responsive to sleep/wake state24. Within neurons, the effect of 
SD is most prominent in glutamatergic neurons (Figure 2), with over 2,236 genes exclusively 
regulated in this neuronal type (Figure 3A). Pathway, molecular function and biological process 
enrichment analysis show that SD disproportionately affects pathways, molecular functions and 
biological processes involved in neurogenesis, MAPK-PI3K-Akt signaling, circadian rhythms and 
development in glutamatergic neurons (Figure 3C). Interestingly, down regulation of 
neurotransmitter receptors by SD is detected in both glutamatergic and GABAergic neurons 
(KEGG pathway: Neuroactive-ligand receptor interaction, Vip, Sst, Gria4, Grin2d). Nonetheless, 
the disproportionate effect of SD in glutamatergic versus GABAergic neurons may suggest that 
by altering predominantly the glutamatergic transcriptome SD may alter excitatory/inhibitory 
balance. Indeed in the visual cortex excitation and inhibition have been shown to be modulated 
in a sleep-dependent manner in adult mice25. 
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Although is not clear whether or not the rodent frontal cortex possesses a layer 4 as defined in 
sensory cortices26, our data indicates that ROR-beta positive L4/5 IT glutamatergic neurons are 
the second most abundant type of neuron in the rodent frontal cortex (Figure 2A) and 
disproportionately responsive to SD at the transcriptome level (Figure 2B). This includes 522 
upregulated and 970 downregulated genes after SD (Figure 2A and 2C), 395 of which are 
unique to these neurons (Figure 4A). ROR-beta expression is more prominent in frontal brain 
areas in rodents and primates, and drives the development of cortico-thalamic connectivity27. In 
addition to its role as a genetic marker for glutamatergic neurons of layers 4 and 5 in the cortex, 
ROR-beta is a key transcription factor controlling brain development and differentiation. In ROR-
beta positive neurons, SD uniquely upregulates genes (Reln, p27 and Gadd45a) and signaling 
pathways (PI3K, Akt, Ras and MAPK) involved in brain development and neurogenesis and 
differentiation. The fact that SD specifically affects ROR-beta expressing glutamatergic neurons 
in the frontal cortex may reflect the importance of sleep in regulating the function of these 
neurons and thalamocortical circuitry through these pathways. 
 
Using bulk RNA-seq we detect 8,505 differentially expressed genes after SD, while 
simultaneously recovering 83% of known positive control genes (Figure 5). Although this is not 
the first study to use bulk RNA-seq to understand the effect of SD on the bulk cortical 
transcriptome, we detect between 2000-7000 more differentially expressed genes driven by 
sleep/wake than previously published studies in the cortex and hippocampus5,6,9,21. This 
increase in sensitivity is largely due to differences in methodology on RNA-seq data analysis, 
such as additional normalization to removal unwanted variance (e.g. RUV-seq) and 
simultaneous transcript and gene level analysis using nonparametric testing and inferential 
uncertainty (Fishpond/Swish) 19. Incorporating inferential uncertainty alone increases the 
number of DEGs considerably in our own data compared to our recently published study9, while 
also allowing for differential transcript expression and usage analysis after SD for the first time. 
We detect 15,525 differentially expressed (Figure 5) and 2,314 differentially used 
(corresponding 1,575 genes) transcripts (Figure 6A). The latter indicates that SD can induce a 
large number of isoform switches. Isoform switching is a phenomenon in which the relative 
contribution of one or many isoforms to the total expression of a particular gene changes 
significantly between conditions. Two notable examples of the effect of SD on isoform switching 
are on Bdnf and Homer1 (Figure 6B and C), two genes with known roles in brain function which 
we show are altered in all neuronal cell-types after SD (Figure 3A). Although the upregulation of 
Homer1a after SD is well-known and commonly referred to as a core molecular correlate of 
sleep loss8, we show that upregulation of Homer1a after SD comes at the expense of a lower 
proportion of long isoforms of Homer1, which are more stably bound to the synapse28,29. In our 
analysis, we also find that Bdnf I (201, somatic) increases in proportion, while Bdnf VI (205, 
dendritic) decreases in proportion30. These examples suggest that SD may have an effect on 
splicing or RNA-binding. Those processes were not identified as enriched in our snRNA-seq 
analysis. This may be because only some isoforms of such genes are affected and thus when 
analyzing differential expression only at the gene level the effect is not detectable or averaged 
out. Our functional enrichment analysis of genes that are affected by isoform switching after SD 
using bulk-RNA-seq shows that, indeed, genes involved in splicing and RNA binding are indeed 
affected by SD at the isoform level (Figure 7). If SD affects splicing and RNA binding, it may 
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perhaps also affect transport of those isoforms to different neuronal compartments (soma vs. 
synapse). Our results suggest that the role of sleep and SD on isoform expression and 
transport, and its implication on brain function, needs to be further explored. 
 
Limitations of our study include the fact that we focused on the adult male frontal cortex in our 
experiments. Future studies aimed at understanding the effect of both sex and developmental 
age on the transcriptional response to SD with cell type resolution are needed in different brain 
regions. Recent spatial-transcriptomic studies suggest that different brain regions may have 
different responses to SD31. However, to achieve a full picture of the effect of SD in different 
brain areas, it will be necessary to combine different technologies (spatial, single cell and bulk 
RNA sequencing) to balance their strengths and weaknesses. For example, our present study 
shows that the number of detected genes in snRNA-seq data for most cell-types (Figure 2A) is 
lower than for bulk RNA-seq. This is because the number of genes detected scales with the 
number of nuclei sequenced, and even over 15,000 nuclei fall short from detecting the 18,334 
expressed genes we obtain using bulk RNA-seq. Thus cell-type resolution may come at a cost 
of lower sensitivity for differential gene expression. Sensitivity of spatial transcriptomic 
experiments for differential expression analysis is likely lower than snRNA-seq. Given the 
inherent differences in the ability to recover DEGs by different technologies, we need to be 
cautious of the potential for false negatives to alter our interpretation if using only one 
technology.  
 
Overall, we present the first global transcriptional atlas of the homeostatic response to sleep 
deprivation in the adult male mouse frontal cortex, combining the advantages of both snRNA-
seq and bulk RNA-seq with robust and reproducible data analysis pipelines. We show that SD 
has a large mostly repressive effect on the cortical transcriptome, that this effect is more 
prominent in glutamatergic neurons, in particular in L4/5 IT ROR-beta positive neurons. We also 
show that SD can cause isoform switching of thousands of transcripts. Because sleep and sleep 
loss are often confounded in rodent studies of brain and behavior, these effects need to be 
accounted for in in vivo transcriptomic studies. As a resource to the neuroscience community, 
we provide detailed lists of genes, cells and pathways affected by SD as well as tutorials to 
reproduce our data analysis. Importantly, we made our analyses completely reproducible by 
sharing all the code used to generate the results of this article and by providing a docker image 
to run the code with the exact software setup used for this study. In addition, our tutorials can 
serve as a starting point for the analysis of bulk and snRNA-seq data generated by future 
studies.  
 

Figure legends 
 
Figure 1. SD has a large detectable effect on glutamatergic and GABAergic cell-types. A) 
Uniform Manifold Approximation and Projection (UMAP) plot for the 52,651 frontal cortex nuclei 
from all 6 replicates, annotated with a reference-based Azimuth method16, Brain Initiative Cell 
Census Network, BICCN). Glutamatergic, GABAergic and non-neuronal cell-types are shaded 
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in unique colors. B) Multidimensional scaling (MDS) plot for glutamatergic cell-types with more 
than 500 nuclei shows cell-types are separated along MDS1, accounting for the largest source 
of dissimilarity in the data, while HC (circles, N=3) and SD (triangles, N=3) are separated along 
MDS2, accounting for the remainder of dissimilarity in the data. C) MDS plot for GABAergic cell-
types with more than 500 nuclei shows cell-types are separated along MDS1, accounting for the 
largest source of dissimilarity in the data, while HC (circles, N=3) and SD (triangles, N=3) are 
separated along MDS2, accounting for the remainder of dissimilarity in the data. HC, Home 
Cage Controls. SD, Sleep Deprived.  
 
Figure 2. SD predominantly affects deep layers of glutamatergic cell-types. A) Table 
shows the total number of nuclei in a neuronal cell-type, the number of genes detected, and up- 
and down-regulated differentially expressed genes (DEGs). Also shown are the recovery of 
positive control genes from a prior, independent analysis14. The bottom row shows the pseudo-
bulk sum for the expression analysis. B) Scatter plot with the log of the total number of nuclei on 
the x-axis and the log of the DEGs on the y-axis. A line of best fit was drawn through the points, 
with cell-types that appear to be more affected by the treatment above the line, and cell-types 
that appear to be less affected by the treatment below the line. C) Volcano plot for L4/5 IT CTX 
shows the logFC on the x-axis and the -log10 of the p-value on the y-axis. Expressed genes 
(13,592) are in gray. Significantly differentially expressed genes are in black (2,405), FDR < 
0.05 and positive controls are shown in red (177). D) Volcano plot for Pvalb shows the logFC on 
the x-axis and the -log10 of the p-value on the y-axis. Expressed genes (11,585) are in gray. 
Significantly differentially expressed genes are in black (275), FDR < 0.05 and positive controls 
are shown in red (32). A subset of genes from Figure 2 Supplementary Table 2 are shown in C 
and D. N=3 per condition. SD, Sleep Deprivation.  
 
Figure 3. Glutamatergic neurons are preferentially affected by SD. A) Venn diagram of 
differentially expressed genes (DEGs) within glutamatergic and GABAergic neuronal cell-types 
(FDR < 0.05, > 500 nuclei). Genes from Figure 2 Supplementary Table 2 are highlighted. B-C) 
Bubbles show enriched terms (modified Fisher’s Exact p-value < 0.05) of upregulated (red) and 
downregulated (blue) DEGs that are unique to B) GABAergic or C) glutamatergic neurons, as 
compared to the union of expressed genes within the respective category. Bubble size reflects 
the number of genes per term (minimum of 3). Gray boxes outline clustered terms (similarity 
threshold > 0.2, and enrichment score > 1.5). Enrichment scores for each cluster; Cluster 1 Up 
(2.99), Cluster 2 Up (2.69), Cluster 3 Up (2.23), Cluster 1 Down (3.66), Cluster 2 Down (1.87). 
Terms were intersected with genes from Figure 2 Supplementary Table 2. N=3 per condition. 
SD, Sleep Deprivation. BP, Uniprot biological process. MF, Uniprot molecular function. KEGG, 
Kegg pathways. 
 
Figure 4. L4/5 IT CTX is preferentially affected by SD relative to other cell-types. A) Upset 
plot showing the unique differentially expressed genes (DEGs) within neuronal cell-types (FDR 
< 0.05, > 500 nuclei). B-C) Bubbles show enriched terms (modified Fisher’s Exact p-value < 
0.05) of upregulated (red) and downregulated (blue) DEGs and unique to B) L4/5 IT CTX and C) 
L2/3 IT CTX, as compared with the expressed genes within those cell-types. Bubble size 
corresponds to the number of genes per term (minimum of 3). Gray boxes outline clustered 
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terms (similarity threshold > 0.2, and enrichment score > 1.5). Enrichment scores for each 
cluster; L4/5 IT CTX Cluster 1 Up (2.17), L2/3 IT CTX Cluster 1 Down (1.59). N=3 per condition. 
SD, Sleep Deprivation. BP, Uniprot biological process. MF, Uniprot molecular function. KEGG, 
Kegg pathways. 
 
Figure 5. SD predominantly represses transcription at the gene and transcript level. A) 
Differential gene expression (DGE) following SD. On the x-axis, expression is shown as 
log10mean, and on the y-axis, fold change is shown as log2FC. Expressed genes (18,334) are 
gray. Significantly differentially expressed genes (8,505), q-value < 0.05, are black. Positive 
control genes previously shown to respond to sleep deprivation are red14. 83.16% positive 
control genes (558/671) were significantly differentially expressed in response to SD, q-value < 
0.05. B) Differential transcript expression (DTE) following SD. On the x-axis, expression is 
shown as log10mean, and on the y-axis, fold change is shown as log2FC. Each gray point 
shows an expressed transcript (54,030). Significantly differentially expressed transcripts (15,525 
from 10,439 genes), q-value < 0.05, are black. A subset of genes from Figure 2 Supplementary 
Table 2 are shown in A and B. C) Venn diagram shows the intersection of upregulated, 
significantly differentially expressed genes and upregulated, significantly differentially expressed 
transcripts. D) Venn diagram shows the intersection of downregulated, significantly differentially 
expressed genes and downregulated, significantly differentially expressed transcripts. Genes 
from Figure 2 Supplementary Table 2 that have a qvalue < 0.05 and |log2FC| > 0.2 are shown 
as examples in C and D. N=5 per condition. SD, Sleep Deprivation.  
 
Figure 6. SD promotes differential transcript usage (DTU) for 1,575 genes, including 
Homer1 and Bdnf. A) DTU following SD. On the x-axis, expression is shown as log10mean, 
and on the y-axis, change in proportion is shown as log2FC. Gray points are expressed 
transcripts, with a log10mean > 1. In black are transcripts that have significant changes in 
usage, q-value < 0.05 and log10mean > 1. B-C) Dot plot shows the change in B) transcript 
proportion (from 0-1) and C) expression levels in normalized transcript counts of “short” 
(Homer1a) and “long” (Homer1b/c, Homer1d) Homer1 transcripts28,29. D-E) Dot plots show the 
D) change in proportion (from 0-1) and C) expression levels in normalized transcript counts of 
“synaptic” (Bdnf VI) and “somatic” (Bdnf I) Bdnf transcripts30. For B-E, Home cage (HC) animals 
are circles and SD animals are triangles. Mean ± standard error is shown. N=5 per condition. 
Homer1 and Bdnf transcripts shown have significant DTE and DTU using Swish, q-value < 
0.0519. SD, Sleep Deprivation. 
 
Figure 7. Genes for which SD affects isoform usage are mainly involved in splicing and 
chromatin regulation. Bubbles show enriched terms (modified Fisher’s Exact p-value < 0.05) 
following functional enrichment analysis of 1,575 genes that have significant DTU (qvalue < 
0.05), as compared with the expressed transcript list. Bubble size corresponds to the number of 
genes per term (minimum of 3), and color gradient represents p-values. Gray boxes outline 
clustered terms (similarity threshold > 0.2, and enrichment score > 1.5). Enrichment scores for 
each cluster; Cluster 1 (3.02), Cluster 2 (2.60), Cluster 3 (1.79). Example genes are shown for 
each cluster. SD, Sleep Deprivation. DTU, Differential Transcript Usage. BP, Uniprot biological 
process. MF, Uniprot molecular function. KEGG, KEGG pathways. 
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Methods 

Experimental model and sample details 

Animals 

Wild-type (WT) C57BL6/J mice were housed in standard cages at 24 ± 1°C on a 12:12 h 
light:dark cycle with food and water ad libitum. All experimental procedures were approved by 
the Institutional Animal Care and Use Committee of Washington State University and conducted 
in accordance with National Research Council guidelines and regulations for experiments in live 
animals. 

Single nuclear RNA-seq study after SD 

Tissue collection 

Adult male (8 – 10-week-old) WT C57BL6/J mice were divided into 2 groups (n=3 independent 
animals per group): sleep deprived (SD5) and home cage controls (HC5). All mice were 
individually housed. Home cage control mice were left undisturbed and sacrificed 5 h after light 
onset (ZT5). Mice in the sleep-deprived group were sleep-deprived for 5 h via gentle handling 
starting at light onset and then sacrificed upon completion of sleep deprivation (ZT5) without 
allowing for recovery sleep. Mice were sacrificed by live cervical dislocation (alternating 
between home cage controls and sleep-deprived mice), decapitated, and the frontal cortex was 
swiftly dissected on a cold block. Tissue was flash frozen in liquid nitrogen and stored at -80°C 
until processing9,32. 

RNA isolation, library preparation and sequencing  

Nuclei were extracted from mouse frontal cortical tissue using the Nuclei PURE Prep kit 
(NUC201-1KT, Millipore Sigma, Burlington MA, USA) with volumes reduced to a quarter of the 
recommended amount. Briefly, frontal cortex tissue (~0.035 g per sample/mouse) were lysed 
using 2mL glass dounce homogenizers (Kimble-Chase, Vineland, NJ USA) in cold phosphate 
buffered saline and RNAase inhibitor (03335399001, Roche, Basel, Switzerland). Nuclei was 
then isolated using a sucrose gradient and ultracentrifugation at 13,000 rcf for 45 mins at 4°C 
(Sorvall WX-100, F65L-6 x 13.5 rotor, Thermo Fisher, Waltham, MA USA). Isolated nuclei were 
resuspended in Nuclei PURE Prep kit storage buffer and RNAase inhibitor. Nuclei count and 
integrity was assessed prior to library preparation.  

Single nuclear RNA-seq libraries were generated using the Chromium Single Cell 3’ Solution 
microfluidics platform (10X Technologies, Pleasonton, CA USA). Single-nuclei libraries were 
generated from the nuclei suspensions using the 10x Genomics Chromium Controller and 
Single Cell 3’ Reagent Kits v3 Chemistry following manufacturer’s instructions. Briefly, we 
targeted capture of 10,000 single nuclei through generation of gel beads in emulsion (GEMs) 
which allowed partitioning of an individual nuclei along with a bead containing barcoded 
oligonucleotides. Reverse transcription and barcoding occurred within this emulsion resulting in 
transcripts from an individual nucleus having a unique molecular identifier (UMI). After 
barcoding, the emulsion was broken, and the cDNA processed in bulk. The barcoded cDNA was 
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first amplified to generate sufficient mass for library construction and then sample index, P5 and 
P7 adapters were added for Illumina sequencing. The sizes of 10X cDNA libraries were 
assessed by Fragment Analyzer with the High Sensitivity NGS Fragment Analysis Kit. The 
concentrations were measured by StepOnePlus Real-Time PCR System (ThermoFisher 
Scientific, San Jose, CA) with the KAPA Library Quantification Kit (Kapabiosystems, 
Wilmington, MA). The libraries were diluted to 2 nM with RSB (10 mM Tris-HCl, pH8.5) and 
denatured with 0.1 N NaOH.  Three pM libraries were loaded onto NextSeq 500 (Illumina, San 
Diego, CA) for sequencing using the NextSeq 500/550 High Output Kit v2.5 (150 Cycles). The 
libraries were sequenced from both ends with 28+8+0+91 cycles (read length 100 bp) at an 
average depth of 40 million paired-end reads per sample.  

Quantification of raw sequencing reads 

We processed the raw sequencing reads in FASTQ files using the Salmon (v. 1.3.0) package  
using the ‘mapping mode’ that runs in two phases: (i) the indexing step and (ii) the quantification 
step33. To prepare to create the index, we downloaded Gencode (release M25) reference 
genome (‘GRCm38.primary_assembly.genome.fa.gz’) and reference transcriptome 
(‘gencode.vM25.transcripts.fa.gz)’, along with GTF coordinates 
(‘gencode.vM25.annotation.gtf.gz’). To improve the accuracy of quantification estimates from 
Salmon, we built an index that incorporated a set of genome targets as decoys (https://combine-
lab.github.io/alevin-tutorial/2019/selective-alignment). Using the concatenated list of 
transcriptome targets along with genome targets, we used `salmon index` function to build the 
index with the flags: `--gencode`, `--threads 4`, and  `-k 31`. Next, we used `salmon quant` to 
perform quantification with the flags `--threads 6` and `--numBootstraps 30`. Using this index, 
we used `salmon alevin` to quantify reads to the gene level with flags `--chromiumV3`, `--
threads 6`, `--forceCells 10000`, `--dumpFeatures --dumpBfh`, and `--numCellBootstraps 
30`34,35. Next, we created a R/Bioconductor SingleCellExperiment object36 with the tximeta (v. 
1.15.2) R/Bioconductor package37, where we quantified counts for both spliced mRNA and 
introns using the `getFeatureRanges()` function from the eisaR R/Bioconductor package38,39. 
Also, we used the alevinQC R/Bioconductor package to calculate QC metrics for each sample 
processed with `salmon alevin`.  

Data setting, quality control, normalization and doublets removal 

We summed the UMI counts of spliced mRNA and introns sharing the same Ensembl Gene ID. 
To identify mitochondrial genes, we retrieved the chromosome location of each Ensembl Gene 
ID with the EnsDb.Mmusculus.v79 (v. 2.99.0) R/Bioconductor package40. We then split the data 
into six SingleCellExperiment objects, one for each mouse. 

For each sample, we used the scuttle (v. 1.8.4) R/Bioconductor package to detect low-quality 
and damaged droplets41. Particularly, we computed per-cell quality-control metrics with the 
perCellQCMetrics function; these metrics include the sum of UMI counts, the number of 
detected genes, and the percentage of mitochondrial counts. Lastly, for each sample, we 
removed potential doublets with the scDblFinder (v. 1.12.0) R/Bioconductor package42, using 
the computeDoubletDensity function to calculate the scores and the doubletThresholding 
function to set the doublet scores threshold with the griffiths method. 
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Overall, our quality control procedure retained 52,651 high-quality nuclei, with an average of 
8,775 nuclei per mouse.   

Cell-type annotation and validation of cell-type labels 

To identify cell types, we used the Allen Whole Cortex & Hippocampus - 10x genomics data 
http://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-10x) 
as a reference dataset16. This dataset was imported with the AllenInstituteBrainData function of 
the AllenInstituteBrainData (v. 0.99.1) package (available at 
https://github.com/drighelli/AllenInstituteBrainData). We then selected the “Non-Neuronal”, 
“Glutamatergic'' and “GABAergic” clusters coming from the Visual Cortex (VIS, VISl, VISm, 
VISp) to annotate our dataset. For computational issues, we selected a random subset of 
100,000 cortical cells. 

To identify the best cell annotation method, we used two datasets of primary motor cortex 
tissue. The first dataset, “10x Nuclei v3 Broad,” 
(http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/sncell/10x_v3/mouse/processed/anal
ysis/10X_nuclei_v3_Broad/) was from the Broad (Macosko Lab), while the second dataset, “10X 
Nuclei v2 AIBS,” 
(http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/sncell/10x_v2/mouse/processed/anal
ysis/10X_nuclei_v2_AIBS/) was from the Allen Institute for Brain Science 16.  

We then annotated these datasets using two methods: Azimuth and SingleR. For Azimuth, the 
reference data was converted into a Seurat object and into an Azimuth compatible object, using 
the AzimuthReference function of the Azimuth (v. 0.4.6) package 
https://satijalab.github.io/azimuth/articles/run_azimuth_tutorial.html43. Then query samples were 
merged and converted into a Seurat object. Cell annotation was computed using the 
RunAzimuth function of the Azimuth package. The t-SNE and the UMAP embeddings were 
computed using the RunTSNE and RunUMAP functions of the Seurat (v. 4.3.0) package 44, 
https://cran.r-project.org/web/packages/Seurat/index.html) with seed.use = 1. For SingleR, the 
reference dataset was aggregated across groups of cell types and was normalized, using the 
aggregateAcrossCells and the logNormCounts functions of the scuttle (v. 1.8.4) package. Then, 
cell annotation was computed using the SingleR function of the SingleR (v. 2.0.0) 
R/Bioconductor package 45,  https://bioconductor.org/packages/release/bioc/html/SingleR.html). 
We found that Azimuth was the best-performing method on these already annotated datasets 
and hence we chose this annotation method for the annotation of our rodent PFC snRNA-seq 
dataset. In addition, to evaluate the cell-type assignments in our dataset, we visualized cell-type 
specific markers based on references 46–50, with a heatmap of the log-normalized count average 
in each group. We used the pheatmap function of the pheatmap (v. 1.0.12) package 
(https://cran.r-project.org/web/packages/pheatmap/index.html). As an additional quality control, 
we checked if there were cell types with a low proportion of intronic reads, as this could be a 
sign of cytoplasmic RNA (likely from cell debris) and assigned incorrectly to nuclei. All cell types 
had a high proportion of intronic reads, as expected in single-nuclear RNA-seq51. 
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To visualize the assigned cell-type labels in two dimensions, the UMAP embeddings were 
computed using the DimPlot function of the Seurat package, with option reduction = 
“integrated_dr”, where “integrated_dr” is the supervised principal component analysis obtained 
by the Azimuth method. Finally, a pseudo-bulk level Multidimensional Scaling (MDS) plot was 
created with the pbMDS function of the muscat (v. 1.12.1) R/Bioconductor package52. Each 
point represents one subpopulation-sample instance; points are colored by subpopulation and 
shaped by treatment. 

Pseudo-bulk differential expression analysis for snRNA-seq data 

For each neuronal cell type with more than 500 nuclei, differential gene expression analysis was 
carried out with a negative binomial generalized linear model (GLM) on pseudo-bulk samples. 
Specifically, we created the pseudo-bulk samples with the function aggregateAcrossCells of the 
scuttle package by summing the counts of each gene for each cell type and mouse 
combination. 

Then, we normalized the raw counts for each cell type with the upper-quartile method, using the 
betweenLaneNormalization function of the EDASeq (v. 2.32.0) R/Bioconductor package with 
option which="upper"53. To account for latent confounders, we computed the factors of 
unwanted variation on the normalized data, using the RUVs function of the RUVSeq 
R/Bioconductor (v. 1.32.0) package with k=217,18, and using a list of genes previously 
characterized as non-differential in sleep deprivation in a large microarray meta-analysis14, 
herein referred to as “negative control genes.” Specifically, 10% of negative control genes were 
randomly selected to be used for evaluation and the remaining control genes were used to fit 
RUV normalization.  

We then used the edgeR R/Bioconductor (v. 3.40.2) package to perform differential expression 
after filtering the lowly expressed genes with the filterByExpr function (with parameters: 
min.count = 10, min.total.count = 15, large.n = 10, min.prop = 0.7)54. The raw counts were 
normalized with the upper-quartile method, using the function calcNormFactors55. The factors of 
unwanted variation were added to the design matrix. The differential gene expression analysis 
was performed with the function glmLRT by specifying “SD-HC” (Sleep Deprived vs Home Cage 
Control) as contrast. We used the Benjamini-Hochberg procedure to control for the false 
discovery rate (FDR), i.e., we considered as differentially expressed those genes that had an 
adjusted p-value less than 5%56. 

For each cell type, we visualized differentially expressed genes (DEGs) with volcano plots and 
assessed the model’s goodness-of-fit by visualizing the p-value histograms. We incorporated 
cross-study, cross-brain tissue positive controls (Additional File 2 from Gerstner et al., 2016 to 
evaluate the performance of our differential gene expression pipeline.  

For glutamatergic and GABAergic neurons, we used the upset function of the UpSetR (v. 1.4.0) 
package to compare the lists of differentially expressed genes within each cell type with more 
than 500 nuclei57. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569011doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569011
http://creativecommons.org/licenses/by-nc-nd/4.0/


To better understand which genes were shared between glutamatergic and GABAergic cell 
types, the union of all glutamatergic DEGs and GABAergic DEGs was determined. To visualize 
shared and unique genes, a Venn Diagram was generated using the venn.diagram function of 
the VennDiagram package (v. 1.7.3, https://cran.r-
project.org/web/packages/VennDiagram/index.html). Select genes were highlighted.  

Functional enrichment analysis of snRNA-seq data 

Additionally, functional enrichment analysis of genes that were shared between glutamatergic 
and GABAergic cell types, or unique to a given category (glutamatergic only or GABAergic only) 
were subjected to functional annotation using the Database for Annotation, Visualization and 
Integrated Discovery v2021 (DAVID)58,59. Prior to the analysis, genes were separated by fold 
change to obtain one list of upregulated and one list of downregulated genes per category. 
Genes that were upregulated in one cell type, but downregulated in another were excluded from 
analysis. The following categories were used: Uniprot Biological Process, Uniprot Molecular 
Function (https://www.uniprot.org) and KEGG Pathways 
(https://www.genome.jp/kegg/pathway.html). Enrichment was relative to the union of all 
expressed genes within a category: unique to glutamatergic cell types or unique to GABAergic 
cell types. An EASE Score < 0.05 and similarity threshold > 0.20 were used to allow for 
inclusive clustering. Clustered and unclustered terms were visualized with a bubble plot using 
the ggplot function from the ggplot2 (v. 3.4.2, https://cran.r-
project.org/web/packages/ggplot2/index.html) package, with the size of the bubbles 
corresponding to the number of genes within a term. For glutamatergic and GABAergic bubble 
plots, clustered terms were reduced to one bubble, with the size of the bubble corresponding to 
the union of genes within all terms in that category. Duplicated genes were removed. Fold 
enrichment is visualized along the x-axis. For clustered terms, the geometric mean of the fold 
enrichments was determined and plotted along the x-axis. P-values are shown as a color 
gradient, red for upregulated and blue for downregulated. For clustered terms, the geometric 
mean of the p-values was plotted.  

Functional enrichment of genes that were differentially expressed, and unique to a cell type, 
was performed using DAVID. DGE lists were separated by fold change to obtain one list of 
upregulated, and one list of downregulated genes per cell type. The same categories were used 
as detailed above: Uniprot Biological Process, Uniprot Molecular Function and KEGG 
Pathways. Again, an EASE Score < 0.05 and similarity threshold > 0.20 were used to allow for 
inclusive clustering. For L2/3 IT CTX and L4/5 IT CTX, clustered and unclustered terms were 
visualized with a bubble plot using the ggplot function from the ggplot2 (v. 3.4.2, https://cran.r-
project.org/web/packages/ggplot2/index.html) package, with the size of the bubbles 
corresponding to the number of genes within a term. The fold enrichment is visualized along the 
x-axis. P-values are shown as a color gradient, red for upregulated and blue for downregulated.  
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Bulk RNA-seq gene expression study after SD 

Tissue collection 

Adult male (8 – 10-week-old) WT C57BL6/J mice were divided into 2 groups (n=5 independent 
animals per group): sleep deprived (SD5) and home cage controls (HC5). All mice were 
individually housed. Home cage control mice were left undisturbed and sacrificed 5 h after light 
onset (ZT5). Mice in the sleep deprived group were sleep deprived for 5 h via gentle handling 
starting at light onset and then sacrificed upon completion of sleep deprivation (ZT5) without 
allowing for recovery sleep. Mice were sacrificed by live cervical dislocation (alternating 
between home cage controls and sleep deprived mice), decapitated, and the frontal cortex was 
swiftly dissected on a cold block. Tissue was flash frozen in liquid nitrogen and stored at -80°C 
until processing 9,32. This protocol was repeated over a 5 day period, and all tissue was collected 
within the first 15 min of the hour. 

RNA isolation, library preparation and sequencing  

Frontal cortex tissue was homogenized in Qiazol buffer (Qiagen, Hilden, Germany) using a 
TissueLyser (Qiagen) and all RNA was extracted using the Qiagen RNAeasy kit (Qiagen) on the 
same day. The integrity of total RNA was assessed using Fragment Analyzer (Advanced 
Analytical Technologies, Inc., Ankeny, IA) with the High Sensitivity RNA Analysis Kit (Advanced 
Analytical Technologies, Inc.). RNA Quality Numbers (RQNs) from 1 to 10 were assigned to 
each sample to indicate its integrity or quality. “10” stands for a perfect RNA sample without any 
degradation, whereas “1” marks a completely degraded sample. RNA samples with RQNs 
ranging from 8 to 10 were used for RNA library preparation with the TruSeq Stranded mRNA 
Library Prep Kit (Illumina, San Diego, CA). Briefly, mRNA was isolated from 2.5 µg of total RNA 
using poly-T oligo attached to magnetic beads and then subjected to fragmentation, followed by 
cDNA synthesis, dA-tailing, adaptor ligation and PCR enrichment. The sizes of RNA libraries 
were assessed by Fragment Analyzer with the High Sensitivity NGS Fragment Analysis Kit 
(Advanced Analytical Technologies, Inc.). The concentrations of RNA libraries were measured 
by StepOnePlus Real-Time PCR System (ThermoFisher Scientific, San Jose, CA) with the 
KAPA Library Quantification Kit (Kapabiosystems, Wilmington, MA). The libraries were diluted to 
2 nM with Tris buffer (10 mM Tris-HCl, pH8.5) and denatured with 0.1 N NaOH. Eighteen pM 
libraries were clustered in a high-output flow cell using HiSeq Cluster Kit v4 on a cBot (Illumina). 
After cluster generation, the flow cell was loaded onto HiSeq 2500 for sequencing using HiSeq 
SBS kit v4 (Illumina).  DNA was sequenced from both ends (paired-end) with a read length of 
100 bp. The average depth for all samples was 52 million read pairs.   

Quantification of raw sequencing reads 

To process the raw sequencing reads from the snRNA-seq experiments, we again used Salmon 
along with the same index built with decoys, which is detailed in the ‘Quantification of raw 
sequencing reads’ in the ‘Single nuclear RNA-seq study after SD’ section. Again, we used the 
tximeta to create a SummarizedExperiment object at the transcript level and a second object 
summarized to the gene level using the `summarizeToGene()` from tximeta. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569011doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569011
http://creativecommons.org/licenses/by-nc-nd/4.0/


Differential Gene and Transcript Expression 

Following tximeta, inferential replicates were scaled and filtered using the default parameters in 
the fishpond R/Bioconductor package (v. 2.4.0) so that only features with a minimum of 3 
samples with a minimum count of 10 reads remained, herein referred to as “expressed” 19. To 
correct for unwanted variation, raw counts were first normalized with the upper-quartile method, 
using the betweenLaneNormalization function of the EDASeq (v. 2.32.0) R/Bioconductor 
package with option which="upper" 53. Next, RUVs (k=4) from the RUVseq (v. 1.32.0) 
R/Bioconductor package was used to generate ‘W,’ the factors of unwanted variation17,18. For 
RUVs at the gene level, we implemented the same list of genes less likely to be affected by 
sleep deprivation according to microarrays detailed previously, herein referred to as “negative 
control genes”14. For RUVs at the transcript level, we used all expressed transcripts as controls. 
We then used ‘removeBatchEffect’ from the limma R/Bioconductor package (v. 3.54.0) to 
remove the variation from the inferential replicates60. After correcting for unwanted variation, 
differential expression was performed using Swish from the fishpond package. Genes and 
transcripts with a q-value < 0.05 (multiple test corrected p-value) were deemed to be 
significantly differentially expressed. We incorporated the same cross-study, cross-brain tissue 
positive controls detailed previously (Additional File 2 from 14 to evaluate the performance of our 
differential gene expression pipeline. We recovered 83.2% (558/671) of the positive control 
genes detected in the matrix at the gene level. To determine which genes were only detected 
with expression analysis at the gene or transcript level, the venn.diagram function of the 
VennDiagram package (v. 1.7.3, https://cran.r-
project.org/web/packages/VennDiagram/index.html) was implemented.  

Differential Transcript Usage 

 
During our differential expression analysis, we discovered genes that had both upregulated and 
downregulated transcripts. Therefore, we decided to perform differential transcript usage (DTU) 
analysis, to detect which genes had transcripts with differential proportion in response to sleep 
deprivation. To do so, we incorporated ‘isoformProportions’ from the fishpond package, to 
convert the counts of inferential replicates to proportions before proceeding with Swish. To 
increase the reproducibility of the results presented, a secondary filter was immediately applied 
following the initial filtering which kept transcripts with a minimum of 10 reads across 3 samples. 
Only transcripts that had a log10mean > 1 were kept, removing transcripts with low counts that 
passed the initial filtering.  
 
To better visualize the change in the proportion of transcripts within genes of particular interest 
(Homer1 and Bdnf), dot plots were generated using the ggplot function from the ggplot2 (v. 
3.4.2, https://cran.r-project.org/web/packages/ggplot2/index.html) package. Briefly, for each 
biological replicate, the median of the inferential replicates was determined to obtain one value 
per transcript per animal. Transcripts were only included if they had significant changes in both 
proportion and expression, q-value < 0.05. Additionally, the mean and standard error within 
each condition was determined for each transcript and are shown. 
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In addition to plotting the proportions of transcripts that had significant changes in proportion, 
dot plots were also generated to show the normalized counts of the same transcripts following 
DTE analysis. To generate these plots, the median of the inferential replicates was determined 
following swish to obtain one value per transcript per animal. The normalized counts were only 
plotted for transcripts that had significant changes in proportion and expression, q-value < 0.05. 
Additionally, the mean and standard error within each condition was determined for each 
transcript and are shown. 

Functional Enrichment Analysis of bulkRNA-seq 

Functional enrichment analysis of the 1,575 genes with significant differential transcript usage 
(q-value < 0.05) was performed using DAVID as detailed in the ‘Functional enrichment analysis 
of snRNA-seq data’ section within the ‘Single nuclear RNA-seq study after SD’. The same 
categories were used as detailed previously: Uniprot Biological Process, Uniprot Molecular 
Function and KEGG Pathways. Enrichment was relative to the expressed genes after the initial 
filter preserving transcripts with a minimum of 10 reads across 3 samples, and before the 
additional log10mean filter. A p-value threshold for gene enrichment analysis (EASE Score) < 
0.05 was used. A similarity threshold > 0.20 was used to allow for inclusive clustering. Both 
clustered and unclustered terms were visualized with a bubble plot using the ggplot function 
from the ggplot2 (v. 3.4.2, https://cran.r-project.org/web/packages/ggplot2/index.html) package. 
For functional annotation of genes with significant changes in expression in response to sleep 
deprivation, please see Muheim et al., 2023.  

Data Availability: 
Sequencing data have been deposited in NCBI’s Gene Expression Omnibus (GEO) under the 
accession number GSE211088. The bulk RNA-seq replicates (5 SD, 5 HC) were previously 
deposited in GEO under accession number GSE113754, and downloaded from GEO for this 
analysis. Supplementary files can be accessed at Zenodo61. 

Code Availability: 
The code used in this article can be accessed via Github through the following link: 
https://github.com/PeixotoLab/RNAseq_sleep. The Allen Whole Cortex & Hippocampus - 10x 
genomics (v2021) reference dataset used for single-nuclear analysis, in a SingleCellExperiment 
object, has been made available at https://github.com/drighelli/AllenInstituteBrainData. 
RMarkdown tutorials for reference-based cell-type annotation and differential expression and 
usage analyses can be found in Supplementary Software and at the following website: 
https://rissolab.github.io/AtlasCortexSD/index.html.  
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Cell-types N. of 

nuclei

N. of  
genes 
detected

N. of 
Up DEG

N. of 
Down
DEG 

N. of DEG from 
Meta-analysis 
positive control 
genes

L2/3 IT CTX 15405 18043 625 894 149

L4/5 IT CTX 8342 15997 522 970 142

L5 IT CTX 3764 13122 346 543 89

L5 PT CTX 3796 13496 230 355 56

L5/6 NP CTX 639 6333 15 20 5

L6 CT CTX 4459  13766 295 431 81

L6 IT CTX 5672 14655 342 549 98

L6b CTX 543 6002 108 78 16

Pvalb 2397 11860 129 266 37

Sst 1937 10638 57 136 20

Vip 695 6762 34 55 11

Pseudo-bulk sum 47649 21918 834  1757 182
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