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Abstract

Motivation: Elucidating the functions of non-coding RNAs by homology has been strongly limited due to fundamen-
tal computational and modeling issues. While existing simultaneous alignment and folding (SA&F) algorithms suc-
cessfully align homologous RNAs with precisely known boundaries (global SA&F), the more pressing problem of
identifying new classes of homologous RNAs in the genome (local SA&F) is intrinsically more difficult and much
less understood. Typically, the length of local alignments is strongly overestimated and alignment boundaries are
dramatically mispredicted. We hypothesize that local SA&F approaches are compromised this way due to a score
bias, which is caused by the contribution of RNA structure similarity to their overall alignment score.

Results: In the light of this hypothesis, we study pairwise local SA&F for the first time systematically—based on a
novel local RNA alignment benchmark set and quality measure. First, we vary the relative influence of structure simi-
larity compared to sequence similarity. Putting more emphasis on the structure component leads to overestimating
the length of local alignments. This clearly shows the bias of current scores and strongly hints at the structure com-
ponent as its origin. Second, we study the interplay of several important scoring parameters by learning parameters
for local and global SA&F. The divergence of these optimized parameter sets underlines the fundamental obstacles
for local SA&F. Third, by introducing a position-wise correction term in local SA&F, we constructively solve its prin-
cipal issues.

Availability and implementation: The benchmark data, detailed results and scripts are available at https://github.
com/BackofenLab/local_alignment. The RNA alignment tool LocARNA, including the modifications proposed in this
work, is available at https://github.com/s-will/LocARNA/releases/tag/v2.0.0RC6.

Contact: backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput sequencing experiments made blatantly evident
that the majority of the eukaryotic genome is transcribed. Hundreds
of thousands of non-coding RNAs (ncRNAs) and untranslated
regions were reported. Revealing the subset of functional RNAs,
and their specific functions, remains a major challenge. One import-
ant means to contribute to this task is to identify classes of homolo-
gous genes or at least conserved domains. However, aligning
homologous RNAs to determine conservation is a notoriously hard
problem if the function of these RNAs is carried out by their emer-
gent structure. Such ‘structural’ RNAs often do not show clear se-
quence conservation, but have the potential to fold into conserved
homologous structures. For this reason, sequence alignment tools
fail to align RNAs once the sequence identity is below 60%
(Gardner et al., 2005), which is the case for many homologous func-
tional RNAs (Nawrocki and Eddy, 2013). This could explain, po-
tentially many, cases of ncRNAs without any known homologues,
not even in closely related species. Thus, with some plausibility, the

observed absence of homologs could often be a pure artifact, caused
by insufficiencies of the commonly used tools.

To overcome such limitations, sequence–structure-based align-
ment methods like Dynalign, Foldalign and LocARNA (Mathews and
Turner, 2002; Torarinsson et al., 2007; Will et al., 2007) have been
used routinely to align ncRNAs. Most of these tools are derived in one
way or the other from Sankoff’s approach (Sankoff, 1985), which sim-
ultaneously aligns and folds sequence and structure. Sankoff-based
alignment approaches can be characterized by a scoring system that
adds a dominantly positive structure contribution to a sequence align-
ment. It has been repeatedly shown that they produce high-quality
alignments for RNAs that share a common conserved structure
(Gardner et al., 2005; Puton et al., 2013). Moreover, they outperform
pure sequence-based approaches, especially when aligning regions
with lower sequence identity. Furthermore, it has been shown that the
existing methods perform well for ‘globally’ aligning two or several
RNAs that are already known to be homologous. However, the more
important application of sequence–structure alignment is to reveal so
far unknown ncRNA homologues. Since the exact genetic loci are
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generally unknown in, this scenario global alignment is of little use.
One must rather apply (some form of) local alignment. We emphasize
that the existing benchmarks do not assess the performance of the
existing tools in this second scenario. As well note that clustering-
based ncRNA annotation approaches (Miladi et al., 2019, 2017) im-
plicitly detect ncRNAs homologues and could directly profit from
improved local alignment.

There exists anecdotal evidence in the RNA community that the
current pairwise sequence–structure alignment tools have difficulties
to characterize homologous RNAs based on purely pairwise com-
parisons. For example, one study claimed that BLAST (Altschul
et al., 1990) still works better for this task than sequence–structure
alignment (Menzel et al., 2009). Another piece of evidence was pro-
vided by Heyer (2000), who showed that the Erdös-Rény law of a
logarithmic growth of (local) alignment length (resp. score) for ran-
dom sequences holds for many sequence analysis problems, except
for sequence–structure alignment with a high structural scoring con-
tribution. However, to the best of our knowledge, as of yet the rela-
tion of global Sankoff-like alignment to local Sankoff-like alignment
has never been studied systematically. Consequently, it is insuffi-
ciently understood, how to ensure both correct alignments and a
sub-linear growth with sequence length at the same time.

Here, we approach this open question utilizing the popular
sequence-alignment tool LocARNA (Will et al., 2007). LocARNA
inherits the scoring system of PMcomp (Hofacker et al., 2004), which
strongly reduces the computational load compared to the Sankoff’s
original algorithm for simultaneous alignment and folding (SA&F).
Due to several algorithmic advancements, LocARNA moreover dras-
tically reduces the run time over PMcomp (even reducing the theoret-
ical complexity by a quadratic factor in sequence length over the
original Sankoff algorithm). PMcomp’s scoring system itself turned
out to be a highly successful advancement in RNA alignment, it is
implemented e.g. in LocARNA, Sparse (Will et al., 2015) and
FoldalignM (Torarinsson et al., 2007). LocARNA’s high performance
and popularity makes it well suited to serve as representative of simul-
taneous folding and alignment algorithms in this work.

Recall that, as we explained before the existing benchmarks are in-
sufficient to study the different aspects of the local alignment problem.
Therefore, as a prerequisite we design a novel local alignment bench-
mark. On this basis, we examine the effect of modifications to the
LocARNA algorithm on local pairwise alignment. First, we simply
tweak the balance factor (structure weight) between the sequence and
the structure similarity component of LocARNA’s alignment evalu-
ation (‘alignment score’). Here we are interested in the effect on the
quality of the local alignment, the correct detection of motif bounda-
ries and the length of the reported alignments for random sequences.

In a second step, we investigated the interplay of different other
parameters of LocARNA’s score. Performing parameter optimization,
we showed that the optimal scoring parameters for local alignment
drastically differ from the optimal parameters for global alignment.
This is the effect of optimization attempting to compensate for the
local alignment detrimental effects of the structure contribution bias.
In this way, the strongly deviating trained parameter sets indicate defi-
ciencies of the scoring scheme. As well, note that using different par-
ameter sets for local and global alignment is not suitable to resolve the
existing problems with local RNA alignment. Using different schemes
would moreover be highly inconvenient: tools used in post-processing
would have to be adapted to the different scoring schemes (often
enough it is unclear how to achieve this). A popular example for such
a tool is RNAz (Gruber et al., 2010) [resp. RNAcode (Washietl et al.,
2011)], which determines a conserved structure (resp. a conserved
ncRNA) from calculated alignments.

Finally, we go beyond studying different parametrizations of
LocARNA by introducing a new position-wise penalty. This add-
itional score component is designed to counteract the negative prop-
erties of a high structure score and allows for using the same scoring
parameters. A graphical summary of our investigations and its
results is given in Figure 1.

Our results underline that the original scoring system rewards
matching structures on top of the sequence score without being able
to properly balance the two components. This compromises the

ability to properly align RNAs locally. We show that the proposed
position-wise penalty can alleviate these problems, which strongly
supports our hypothesis. While we performed our deep analysis for
one specific PMcomp-like system, the results indicate issues of any
system for scoring RNA alignments that is composed from a se-
quence and structure component. This includes Sankoff’s original
simultaneous folding and alignment algorithm.

2 Materials and methods

2.1 Local alignment scores and growth of random

alignments
The prerequisite for local alignment, as e.g. stated in the seminal
work of Karlin and Altschul (1990) about the statistical significance
of local sequence alignment, is that the expected global score for
random sequences is negative. Otherwise, ‘the maximal segment
would tend to be the whole sequence’ [see Karlin and Altschul
(1990), p. 2265]. Log-odds scores, which are commonly used for se-
quence alignments, automatically satisfy this property. The reason is
simply that the expected scores for independent sequences is the
negative Kullbach–Leibler (KL) divergence between distribution for
alignment edges in the case of homologous sequences versus the dis-
tribution of alignment edges for independent sequences (Altschul,
1991). In more detail, the expected global score for independent
sequences E is given by

Erandom ¼
X
a;b

qaqb log
pab

qaqb

� �
¼ �

X
a;b

qaqb log
qaqb

pab

� �
(1)

where pab is the probability for seeing an alignment edge a, b in
homologous sequences and qa (resp. qb) is the background probabil-
ity of a (resp. b). This is equivalent to the negative KL divergence be-
tween the two distributions ðpabÞa;b and ðqaqbÞa;b. As the KL

divergence is positive, the expected score should be negative. The
side effect is that for homologous sequences, the expected global

score is Eevol ¼
P

a;bpab log pab

qaqb

� �
. Eevol is the KL divergence between

ðqaqbÞa;b and ðpabÞa;b, and therefore, positive.

The relation between negative expected global score for random
sequences and the length of maximal matched segments has not been
assessed for the two-dimensional case of alignment, not to speak of se-
quence–structure alignment. However, for the one-dimensional case
of maximal segments in a single sequence, it was shown (Karlin et al.,
1990) that the local scores for a single sequence (i.e. where a segment
is defined by consecutive hits in a single sequence) grows with the
logarithm of the sequence length n if the expected global score is nega-
tive, and with

ffiffiffi
n
p

if the expected score is 0.
To profit from established thermodynamic energy models, e.g.

with empirical or independently trained parameterization, common
Sankoff-like sequence–structure scores consist of two components,
namely a sequence alignment score and a structure contribution,
which is positive for matched structures (see next section). In conse-
quence, their score cannot be directly written as log-odds score as
there is no background distribution for the structural which is used
to weight this contribution. Heyer (2000) showed by experimental
analysis that having

ffiffiffi
n
p

as a normalization factor, which would in-
dicate a global expected score of 0, is probably too low for a scoring
with a high structural contribution, and too high for a low structural
contribution. This would indicate a logarithmic growth trend only
for a low structure scoring. However, the effect on the actual align-
ments has not been investigated yet. Thus, we consider in the article
the actual global score for random sequences, the effect on the align-
ment quality as well as the effect on the detection of alignment
boundaries (i.e. the correct detection of the actual motif).

2.2 Details of the LocARNA alignment score
Sankoff-style alignment scores

Sankoff-style alignment algorithms optimize a score consisting of a
sequence and structure score. The structure score depends on the
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structures of the RNAs, which are predicted simultaneously with the
sequence alignment such that the combined score becomes optimal.
In this way, Sankoff-style algorithms find and align the RNAs at the
same time; the task is therefore called SA&F. In Sankoff’s original
algorithm, the score is composed of an edit distance and the energies
of the predicted structures; for computing optimal alignments, the
combined score is minimized (see Supplementary Section S1). Since
computing optimal local alignments typically requires similarity
scores, which are able to distinguish similar subsequences from dis-
similar ones, reformulations based on a similarity score have been
suggested. For example, Foldalign introduced a similarity score
based on sequence energies and negated energies; PMcomp sug-
gested to compute the structure similarity from log odds of base pair
probabilities.

Alignment and scoring by LocARNA

Following the idea of PMcomp, LocARNA scores structure based
on precomputed base pair probability matrices. This allows
LocARNA to compute alignments with a lot less overhead com-
pared to the original Sankoff algorithm, while maintaining good ac-
curacy. Moreover, by exploiting the sparsity of the structure space,
LocARNA computes pairwise RNA alignment in only O(n4) time—
compared to the O(n6) time complexity of the Sankoff algorithm.

To determine an optimal pairwise alignment, it optimizes an
RNA alignment score by dynamic programing. This score is the sum
of two components [Equations (2) and (4)]. The sequence score
component evaluates the similarity at all sequence positions As that
are not involved in matching base pairs:

X
ði;kÞ2As

rði;kÞ � cNgap � bNo
gap (2)

Here, r(i, k) denotes RIBOSUM base match similarity of ai and
bk, and No

gap and Ngap respectively count gap openings and gap
extensions—each respectively penalized by b or c.

For the second component, LocARNA scores each base pairs
(i, j) of sequence x in the predicted consensus structure, by

Wx
ij ¼ logðpij=p0Þ= logð1=p0Þ; (3)

i.e. essentially by a log-odd score of the base pair’s probability pij

against a background probability p0 in x. The complete structure
score component is a sum of contributions for each match (ij; kl) of
base pairs (i, j) and (k, l) in the consensus structure S:

X
ðij;klÞ2S

xðWa
ij þWb

klÞ þ sr0ði; j; k; lÞ; (4)

where r� yields RIBOSUM base pair similarities. Observe how the
parameter structure weight x controls the contribution of the struc-
ture score component Wa

ij þWb
kl to the remaining sequence score

component of the LocARNA score; the parameters, called tau fac-
tor, controls the contribution of sequence similarity at the ends of
predicted base pairs; as rationale of this parameter, there are contra-
dicting motivations to penalize or even favor mutations at the ends
of base pairs—compensatory mutations provide support for the con-
servation of the base pair, but discourage aligning its ends (see
Supplementary Section S1).

Our extension of a position-wise penalty is achieved by subtract-
ing a term k for each scored position. Thus, the gap term cNgap has
to be replaced by �ðcþ kÞNgap. Each sequence match has now to be
scored by rði; kÞ � 2k. Finally, for each base pair match, a penalty of
�4k has to be added, as four positions are scored (Supplementary
Formula S7).

Sequence-only score

For computational efficiency, LocARNA computes the structure
scoring part only if the base pair probability pij of nucleotide i and
nucleotide j is over a defined threshold p. By setting the threshold p
to its highest possible value (1), LocARNA’s objective function will

Fig. 1. A schematic overview of the trouble with locality for SA&F methods. The left side highlights the general issues of global and local alignments using default parameters.

Without optimal parameters, global aligners (box a) will partial misalign structure (red bars). When predicting local alignments (box b), correctly aligning structured motifs

gets even more difficult. Additionally, often local alignments are either extended over the motif’s boundaries or random structures are aligned. These issues can be improved

only partially by using optimized alignment parameters for the global and local predictions (right of the figure). Box (c) demonstrates that the optimized parameter set for the

global alignment improves the alignment quality, whereas simply training parameters is insufficient to produce accurate local alignments (box d). Only after introducing a pos-

ition-wise penalty (box e), global optimized parameters improve the accuracy of the local alignment predictions
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only use its sequence part and not align any base pair for the align-
ment prediction.

2.3 Alignment quality measures

Comparison to a reference alignment
A standard approach to measure the alignment quality, given a ref-
erence alignment, is the sum-of-pairs score (SPS) (Thompson et al.,

1999), which is defined as: SPS ¼ correctly predicted columns
jreferencej . A perfect

prediction has SPS of one, whereas an SPS of zero indicates a com-
pletely mispredicted alignment. To extend this measurement for
local alignment, we have to take both the length of the reference
alignment as well as the length of the predicted motif into account.
Thus, we define a new measurement maxSPS as follows:

maxSPS ¼ correctly predicted columns
maxðjreferencej;jpredictionjÞ . A upper boundary for the maxSPS

value is the SPS of the same local alignment. Therefore, a maxSPS
value is always less than or equal to the correspond SPS value (see
Supplementary Section S2 and Fig. S1).

Structure prediction quality
The Matthews correlation coefficient (MCC) evaluates the quality
of the predicted structures from simultaneously aligned and folded
alignments (Gorodkin et al., 2001) (see Supplementary Section S2
for details).

Quality of alignment boundaries
The alignment quality can be measured by computing how many
nucleotides of the local motif are predicted and how many nucleoti-
des of the context are not part of the predicted alignment. This
allows us to introduce sensitivity as measure how well the structured
RNA motif is found and specificity assesses how well the alignment
avoids extensions into the context. True positive TP or true negative
TN values are all nucleotides that are part or not part of the pre-
dicted and the reference alignment. False positive FP values are all
nucleotides that are part of the predicted but not of the reference
alignment and false negative FN values are all nucleotides that are
not part of the predicted but part of the reference alignment.
Sensitivity and specificity are defined as usually given TP, FP, TN
and FN (see Supplementary Fig. S2).

2.4 Data

Artificial dataset
A dataset of random sequences to investigate the expected alignment
score and alignment length of sequence–structure algorithms was
generated. We created an alignment input dataset of 7000 FASTA
files each having two randomly generated RNA sequences. The ran-
dom sequences were generated by controlling the features alignment
length (100 nt) and GC content (average 50%). The average pair-
wise sequence identity (APSI) is computed using the ALISTAT tool
from the HMMER package (Version 3.2.1) (Wheeler and Eddy,
2013). The APSI distribution is on average 40% (see Supplementary
Fig. S7). The python function from random library was used to gen-
erate random RNA sequences. On average the dataset has a uniform
distribution of the four bases with an average GC content of 50%
(see Supplementary Fig. S6).

BRAliBase
The BRAliBase 2.1 is a well-established alignment benchmark data-
set (Wilm et al., 2006). It contains in total 18 990 ncRNAs align-
ments from 36 different Rfam families. For each alignment a raw
file, containing the unaligned input sequences and a reference file,
providing the corresponding mostly hand-curated reference align-
ments, are provided. Each file is annotated with the (APSI) and the
structure conservation index (SCI) information. We computed pair-
wise alignments and therefore only used the pairwise subset k2 of
the BRAliBase. In total, k2 has 8976 entries from 36 different

ncRNA families. For length distribution, see Supplementary Figure
S8. The average SCI of BRAliBase is 0.93. All alignments below SCI
0.6 were excluded from the dataset. Therefore, BRAliBase fits well

to our benchmark tasks.
The shuffled ncRNAs dataset was produced by applying FASTA-

shuffle-letters from the MEME suite (Bailey et al., 2009) to all k2
sequences, to calculate the expected normalized scores.

LocalBRAliBase
A novel local alignment benchmark set is generated by placing all

ncRNAs of the BRAliBase into its shuffled genomic context. The
genomic context was derived from the European Nucleotide Archive
(ENA) hosted by the European Molecular Biology Laboratory

(EMBL) (Hussein et al., 2019). Using the accession number, of each
ncRNA, the according nucleotide sequence was downloaded in

FASTA format from ENA. For every ncRNA, the start and end posi-
tions inside the downloaded nucleotide sequence are known. Using
this position, the ncRNA and its genomic context can be located. A

fixed size (100 nt) of the genomic context was extracted equally up-
and downstream of the ncRNA. In the case of limited context on

one side, the missing nucleotides were extracted from the other side
(context). If a full extraction of the context failed or the nucleotide
sequence could not be found by its accession number the entry is

excluded from the final LocalBRAliBase.
For the context elongation of 200 nt, 2750 ncRNAs had not

enough context available or could not be found by their accession
number in ENA and therefore were excluded from the final dataset.
The flanking regions were dinucleotide shuffled using the tool

uShuffle (Jiang et al., 2008).

2.5 Optimization setup

Sequential model-based algorithm configuration (SMAC) is a black

box optimization tool that identifies (sub-)optimal parameter com-
binations for configuring arbitrary algorithms (Hutter et al., 2011)
(see Supplementary Section S3). The relationship between parame-

ters and the desired algorithm result (alignment) is learned by opti-
mizing a cost function or quality score function. A python wrapper

is handling the parameter settings and the input instances and
applies them to our cost function (scoring function). The objective
function is written in Perl and computes the LocARNA alignment

for a given instance and parameter setting and the quality of this
computed alignment.

The alignment quality measures used for the optimization of
LocARNA parameters in the global mode is the geometric mean of

SPS and MCC. The MCC is in most cases between 0 and 1, but it
can also take a value down to �1. If the MCC was negative, its
value was set to zero. For the local alignment mode, we used the

maxSPS value metric as described before. For details, please refer to
the Supplementary Section S2.

The BRAliBase dataset was used to infer the global alignment
optimal parameter configuration and LocalBRAliBase, with a
shuffled genomic context of length 200 nucleotides, was used for the

local alignment mode.
Both datasets are filtered so that the number of instances per

families are comparable amongst families and the dataset is uni-
formly distributed, leaving the global dataset with 2090 instances

and the local dataset with 1370 training instances. To identify the
robustness of the parameter optimization and to exclude potential
over fitting, a 10-fold cross validation was performed (see

Supplementary Fig. S3).
The four LocARNA parameters gap extension (c), gap opening

(b), structure weight (x) and a tau factor (s) were subject to opti-
mization within the relevant ranges (i.e. c : ½�1000; 0�;
b : ½�1500; 0�; x : ½0; 1000�; s : ½0; 100�)
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3 Results and discussion

We performed several experiments to elucidate our guiding question
from different angles, namely whether there is a general difficulty of
using Sankoff-like scores for the simultaneous local alignment and
folding of RNAs. Since we are interested in shading light on the gen-
eral phenomenon, we perform our experiments using the state-of-
the-art RNA alignment tool LocARNA, as a representative of
Sankoff-like approaches, or more specifically their PMcomp-like
variety, which turned out particularly successful over the last
decade.

Since we conjectured a potential positive structure scoring bias,
which results from the non-negative structure score contribution, we
start by directly quantifying the dimension of this bias in our first
experiment. In our second experiment, we show the direct effect on
the length of local alignments. While, as our first two studies show,
overestimation of the alignment boundaries can be avoided by
reducing the structure weight, we anticipated a conflicting negative
effect on the alignment accuracy. The counterplay of these effects
was investigated in a third study.

Furthermore, we were interested in optimal parameter settings
for local and global alignment. Ideally, one could find a common
optimal set of parameters for local and global alignment. As we dis-
cuss in more detail elsewhere, this has advantages in downstream
analysis. Our final experiment attempts to directly rescue local
alignment from the conjectured bias. A successful rescue could pro-
vide most direct evidence for the conjectured phenomenon; as well,
such results could be directly useful to improve local RNA
alignment.

3.1 Assessing the quality of local alignment requires a

novel, specifically tailored benchmark
In order to perform these studies, we designed a novel benchmark
LocalBRAliBase and a local alignment quality measurement
(maxSPS) for assessing local RNA alignment methods and their
parametrization.

To the best of our knowledge, there is not a comparably well-
established benchmark set for local alignments evaluation, like
BRAliBase for global alignments. Therefore, we generated a local
alignment benchmark set by taking the ncRNA’s of the BRAliBase
as local alignment motifs and embedded this motifs into their
shuffled genomic contexts, also referenced as flanking regions. The
flanking regions were shuffled, because the real genomic context of
an ncRNA can be of high similarity. Specially for ncRNA inputs
having lower sequence identity, it could be biologically meaningful
to align the context. Hence, we clear possible similarity of the con-
text but not its nucleotide frequency.

To get insights on how sequences with lower sequence identity
or high structure conservation behave differently in comparison to
the overall set, we filtered the LocalBRAliBase. The set of sequences
with lower sequence identity was constructed by filtering for sequen-
ces APSI smaller than 70 (APSI < 70). It is a more challenging task
to find a local motif of low sequence identity in its genomic context.
On the other hand for local motifs that are highly structured,
accounting for structure should help to find more exact alignments.
To have a set of sequences that are highly structured, we filtered the
LocalBRAliBase for sequences with a SCI over 100 (SCI > 100). The
LocalBRAliBase construction resulted in 6226 entries for k2. The fil-
tering of this k2 instances resulted in 3019 instances for APSI
smaller 70 and 2165 instances for SCI greater 100.

The LocalBRAliBase dataset was used to investigate boundary
detection and the local alignment quality. However, to evaluate the
quality of a local alignment it is still important to validate the cor-
rectly predicted alignment edges. The maxSPS is therefore a novel
way of scoring local alignment by penalizing context extensions but
also local alignments which are to short (Section 2). It extends the
idea of the SPS measure by penalizing extensions of local alignments
into the context (in contrast to the SPS score of the local alignment).
Thus, the measure properly assesses the quality of local alignments,
taking into account that good local alignments are similar to the ref-
erence in terms of boundaries and alignment columns. Note that the

latter implicitly penalizes too short predictions (see Section 2 and
Supplementary Fig. S1).

3.2 The expected background alignment score is shifted

due to spurious structure contribution
A general bias on unrelated sequences, as it could be caused by the
structure component of the LocARNA score, should be visible by a
shift of expected LocARNA scores toward positive scores, if one
puts more weight on the structure component. Note that in
LocARNA, this works directly by increasing the parameter ‘struc-
ture weight’. We quantified such effects based on the ncRNAs from
BRAliBase. For each pair of ncRNAs, we shuffled both sequences
using dinucleotide shuffling (see Section 2). Then, for a series of dif-
ferent structure weighs (ranging from 0 to 400, in increments of 50),
we aligned the pairs of ncRNAs as well as the pairs of shuffled
ncRNAs with LocARNA. Finally, we compared the distribution of
the scores, normalized to the sum of sequence lengths (Fig. 2). The
normalized score reflects the average score contribution per nucleo-
tide and allows comparing alignment scores from sequences of dif-
ferent lengths.

We observe that the normalized score achieved when aligning
ncRNAs is always positive and increases with an increased structure
weight. Moreover, for the shuffled ncRNAs, the score increases with
increasing structure weight, although these RNAs cannot contain
any conserved structure. This supports the idea of a general positive
shift due to the structure component even for unrelated RNAs. We
also compared the score to a sequence-only score, which is [by
Equation (1)] expected to be negative. Here, we completely turn off
structure alignment (i.e. switch to pure sequence alignment) by set-
ting LocARNA’s threshold for the base pair probability to 1; not-
ably there is a subtle difference to setting the structure weight to
zero. Only in the latter case, structure could still have an effect on
the alignment: dissimilar nucleotides at the ends of two base pairs
would rather be scored as structure match than two negative se-
quence matches, since the structure match has score zero (due to
zero structure weight).

Note also that a part of the observed shift for the shuffled
ncRNA sequences could be explained by their higher energy com-
pared to the unshuffled ncRNAs, since higher energy is correlated
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Fig. 2. The structure contribution leads to a positive scoring bias. The average nor-
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ing off structure matching in LocARNA’s algorithm. The vertical bars represent the

standard deviations. With increasing structure weights, the score value gap between

sequence–structure and sequence-only alignments of the shuffled sequences

increases; remarkably, even for the structure weight 0, sequence–structure align-

ments have a higher average score than the sequence-only alignments. Comparing

alignments scores of true ncRNAs to the alignments scores of shuffled ncRNA

shows that LocARNA is able to distinguish between shuffled and real ncRNAs
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with lower scores (see Supplementary Figs S11 and S12), which con-
tributes to this gap. To make sure that not any database biases lead
to wrong conclusions, we repeated the experiment with an artificial
dataset (see Supplementary Fig. S4). Having no bias like different
GC content or different sequence length leads to an even slightly
more positive score.

For structure weight 0, we are more or less back to the sequence
score, except that for base pair the alignment could use the Ribosum
score (Klein and Eddy, 2003) instead of the sequence score for both
ends of the base pair. Nevertheless, even the Ribosum score is nega-
tive in expectation since it is a log-odds score as well. While this
positive contribution fact of the structure score was already clear,
no one until now investigated the relative contribution of structure
and sequence part of the score.

The main problem here is that one cannot make a simple theoret-
ical analysis as given for sequence alignment by Equation (1) as the
structure score in LocARNA (and many others) depends on base
probabilities which use information stemming from the whole se-
quence. This way, the different alignment edges are not independent
anymore.

3.3 The local alignment length of random sequences

increases with growing structure weight
The previous experiment (Fig. 2) shows that the score clearly distin-
guishes positive data (pairs of ncRNAs) from negative data (pairs
for shuffled ncRNAs); so far, this is in line with previous results that
show the good quality of the LocARNA score for global alignment.

Still, this leaves the questions, whether the observed bias has
effects on the quality of local alignments and how strong such effects
are. On the one hand, the required negative expected scores, to
avoid linear growth of local alignment with its input sequence
lengths, seem to be met for commonly used structure weights, e.g.
the default weight 200. On the other hand, this does not rule out
detrimental overestimation of boundaries due to a score bias.

To quantify this, we first determined the expected length of local
alignments between random RNA pairs; this was determined for
LocARNA in default setting as well as for sequence-only setting.
This length indicates the expected overestimation of real ncRNA
alignments, even if their genomic context is completely unrelated. At
the current default setting (structure weight of 200) almost half of
the genomic context could be added to the aligned local motif.

When we destroy sequence and structure homology in the instan-
ces of LocalBRAliBase by shuffling (Section 2), we still observe

longer alignments for increasing structure weight (Supplementary
Fig. S5). In this benchmark, the input sequences have relatively large
and diverse lengths of typically about 250–300 nt composed of
200 nt context and the ncRNA sequence. Thus, instead of directly
comparing sequences from the shuffled benchmark, we generate an
artificial dataset of RNAs of length 100, having the same nucleotide
distribution (Section 2). As can be seen in Figure 3, sequence-only
score does produce (on average) an alignment of length 10 or rough-
ly 10% of the input. Given a typical length of 50–100 (see length
distribution of BRAliBase ncRNAs in Supplementary Fig. S8) for
most of the ncRNAs, we would expect that the predicted boundaries
are extended by 10–20 nts over the real boundaries. For high struc-
ture weight, however, more than 60% of the random sequences are
covered by a local alignment, which implies that we do not have any
chance to detect the real boundaries of ncRNAs even in shuffled
genomic context.

3.4 Emphasizing structure improves alignment

accuracy but seriously overestimates boundaries of

local alignments
Sequence–structure alignment tools were introduced to overcome
the limitations of sequence-based approaches in the detection of
conserved structures (Gardner et al., 2005). Thus, a high structure
weight would be desirable for a correct detection of conserved struc-
tures. However, the length of local alignment of random sequences
already suggest that we usually cannot find the true transcript boun-
daries using a high structure weight as it would likely extend a real
ncRNA into the genomic context. While sequence alignment does
not share these problems, resorting to sequence-only alignment (or
setting LocARNA’s structure weight very low; see Fig. 4) does not
resolve the dilemma. Not picking up structure similarity can lead to
bad alignment quality or even a complete miss of the local align-
ment, specially, for sequences with low sequence identity (see Fig. 4,
bottom).

To investigate this further, we determined the agreement of the
positions covered by the local alignment with the actual transcript
boundaries using the LocalBRAliBase. Note that we do not
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investigate here how good the actual alignment is. Finding the cor-
rect transcript boundaries, however, is the necessary step to get a
good alignment as we could re-align the detected transcripts using
global alignment in a following step. For the purpose of measuring
the agreement of transcript boundaries and regions detected by local
alignment, we investigated the sensitivity and specificity of the pre-
dicted alignment areas. The sensitivity measures the fraction of posi-
tions that are correctly predicted according to a reference alignment
(with optimal value 1), whereas the specificity measures how much
of the context is not aligned (with optimal value 1). An example can
be found in Supplementary Fig. S2. Taking sensitivity and specificity
into account will reveal alignments which are extended into the con-
text, but also too short alignments and is therefore a helpful bound-
ary detection measurement.

As Figure 4 shows, a high structure weight does detect the full
transcript (sensitivity close to 1) but tend to align into the context
(indicated by a lower specificity). The initial arguments of this sec-
tion, that a structure weight is needed to detect the ncRNA is clearly
proved by looking at the sequences with lower sequence identity.
With structure weight 100 on average less than half of the ncRNA is
found. Sequence-based scoring or not adding a positive structure
contribution, on the other hand, does fail to detect the correct tran-
script. See structure weight 0.

3.5 Global and local alignment require fundamentally

different parameter sets
In the previous experiment, we varied only the single parameter
weighting the structure. While we see that this does not allow to
simultaneously meet both objectives, accurate alignment and accur-
ate boundaries in local alignment, we cannot rule out yet that such
reconciliation is possible due to the complex interplay of the struc-
ture weight with the other essential parameters, which control the
affine gap cost (gap opening and extension) and the importance of
sequence similarity at structural matches (tau factor).

For directly studying such potential effects, we apply machine
learning techniques as a tool to illuminate this apparent contradic-
tion from the perspective of optimal parameter settings. This allows
us to simultaneously optimize these parameters for their suitability
to reproduce reference alignments from a benchmark set. In this
way, we determined independent optimal parameter sets for global
alignment as well as for local alignment (Section 2).

While we learn parameters for global alignment directly form
the k2 dataset of BRAliBase, we employed the derived local bench-
mark set from LocalBRAliBase for optimizing the parameters for
local alignment (Section 2). The optimized parameter sets are shown
in Table 1 together with LocARNA’s current default values for com-
parison. Interestingly, already our optimization results for global
alignment on the k2 dataset differ quite substantially from
LocARNA’s default values, since such parameters were never sys-
tematically optimized before. While the structure weight was appar-
ently chosen well for aligning k2 sequences, the optimal gap opening
cost is considerably higher, but compensated by much lower gap ex-
tension costs. We assume that such shift of gap extension costs to

opening costs is also beneficial for aligning most other RNAs with
LocARNA. Moreover, on k2 it turned out advantageous to more
strongly consider sequence similarity at the ends of matched base
pairs (higher tau factor), where originally, we had set the influence
of sequence to zero to avoid penalizing compensatory mutations.

More importantly for our study, comparing the optimized
parameters for local and global alignments, we see most striking dif-
ferences. Apparently, even allowing variations in the relevant other
parameters, a common ideal parameter set that works equally well
for local and global alignment cannot be found.

As discussed before, a high structure contribution in local align-
ments leads to alignment extensions into the context and will pro-
duce a high number of wrong alignment edges. The structure weight
is nearly halved, as is the tau factor. As the tau factor is another part
of the structure scoring, it is conceivable the tau factor and structure
weight are just correlated.

Furthermore, the gap costs are significantly increased. Higher
gap costs help to avoid aligning similar regions that are spread of a
longer region and therefore most likely do not belong to the same
local motif. Therefore, we hypothesize that the optimized parame-
ters for local alignment limit the bias due to the structure contribu-
tion as to avoid strong overestimation of boundaries. Note that
there is no corresponding pressure for global alignment. It seems
that almost the only resolution is to lower structure weight (and tau
factor). At the same time, as the optimization for global alignment
(and the results from our previous experiment) indicate, this tends
to lower the alignment accuracy of the locally aligned subsequences.

3.6 Position-wise penalty as an alternative to reduced

structure weight
Previous results suggest that even the optimized parameters for local
alignment are forced into an unfortunate compromise between sen-
sitivity and specificity that cannot be satisfyingly resolved.
Moreover, the large deviation between optimized parameters for the
local and global alignments do cause additional problems for tools
like RNAz (Gruber et al., 2010) that rely on statistics over local and
global alignments, since for such tools, different parameterization
lead to different statistics distributions.

In this work, we are first of all interested to systematically study
the potential issues of using Sankoff-like scoring in local alignment.
However, we suggest a simple modification of the score, which has
the potential to compensate such issues. This can yield final direct
evidence, as well as suggests more sophisticated solutions to the
problem.

We start with hypothesizing that, on average, there is a length-
dependent shift of the score due to the structure contribution.
Already Heyer (2000) observed that local alignment cannot work
properly, if the expected alignment score grows linearly with align-
ment length. While the expected length of proper local alignments
should grow at most logarithmically with the input lengths, such a
dependency would cause linear growth. This motivates us to sub-
tract a position-wise penalty from the score; in order to compensate
the hypothesized linear dependency of score’s on the input length

Table 1. Optimized parameters differ strongly for global and local LocARNA alignments.

Parameter set Gap extension (c) Gap open (b) Structure weight (x) Tau factor (s)

Default values 350 500 200 0

Global optimized 68 807 210 72

Local optimized with no penalty (k ¼ 0) 136 975 115 38

Local optimized with penalty (k ¼ 15) 82 883 176 71

Note: However, after introducing a position-wise penalty in LocARNA, optimal parameters for local alignment (with penalty) turn out to be very close to the

trained parameters for global alignment. Compared to LocARNA’s default values, the parameter optimization makes gap extensions cheaper and gap opening

more expensive. To improve local alignments, the structure–weight is strongly decreased compared to the optimal weight for global alignment (which is nearly

the same as the default weight). In the same way, the trained tau factor for local alignment is smaller than for global alignment. The other parameters are changed

by the training for either local or global alignments in the same way (compared to default parameters). Using a position-wise penalty k of 15 for the local align-

ment prediction, the optimized parameters are almost equal to the optimized parameters for global alignments. All parameter training was performed using the

black box optimizer SMAC (see Section 2). Example LocARNA calls are given in the Supplementary Material.
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due to the structure contribution. Concretely, we penalize each pos-
ition in the locally aligned subsequences; to require only a single
additional parameter, all positions are penalized equally.

We first tested, using a simple grid search for the penalty, the ef-
fect of penalty on the alignment quality for structure weights 100
and 200. We have chosen these values as they were roughly the re-
sult of the parameter optimization for local and global alignment,
respectively, see Figure 5.

Our results in Figure 6 support the expected effect of the penalty
on the sensitivity and specificity, namely increasing specificity on the
cost of sensitivity. However, as seen in Figure 5, in both cases
the penalty is required to improve the overall alignment quality. The
optimal penalty for structure weight 100 is 5–10, for 200 it is 15–

20. Similar optimal and near-optimal performance was obtained for
penalty 15 in our family-wise analysis of the six largest RNA fami-
lies with structure weight 200 that is provided in Supplementary
Figure S13. To get further insides on how the penalty is acting, we
investigated the F1 distribution for the complete k2 LocalBRAliBase
and two filtered sets of the LocalBRAliBase, see Supplementary
Figure S9.

This shows that overall the penalty allows to improve the align-
ment quality, even more for higher structure weights (200). Notice
that, if the dataset is filtered for a specific subset, e.g. sequences with
APSI below 70 or with a SCI above 100 the optimal position-wise
penalty value is shifting. For sequences with a lower sequence iden-
tity a structure weight around 5 seem to be optimal. However, look-
ing at very structured sequences a penalty of 15 gives again an
optimal result. Therefore we came to the conclusion that a penalty
around 15 should be desirable, which is then also used for the se-
cond local parameter optimization (see Table 1, line 4).

This allows the use of identical parameter set for global and local
alignment, which is particularly beneficial for tools that rely on sta-
tistics over global and local alignments (like RNAz; as discussed
before).

Finally comparing the current default LocARNA parameter set-
ting and our now improved, combination of global optimized
parameters and the position-wise penalty, shows that we can dras-
tically improve the local alignment prediction of LocARNA.
Comparing the medians of optimized and default parameter settings
(Fig. 7), it is notable that using the default parameter setting for
more than half of the sequences the alignment prediction failed com-
pletely. This is substantially improved when using the optimized
parameter settings with penalty 15. If the alignment boundaries
would be perfectly predicted we could achieve a median of 0.95
(Supplementary Fig. S10), however the current improvement is al-
ready astonishing.

4 Conclusion

In this work we systematically studied the comparison of ncRNAs
by local (local SA&F, which is highly demanded for the important
challenge of identifying homologues from the plethora of identified
RNA transcripts with unknown function. Over the years, several
approaches for local SA&F have been proposed and there have been
attempts to improve local alignment prediction and to counteract
alignment elongation beyond motif boundaries. A prominent ex-
ample is Foldalign (Havgaard et al., 2005), which limits the max-
imum length of motifs. However, the fundamental issues of local
SA&F as discussed in this work were neither investigated in depth
before nor quantified systematically.

In the first step, we designed a new local alignment benchmark
set (LocalBRAliBase) together with an appropriate novel local
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Fig. 7. Improvement in local alignment quality by using the suggested parameter set-

ting over the LocARNA default parameter settings. The suggested parameter set is

the optimized parameters for global alignment (Table 1) combined with a position-

wise penalty of 15. The structure weight has been rounded to 200. We observe a

considerable improvement, the median maxSPS is increased from 0.11 to 0.60. An

example comparing the default and suggested scoring can be found in

Supplementary Figure S14
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alignment quality measure (maxSPS). This benchmark set is essential
for studying local alignment and constitutes a valuable contribution
by itself, since it enables proper assessment of local RNA alignment
method performance for the first time.

With this benchmark set at hand, we could empirically confirm
our initial hypothesis that the structure prediction component in
SA&F introduces a bias to the total similarity score. The intuitive
explanation for this bias is that the structure contribution of SA&F
is purely positive by definition. The bias was shown to be sufficient-
ly high in current tools to compromise the prediction of correct
alignment boundaries. Even worse, we showed that current scoring
schemes do not allow to properly balance the overestimation of
alignment length (i.e. misprediction of boundaries) against the sensi-
tivity for detecting structural homology. By varying only the relative
weight of the structure component in the scoring, we demonstrated
this effect clearly: sufficient emphasis on structure is required to
identify local motifs, however this compromises the accuracy of
boundary prediction at the same time. As wrong parameterization
of the scoring could still be the source of the problem, we subse-
quently used machine learning to optimize the alignment parame-
ters, finding that the divergence between accuracy of boundary and
structure detection cannot be resolved by re-parametrization.
Surprisingly, we found that a position-wise penalty could completely
resolve the problem, yielding the same set of parameters for global
and local SA&F alignment. This has the further benefit that down-
stream tools like RNAz for predicting ncRNAs do not have to differ-
entiate between local and global scoring.

In summary, we clearly showed that the current SA&F scoring
schemes are not directly applicable to local SA&F. Moreover, we
identified the positive structure contribution to the alignment score
as the major bias source for overestimating the alignment bounda-
ries. Finally, we presented a constructive solution of the observed
issues through applying a position-wise penalty. By raising aware-
ness in the community, precise identification of the issues, and point-
ing out viable solutions, this work constitutes an important step
towards reliable local SA&F approaches in future studies.
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