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A B S T R A C T

The developmental pattern of the amygdala throughout childhood and adolescence has been inconsistently
reported in previous neuroimaging studies. Given the relatively small size of the amygdala on full brain
MRI scans, discrepancies may be partly due to methodological differences in amygdalar segmentation. To
investigate the impact of volume extraction methods on amygdala volume, we compared FreeSurfer, FSL and
volBrain segmentation measurements with those obtained by manual tracing. The manual tracing method,
which we used as the ‘gold standard’, exhibited almost perfect intra- and inter-rater reliability. We observed
systematic differences in amygdala volumes between automatic (FreeSurfer and volBrain) and manual methods.
Specifically, compared with the manual tracing, FreeSurfer estimated larger amygdalae, and volBrain produced
smaller amygdalae while FSL demonstrated a mixed pattern. The tracing bias was not uniform, but higher
for smaller amygdalae. We further modeled amygdalar growth curves using accelerated longitudinal cohort
data from the Chinese Color Nest Project (http://deepneuro.bnu.edu.cn/?p=163). Trajectory modeling and
statistical assessments of the manually traced amygdalae revealed linearly increasing and parallel develop-
mental patterns for both girls and boys, although the amygdalae of boys were larger than those of girls.
Compared to these trajectories, the shapes of developmental curves were similar when using the volBrain
derived volumes. FreeSurfer derived trajectories had more nonlinearities and appeared flatter. FSL derived
trajectories demonstrated an inverted U shape and were significantly different from those derived from manual
tracing method. The use of amygdala volumes adjusted for total gray-matter volumes, but not intracranial
volumes, resolved the shape discrepancies and led to reproducible growth curves between manual tracing and
the automatic methods (except FSL). Our findings revealed steady growth of the human amygdala, mirroring
its functional development across the school age. Methodological improvements are warranted for current
automatic tools to achieve more accurate amygdala structure at school age, calling for next generation tools.
1. Introduction

Childhood and adolescence are key periods for socioemotional de-
velopment, which correlate strongly with the development of risk
factors for diverse neuropsychiatric disorders (Paus et al., 2008). To-
gether with enhanced efforts to prevent such disorders, many large-
scale studies have been undertaken to explore behavioral and biological
development of children and adolescents (Ortiz and Raine, 2004; Silk
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et al., 2007; Connor, 2004). Rapid progress in in-vivo brain imaging
technologies has accelerated the use of structural magnetic resonance
imaging (MRI) to quantify volumes of different brain structures. These
morphological features have been demonstrated by MRI to be sensitive
for developmental brain changes (Tamnes et al., 2013; Albaugh et al.,
2017; Wierenga et al., 2018). The accurate establishment of develop-
mental trajectories of brain structures using MRI is thus an important
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requirement for understanding the neurodevelopmental mechanisms of
these disorders occurring during childhood and adolescence.

The amygdala is an almond-shaped brain structure, part of the
limbic system and is highly connected with other brain regions (Schu-
mann and Amaral, 2005). It plays important roles in emotional and
cognitive processes, especially fear and threat processing (LeDoux,
1998; Cardinal et al., 2002; Pessoa, 2010) and exhibits network-level
connectivity changes across the human lifespan (He et al., 2016).
Abnormal amygdalar structure in children and adolescents has been re-
lated to a plethora of neurodevelopmental abnormalities (Scherf et al.,
2013; Schumann et al., 2011), including autism (Mosconi et al., 2009;
Schumann et al., 2004), anxiety disorder (De Bellis et al., 2000; Redlich
et al., 2015) and schizophrenia (Ganzola et al., 2014). Meanwhile,
many studies have explored age-related changes of the amygdala in
pediatric samples (Uematsu et al., 2012; Gilmore et al., 2012; Wierenga
et al., 2014; Barnea-Goraly et al., 2014; Herting et al., 2018), indicating
the promise of using normal growth patterns for monitoring abnormal
development. Growth charts are expected to aid risk evaluation, early
diagnosis and educational monitoring by delineating typical develop-
ment standards. In several recent studies, researchers have tracked
the age-related increases of amygdala volume from childhood through
adolescence (Herting et al., 2018; Goddings et al., 2014; Albaugh et al.,
2017). However, a study including 271 individuals aged 8–29 years
reported no significant changes in amygdala volume (Wierenga et al.,
2018). This was similar to the observation from a sample of 85 individ-
uals scanned twice across 8–22 years (Tamnes et al., 2013). Thus, there
are mixed findings in the literature related to age-related differences
or changes in amygdala volume. The anatomical complexity can limit
the accurate measurement of amygdalar volume, leading to a large
variation in findings obtained using different amygdala segmentation
methods (Lyden et al., 2016), which may explain this inconsistency and
reproducibility issue (Mills and Tamnes, 2014; Lyden et al., 2016).

Manual tracing is commonly considered as the ‘gold standard’ for
amygdala segmentation (Morey et al., 2009). It enables flexible quan-
tification guided by prior anatomical knowledge, without the need
to make any of the assumptions built into algorithms. Experienced
human tracers can correctly label ambiguous borders by adjusting for
variation caused by complex or atypical anatomy and image artifacts.
To increase reliability and reduce potential biases associated with
manual tracing, multiple protocols have been generated and described
in the literature (Schumann et al., 2004; Pruessner et al., 2000; Watson
et al., 1992). These protocols significantly increase intra- and inter-
rater agreement (Pruessner et al., 2000). However, manual tracing is
time-consuming and requires the operator to have sufficient anatomical
expertise. For large MRI datasets, the labor cost of manual tracing
is prohibitive (Akudjedu et al., 2018; Schmidt et al., 2018). There
is also subtly drift in tracing criteria of manual raters during the
course of a long study. Accordingly, it is critical to develop automatic
techniques that can accurately segment amygdala structures from large
and growing datasets while providing consistent results and minimizing
the human effort necessary for manual tracing.

Several tools have been developed to achieve automatic segmen-
tation in a time-efficient manner including FSL-FIRST, FreeSurfer and
volBrain, which are both freely available, ease to use, nearly fully auto-
matic, and very accurate (Fischl et al., 2002; Manjón and Coupé, 2016;
Morey et al., 2009; Akudjedu et al., 2018; Schmidt et al., 2018; Næss-
Schmidt et al., 2016). FIRST was provided as part of the FSL software
library to estimate boundaries of brain structures based on the signal
intensity of the T1 image as well as the expected shape of structures
using a probabilistic framework (Patenaude et al., 2011). FreeSurfer au-
tomatically assigns a label to each voxel from anatomical images based
on probabilistic estimations relying on Markov random fields (Fischl
et al., 2002). It may be difficult for this model-based method applied
in FreeSurfer to model the regions of interest with sufficient accuracy
in highly variable MRI data, such as inter-individual differences or
2

pathological changes in neuroanatomy. To address this, multi-atlas
Table 1
Sample characteristics for each time-point.

Wave 1 Wave 2 Wave 3

n 183 149 95
n females/males 100/83 75/74 48/47
Age,
mean (SD)

11.82
(3.14)

12.33
(2.87)

12.77
(2.61)

Age, range 6–17 7–18 9–19

Table 2
Intra- and inter-rater reliability for rater QZ and rater ZQZ.

Reliability type Rater Hemisphere ICC 95% Confidence interval

Lower
bound

Upper
bound

Intra-rater
reliability

Rater QZ Left 0.95 0.89 0.97
Right 0.94 0.86 0.97

Rater ZQZ Left 0.91 0.82 0.96
Right 0.91 0.82 0.96

Inter-rater
reliability

Between rater
QZ and ZQZ

Left 0.88 0.80 0.96
Right 0.89 0.83 0.95

label fusion approach such as volBrain has also been implemented.
Multi-atlas label fusion segmentation techniques could combine multi-
ple atlas information, thereby minimizing mislabeling from inaccurate
affine or non-linear registration (Manjón and Coupé, 2016). Although
automated segmentation has been shown to be comparable to manual
tracing for adult populations (Fischl et al., 2002; Manjón and Coupé,
2016; Morey et al., 2009; Grimm et al., 2015), its performance for
child and adolescent samples, in which head size and shape as well
as the pace of structural growth differ, has not been validated ade-
quately (Herten et al., 2019). In addition, the effects of any differences
in the accuracy of automatic and manual amygdala segmentation on
the subsequent examination of amygdala development in school-age
children and adolescents remain incompletely understood.

To fully characterize similarities and discrepancies among tech-
niques, we compared amygdala volumes obtained manually to those
extracted by FreeSurfer, volBrain and FIRST in FSL using 427 longitu-
dinal structural MRI scans from 198 healthy children and adolescents
(baseline age: 6–17 years). To answer the aforementioned question, we
examined how different tracing methods lead to trajectory differences
in amygdala development across school age. Based upon previous
reports (Morey et al., 2009; Schoemaker et al., 2016), we expected
to observe systematic differences in amygdala segmentation perfor-
mance among the three tracing methods. We hypothesized that such
differences would affect the modeling of human amygdala growth.

2. Materials and methods

2.1. Participants

The sample described in this study was part of an accelerated
longitudinal database, namely the Chinese Color Nest Project (CCNP:
http://deepneuro.bnu.edu.cn/?p=163) for developmental brain–mind
association studies across different stages of the postnatal lifespan (Zuo
et al., 2017; Liu et al., 2021). Such acceleration was implemented
by combining cross-sectional and longitudinal design to achieve long-
time follow-up studies, such as lifespan development cohorts (Nooner
et al., 2012; Thompson et al., 2011). It was part of the developmental
component of CCNP (devCCNP), and collected at Southwest University
(devCCNP-SWU), Chongqing, China. The devCCNP-SWU was designed
to delineate normative trajectories of brain development in the Chi-
nese population across the school-aged years. The participants had no
neurological or mental health problem and did not use psychotropic
medication; their estimated intelligence quotients were ⩾ 80. The

devCCNP-SWU samples included data from 201 typically developing

http://deepneuro.bnu.edu.cn/?p=163
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controls (TDCs) aged 6–17 years who were invited to participate in
three consecutive waves of data collection at intervals of approximately
1.25 years (Dong et al., 2020, 2021). T1-weighted MRI examinations
were performed at these time points, and the images were visually
inspected to exclude those with substantial head-motion artifacts and
those with structural abnormalities. After this initial quality control, the
final sample included 427 scans from 198 participants (105 females; 93
males; Table 1). Scans from three time points, two time points, and one
time point were available for 79, 71, and 48 participants, respectively.
The mean number of scans per participant was 2.16 (standard deviation
= 0.79). The current study was approved by review committees of the
participating institutions (Institute of Psychology, Chinese Academy of
Sciences, and Southwest University).

2.2. MRI acquisition

All participants underwent MRI examinations performed with a
Siemens Trio™ 3.0 T MRI scanner. A high-resolution magnetization-
prepared rapid gradient-echo (MP-RAGE) T1 sequence (matrix = 256
× 256, FOV = 256 × 256 mm2, slices thickness = 1 mm, repetition
time (TR) = 2600 ms, echo time (TE) = 3.02 ms, inversion time (TI)
= 900 ms, flip angle = 15◦, number of slices = 176) was obtained for
each individual.

2.3. Volumetric MRI preprocessing and segmentation

All the images were anonymized by removing all the personal infor-
mation from the raw MRI data. We removed the facial information by
using the facemasking tool (Milchenko and Marcus, 2013) customized
with the Chinese pediatric templates developed by our lab (Dong et al.,
2020), which has been integrated into the Connectome Computation
System (Xu et al., 2015). The anonymized images were then uploaded
to the online image processing system volBrain (http://volbrain.upv.
es) for brain extraction (Manjón and Coupé, 2016). All the extracted
individual brains were also denoised by spatially adaptive non-local
means and corrected for intensity normalization in volBrain. These
preprocessed brain volumes were all in the native space and ready
for subsequent manual and automatic tracing procedures. Of note, we
confirmed that the impacts of the face masking on the brain extraction
and preprocessing are trifling by checking the individual images.

2.3.1. Manual tracing and reliability assessment
Anatomically trained raters QZ (the first author Quan Zhou) and

ZQZ performed manual amygdala segmentation in the native space
using the ITK-SNAP software (ver. 3.8.0) (Yushkevich et al., 2006). The
anatomical boundaries of amygdala structures were defined and seg-
mented according to the protocol described by Pruessner et al. (2000).
This protocol has been demonstrated to achieve almost perfect intra-
and inter-rater reliability. The reliability was quantified with intraclass
correlation coefficient (ICC), which was interpreted as indicating slight
[0, 0.20), fair [0.20, 0.40), moderate [0.40, 0.60), substantial [0.60, 0.80),
or almost perfect [0.80, 1] reliability (Landis and Koch, 1977; Xing and
Zuo, 2018). To assess reliability for the protocol implementation in this
study, QZ and ZQZ independently traced the amygdala volumes of 30
scans twice at a two-week interval. They were chosen from 30 subjects
at baseline examination balanced for age and sex. The ICCs with a 95%
confidence interval (CI) are derived by the following hierarchical linear
mixed model on the repeated tracing volumes

𝑉𝑖𝑗𝑘 = 𝛾000 + subject𝑖00 + order𝑗 + rater𝑘
+ subject × order𝑖𝑗
+ subject × rater𝑖𝑘
+ order × rater𝑗𝑘

(1)
3

+ 𝑒𝑖𝑗𝑘 s
where 𝑉𝑖𝑗𝑘 represents the amygdalar volume measurement for the 𝑖th
(𝑖 = 1, 2,… , 30) participant in the 𝑗th (𝑗 = 1, 2) manual tracing by the
𝑘th rater (𝑘 = 1, 2); 𝛾000 is the intercept for a fixed effect of the group
average; the following three terms represent random effects for the 𝑖th
participant, the 𝑗th tracing order, the 𝑘th rater, respectively; and other
three terms denote random interaction effects between the 𝑗th tracing
and the 𝑖th participant, between the 𝑘th rater and the 𝑖th participant,
between the 𝑗th tracing and the 𝑘th rater; and 𝑟𝑖𝑗𝑘 is an error term.

The above-mentioned model assumes that the seven included vari-
ables are independent and distributed normally with zero means. The
total variances can be decomposed into the variance component:

• among participants 𝜎2subject
• between repeated tracings by the same rater 𝜎2order
• between raters for the same tracing order 𝜎2rater
• among participants due to the differences in tracing order
𝜎2subject×order

• among participants due to the differences in rater
𝜎2subject×rater

• between two raters due to the differences in tracing order
𝜎2order×rater

• of the residual 𝜎2𝑟 .

We define the inter-rater reliability of the human amygdala volu-
metric measurements by manual tracing as:

interICC =
𝜎2subject

𝜎2subject + 𝜎2rater + 𝜎2subject×rater + 𝜎2𝑟
(2)

and the intra-rater reliability of the human amygdala volumetric mea-
surements by manual tracing as:

intraICC =
𝜎2subject

𝜎2subject + 𝜎2order + 𝜎2subject×order + 𝜎2𝑟
(3)

.3.2. Automatic tracing and visual inspection
Amygdala volumes were estimated using volBrain (http://volbrain.

pv.es), a fully automated segmentation method that has outperformed
ther segmentation methods across many brain structures (Manjón
nd Coupé, 2016). The operational pipeline has been described and
valuated previously (Manjón and Coupé, 2016). Intracranial volume
ICV) and total gray matter volume (GMV) were derived with volBrain.
mygdala volumes were also obtained using FSL-FIRST (v.6.0.4; http://

sl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST). More detailed information about
he processing steps of subcortical segmentation by FSL-FIRST can
e found in Patenaude et al. (2011). In the current study, we seg-
ented the T1 images using FSL-FIRST with none boundary correction.
mygdala segmentation labels were saved as binary masks. A voxel
ount was subsequently used to calculate the amygdalar volumes. Both
CV and GMV were also obtained using FSL. FreeSurfer segmentation
ncludes the cross-sectional (CS-FS) and the longitudinal streams (LG-
S). Automatic segmentation and labeling of the human amygdala
ere also performed using the ‘recon-all’ pipeline in CS-FS and LG-
S (ver. 6.0.0; http://surfer.nmr.mgh.harvard.edu). These processing
tages have been documented in Fischl et al. (2002) and Reuter et al.
2012). Amygdala volumes provided in aseg.stats files were used in
he subsequent analysis, and aseg.mgz volume files were converted
nto NIFTI files in native space for visualization. Transformation for
egmentation and its inverse transformation to native space for volu-
etric comparison have been described in Morey et al. (2009). Both

CV and GMV measurements were provided by the CS-FS outputs while
he GMV measurements were also provided by the LG-FS outputs. Due
o LG-FS’s possible bias by matching head across all the time points in
hildren, ICV measurements were not obtained by LG-FS. All segmen-
ation results were visually inspected to ensure adequate registration.
isual inspection of the traced amygdala volumes in a representative
ubject using manual and automatic methods is illustrated in Fig. 1.

http://volbrain.upv.es
http://volbrain.upv.es
http://volbrain.upv.es
http://volbrain.upv.es
http://volbrain.upv.es
http://volbrain.upv.es
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
http://surfer.nmr.mgh.harvard.edu
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Table 3
Comparison of automated segmentations to manual tracing.

Wave Technique Structure volume (mean cm3 ±SD) Comparison of techniques to manual tracing

%Volume difference ±SD %Volume overlap ±SD %False positive ±SD %False negative ±SD Correlation

Left Right Left Right Left Right Left Right Left Right Left Right

Wave 1

Manual 1.46 ± 0.18 1.45 ± 0.18
volBrain 0.90 ± 0.12*** 0.92 ± 0.13*** 38.18 ± 7.60 36.48 ± 7.59 68.16 ± 4.92 68.21 ± 4.86 10.28 ± 5.17 11.65 ± 5.95 44.73 ± 5.73 44.13 ± 5.65 0.61*** 0.62***
CS-FS 1.65 ± 0.21*** 1.66 ± 0.25*** 16.96 ± 11.50 18.78 ± 13.99 78.32 ± 3.65 78.78 ± 3.33 26.76 ± 5.61 26.69 ± 6.13 15.36 ± 5.06 14.22 ± 4.81 0.62*** 0.59***
LG-FS 1.72 ± 0.22*** 1.78 ± 0.26*** 22.85 ± 13.16 28.08 ± 15.79 74.88 ± 3.84 75.97 ± 3.41 31.56 ± 5.66 31.79 ± 5.98 16.80 ± 5.19 13.60 ± 4.40 0.61*** 0.57***
FSL 1.50 ± 0.30 1.48 ± 0.33 19.59 ± 13.43 20.95 ± 14.46 79.19 ± 4.94 77.05 ± 7.07 20.49 ± 8.89 22.45 ± 8.38 19.02 ± 11.21 21.03 ± 13.63 0.09 0.08

Wave 2

Manual 1.48 ± 0.17 1.48 ± 0.18
volBrain 0.92 ± 0.11*** 0.93 ± 0.12*** 37.89 ± 6.53 37.25 ± 7.01 67.78 ± 4.06 68.23 ± 4.67 11.17 ± 4.81 11.05 ± 5.27 44.99 ± 4.81 44.38 ± 5.41 0.63*** 0.61***
CS-FS 1.65 ± 0.22*** 1.63 ± 0.23*** 15.93 ± 10.67 13.94 ± 10.62 77.69 ± 3.46 79.11 ± 3.38 26.78 ± 4.95 24.75 ± 5.40 16.71 ± 6.09 15.89 ± 5.34 0.54*** 0.66***
LG-FS 1.74 ± 0.22*** 1.77 ± 0.23*** 21.64 ± 13.17 23.88 ± 12.31 75.40 ± 3.26 76.78 ± 3.34 30.83 ± 5.13 30.18 ± 4.89 16.59 ± 5.33 14.24 ± 5.00 0.53*** 0.64***
FSL 1.55 ± 0.32* 1.52 ± 0.30 20.48 ± 16.28 18.21 ± 12.87 79.03 ± 5.20 77.28 ± 5.97 21.24 ± 9.15 22.58 ± 7.91 18.48 ± 11.20 20.96 ± 11.92 −0.03 0.14

Wave 3

Manual 1.49 ± 0.21 1.51 ± 0.21
volBrain 0.92 ± 0.15*** 0.94 ± 0.16*** 38.44 ± 7.71 37.89 ± 8.09 67.54 ± 4.87 67.34 ± 5.33 10.81 ± 5.13 11.59 ± 5.13 45.32 ± 5.79 45.27 ± 6.34 0.67*** 0.70***
CS-FS 1.63 ± 0.23*** 1.68 ± 0.25*** 14.35 ± 10.85 16.04 ± 13.23 76.90 ± 4.88 77.25 ± 4.15 26.91 ± 5.70 27.06 ± 6.44 18.32 ± 7.21 17.24 ± 5.45 0.66*** 0.59***
LG-FS 1.72 ± 0.24*** 1.80 ± 0.26*** 20.71 ± 13.60 26.29 ± 21.86 74.52 ± 4.28 74.78 ± 8.19 31.25 ± 5.37 32.03 ± 8.29 18.05 ± 6.87 16.22 ± 9.39 0.61*** 0.59***
FSL 1.58 ± 0.33* 1.52 ± 0.30 21.50 ± 17.89 17.79 ± 13.33 79.52 ± 4.26 77.68 ± 4.71 21.42 ± 9.59 21.21 ± 7.50 17.65 ± 10.81 21.37 ± 11.35 −0.05 0.15

Note: Means, standard deviations, and the statistical significance of the two paired sample t-test between manual and automated segmentations as well as summary of automated segmentation performance, mean percentage of volume
difference, percentage of volume overlap, percentage of false positive and Pearson’s correlations between automated and manual segmentations. *p < 0.05; **p < 0.01; ***p < 0.001.
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Fig. 1. The amygdala structures extracted using five different techniques. A sample participant’s segmented amygdala by manual tracing (Yellow), volBrain (Purple), CS-FS
(Green), LG-FS (Red) and FSL (Blue). Scatter Violin plots present the paired changes of the traced left amygdala volumes between manual tracing and volBrain, CS-FS, LG-FS and
FSL for the first-wave devCCNP-SWU samples. ∗ 𝑝 < 0.05; ∗∗ 𝑝 < 0.01; ∗∗∗ 𝑝 < 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
2.4. Accuracy assessments on automatic segmentation

QZ manually traced all the 427 amygdala of the devCCNP-SWU
samples, which served as the reference volumes (i.e., gold standard)
for the subsequent analyses. We validated the accuracy of automatic
segmentation separately for each of the three waves of the samples.
For each wave, we performed paired t-tests on traced volumes between
the automatic and manual methods. We quantified volume difference
between the automatic and manual tracing as Eq. (4). A greater volume
difference indicates increased discrepancy relative to the manually
segmented amygdala volumes. To examine systematic changes of the
traced volumes, we tested the Pearson’s correlation of traced volumes
between the automatic and manual methods across individual subjects.
A strong correlation (𝑅 ≥ 0.8) is taken to indicate good consistency on
5

the individual differences in amygdala volumes between the manual
and automatic methods. We further calculated the spatially overlapping
volumes, the false positive rate and the false negative rate to quanti-
tatively measure the degree of correct or incorrect estimation of the
automatic methods. These metrics are defined as:

• percentage of volume difference

𝐷(𝑉𝐴, 𝑉𝑀 ) =
|𝑉𝐴 − 𝑉𝑀 |

𝑉𝑀
× 100% (4)

• percentage of spatial overlap

𝑃 (𝑉𝐴, 𝑉𝑀 ) =
𝑉𝐴 ∩ 𝑉𝑀

0.5(𝑉𝐴 + 𝑉𝑀 )
× 100% (5)
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• false-positive rate

𝐹𝑃 (𝑉𝐴, 𝑉𝑀 ) =
𝑉𝐴 − 𝑉𝐴 ∩ 𝑉𝑀

𝑉𝐴
× 100% (6)

• false-negative rate

𝐹𝑁(𝑉𝐴, 𝑉𝑀 ) =
𝑉𝑀 − 𝑉𝐴 ∩ 𝑉𝑀

𝑉𝑀
× 100% (7)

In these equations, 𝑉𝐴 is the volume measured automatically and 𝑉𝑀
is that measured manually (the reference, i.e., the gold standard).
The maximum 𝑃 (𝑉𝐴, 𝑉𝑀 ) value is 100%, reflecting identical tracing
between manual and automatic method while smaller values indi-
cated less perfect spatial overlaps (Morey et al., 2009), implying the
worse performance of the automatic tracing. The minimum 𝐹𝑃 (𝑉𝐴, 𝑉𝑀 )
value is 0, reflecting identical tracing between manual and automatic
method while larger values indicate higher error rates of automatic
segmentation, i.e., the inclusion of larger proportions of non-amygdalar
structure(s). The minimum 𝐹𝑁(𝑉𝐴, 𝑉𝑀 ) value is 0, reflecting identical
tracing between manual and automatic segmentation while higher val-
ues indicate more error rates of automated protocol, i.e., the exclusion
of larger proportions of amygdalar structure(s).

To further investigate how the accuracy of the automatic tracing
methods varies with amygdala sizes, we employed a generalized ad-
ditive mixed model (GAMM) to model the size effect of amygdala
on the automatic tracing accuracy. In addition, young participants
are more likely to move during scan acquisition, leading to worse
scan quality and motion artifacts, which may affect the precise dif-
ferentiation of structures by automated techniques. To exclude the
effects of image quality on segmentation accuracy, we included motion
and scan quality as covariates for the regression models. Specifically,
the motion metric is the coefficient of joint variation (CJV) as an
objective function for the optimization of intensity non-uniformity
correction algorithms (Ganzetti et al., 2016) while the image quality
is quantified by signal-to-noise ratio (SNR). Lower CJV and higher
SNR values indicate better image quality (Welvaert and Rosseel, 2013).
Specifically, we plotted the spatial overlap (the overlap percentage
𝑃 ) between automatic and manual segmentation as a function of the
reference (i.e., the manually traced) volumes, while controlling CJV
and SNR. Unlike the common parametric linear models (Herting et al.,
2018), GAMM does not require a-priori knowledge of the relationship
between the response and predictors, which enables more flexible and
efficient estimation of changing patterns (Mills and Tamnes, 2014;
Wood, 2017). In addition, GAMMs are well suited for the repeated
measurements (e.g., our accelerated longitudinal samples from devel-
oping brains), as they account for both within-subject dependency and
developmental differences among participants at the time of study
enrollment (Alexander-Bloch et al., 2014; Harezlak et al., 2005). Such
a GAMM was implemented using the following formula in R language
with the mgcv package:

𝑃 (𝑉𝐴, 𝑉𝑀 ) ∼ 𝑠(𝑉𝑀 ) + CJV + SNR+(1|subject) (8)

where the 𝑠() is a smoothing function with a fixed degree of freedom
and cubic B-splines, whose number of knots is set at 5 (determined
to be optimal for our data). This was set to be sufficiently large to
have adequate degrees of freedom across both spline terms from fits of
the model to the amygdala volume, but sufficiently small to maintain
reasonable computational efficiency. The CJV and SNR were included
as fixed-effect terms in the GAMM regression.

2.5. Modeling growth curves of human amygdala development

To fully model method-related differences in the growth curves
of human amygdala volumes, we employed the following GAMM to
examine age-related changes of the human amygdala by including the
tracing method and its interaction with age as variables of interests:

𝑉 ∼ 𝑠(𝑎𝑔𝑒) + method + 𝑠(𝑎𝑔𝑒, 𝑏𝑦 = method) + sex + (1|subject) (9)
6

a

where 𝑉 represents the amygdala volume and 𝑠() is a smoothing func-
ion, with a fixed degree of freedom and cubic B-splines (the number of
nots = 5). Tracing method was entered as an ordinal factor (manual
0, automatic = 1). The method term reflects the method differences

n the intercept (i.e., the main effect of method). The sex term reflects
he sex differences in the intercept (i.e., the main effect of sex). The
irst smoothing term models the slope of age for manual tracing, and
he second smoothing term models the difference in the age-related
lope between methods (i.e., 𝑎𝑔𝑒×method interaction). The 𝑝 value
ssociated with this term is the basis of statistical inference regarding
ethodological differences in developmental trajectories of bilateral

mygdala volume.
To more specifically understand differences in age trajectories be-

ween methods, a set of GAMMs (see the Eq. (10)) were proposed to
etect age-related changes revealed by each method separately:

𝑉 ∼ 𝑎𝑔𝑒 + (1|subject)

𝑉 ∼ 𝑎𝑔𝑒 + sex + (1|subject)

𝑉 ∼ 𝑠(𝑎𝑔𝑒) + (1|subject)

𝑉 ∼ 𝑠(𝑎𝑔𝑒) + sex + (1|subject)

𝑉 ∼ 𝑠(𝑎𝑔𝑒) + sex + 𝑠(𝑎𝑔𝑒, 𝑏𝑦 = sex) + (1|subject)

(10)

The first GAMM models the traced volume as a fixed linear age effect.
s previous studies have consistently shown larger brain regions in
ales than in females (Herting et al., 2018), we established the second
AMM model with sex as a fixed term to assess the sex difference in

he trajectory intercept. The third GAMM models the traced volume as a
moothing function of age. The fourth model is established by including
ex as a fixed-effect term in the third model, as well as the fifth GAMM
odel including 𝑎𝑔𝑒×sex interaction to test the sex differences in the

rajectory slope. The Akaike Information Criterion (AIC) was used to
etermine which model had the best fit. All fit models were tested
gainst a null age effect model. The model chosen as the best fit model
ad to have the lowest AIC value and be significantly different from
ull. The data analyses and visualization were performed using the
gcv (Wood, 2017) and ggplot2 (Wickham, 2016) packages in R (R
ore Team, 2014), respectively.

We also tested growth curves of the human amygdala by accounting
or global brain features in the GAMMs. The volumes of subcortical
tructures are known to be related to brain size (Brown et al., 2014;
rain Development Cooperative Group, 2012; Uematsu et al., 2012).
ccordingly, we included ICV as a covariate for regression control

o enable the removal of individual variability that can be explained
y brain size (Narvacan et al., 2017; Sawiak et al., 2018; Herting
t al., 2014). Researchers have also demonstrated that the size of the
mygdala often scales with the GMV (Van Petten, 2004; Rice et al.,
014). We thus accounted for brain size by controlling for the GMV in
he GAMMs. We performed the analysis with CS-FS, LG-FS, volBrain and
SL derived GMV measurements and CS-FS, volBrain and FSL derived
CV measurements. To better understand the differential effects when
ontrolling for ICV and GMV, we modeled and plotted the measurement
ias as a function of either GMV or ICV. The measurement bias were
uantified by the spatial overlap and false positive rate of automated
egmentation with manual tracing. The growth curves were delineated
or both GMV and ICV to help understanding their differential effects
hen controlling them for modeling amygdala’s growth.

. Results

.1. Measurement reliability of manually traced human amygdala

We reported almost perfect reliability of the human amygdala vol-
mes measured by the manual tracing protocol. Specifically, as in
able 2, both intra-rater and inter-rater reliability of the volumes for
he manually traced amygdala were achieved. Inter-rater ICCs were

round 0.88 with 95%CI = [0.80, 0.96] for the left amygdala, and 0.89
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with 95%CI = [0.83, 0.95] for the right amygdala. Intra-rater ICCs were
lso almost perfect: 0.91 with 95%CI = [0.82, 0.96] for rater ZQZ while

0.95 with 95%CI = [0.89, 0.97] for rater QZ. These results confirmed
hat the raters’ manual tracings could be used as the gold standard or
he reference for comparisons with automatic segmentation.

.2. Measurement accuracy of automatically traced human amygdala

For the first-wave samples, one-way analysis of variance with re-
eated measures indicated significant differences in volumes of human
mygdala across the five segmentation methods (left amygdala: 𝐹 =

413.90, 𝑝 < 0.001; right amygdala: 𝐹 = 347.70, 𝑝 < 0.001). Our post-
oc paired comparisons between the automatic and manual methods
evealed that volumes obtained with CS-FS and LG-FS were both sig-

nificantly larger than those obtained by manual tracing (CS-FS: left
amygdala: 𝑡 = 15.45, 𝑝 < 0.001, right amygdala: 𝑡 = 14.51, 𝑝 < 0.001;
LG-FS: left amygdala: 𝑡 = 19.94, 𝑝 < 0.001, right amygdala: 𝑡 = 21.07, 𝑝 <
0.001, respectively), which in turn were larger than those obtained
with volBrain (left amygdala: 𝑡 = 53.32, 𝑝 < 0.001; right amygdala:
𝑡 = 50.09, 𝑝 < 0.001). The amygdala volumes obtained by manual
tracing were not significantly different with those obtained by FSL (left
amygdala: 𝑡 = 1.75, 𝑝 = 0.081; right amygdala: 𝑡 = 1.36, 𝑝 < 0.175).
These findings (Fig. 1) are reproducible for the second and third waves
of samples with the exceptions of the left amygdala volumes obtained
with FSL were significantly larger than those obtained with manual
tracing (wave-2: 𝑡 = 2.27, 𝑝 = 0.025; wave-3: 𝑡 = 2.10, 𝑝 = 0.038; see
Supplementary Figure S1 and S2).

As depicted in Fig. 2, paired two-sample t-tests revealed that the
spatial overlap for the left amygdala were significantly higher for FSL
than CS-FS (𝑡 = 2.10, 𝑝 = 0.037), while the spatial overlap for the right
amygdala were significantly higher for CS-FS than FSL (𝑡 = 3.14, 𝑝 =
0.002). The comparisons between the spatial overlap of CS-FS and FSL
were inconsistent for the three waves. Both CS-FS and FSL methods
showed higher spatial overlap with manual tracing than LG-FS (left
amygdala: 𝑡 = 19.23, 𝑝 < 0.001; right amygdala: 𝑡 = 17.69, 𝑝 < 0.001;
eft amygdala: 𝑡 = 9.91, 𝑝 < 0.001; right amygdala: 𝑡 = 1.98, 𝑝 =
.05). The LG-FS had higher percentages of spatial overlap than vol-
rain with the manual tracing for the first-wave data (left amygdala:
= 14.66, 𝑝 < 0.001; right amygdala: 𝑡 = 19.47, 𝑝 < 0.001). The

alse positive rate of amygdala were significantly different between
ll methods, with the volBrain showing the lowest value, followed by
SL, CS-FS and LG-FS. These findings are reproducible for the second-
ave and the third-wave samples (see Supplementary Figures S1, S2).
he false-negative rates were significantly higher for volBrain than for
SL, CS-FS and LG-FS segmentation of amygdala (all 𝑝𝑠 < 0.05). The
SL, CS-FS and LG-FS showed comparable false negative rates, which
esulting in inconsistency comparison results for three waves of samples
Fig. 2, Figures S1, S2). Both the left and right amygdala volumes
btained with the CS-FS, LG-FS and volBrain methods only showed
oderate Pearson’s correlations with those obtained by the manual

racing although statistically significant (𝑅𝑠 = 0.57 − 0.62, 𝑝𝑠 < 0.001;
able 3), but did not exceed 0.8. Correlations between manual and FSL
ere obviously weaker and did not reach statistical significance (left
mygdala: 𝑟 = 0.09, 𝑝 = 0.207; right amygdala: 𝑟 = 0.08, 𝑝 = 0.310).

These indicated that the individual differences in volume measured by
the automatic methods were not fully consistent with those measured
by the manual tracing method.

The GAMM-based regression showed that the accuracy of volBrain
segmentation (i.e., the percentage of spatial overlap with manual trac-
ing) increased with the amygdala size before reaching a stable accuracy
with a larger volume of the amygdala (Fig. 3; see details on the
parameters for models in Supplementary Table S1). For CS-FS and LG-
FS, the segmentation accuracy displayed a linearly significant increase
pattern with the left amygdala size while a two-stage (first increase
and then remain stable) pattern with the right amygdala size. The
7

FSL increased and then followed by plateau with the left amygdala m
size while consistently remained stable with right amygdala size. In
most cases of the automatic segmentation methods, a smaller amyg-
dala structure is associated with worse segmentation accuracy after
controlling image quality. These results indicated that neuroanatomical
features can possibly bias the accuracy of automatic segmentation
in a systematic way. In addition, the effects of image quality and
motion are detectable for both volBrain and FreeSurfer segmentation
accuracy while not FSL. The effect of more movements (higher CJV) on
the segmentation accuracy of amygdala with CS-FS was significant in
hildren during imaging while the effect of worse quality (lower SNR)
n the segmentation accuracy with both volBrain and FreeSurfer was

also significant (see in Supplementary Table S1).

3.3. Growth curves of human amygdala volume

The unified GAMM method, which includes age and interactions
terms indicated that the age effects on the human amygdala were not
consistent across the automatic tracing methods (Table 4). Specifically,
these models reproduced the results of measurement accuracy for vol-
Brain, FreeSurfer and FSL reported in the previous section. The volBrain
produced amygdala’s age-related changes highly similar to that of
manual tracing, i.e., no 𝑎𝑔𝑒×method interactions (all 𝑝𝑠 > 0.05). In con-
rast, the age-related amygdala changes showed discrepancies between
reeSurfer (including both CS-FS and LG-FS) and the manual tracing
ore overt than volBrain versus manual tracing method-differences, al-

hough no statistically significant 𝑎𝑔𝑒×method interaction was detected
all 𝑝𝑠 > 0.05). This led to a much lower explained variance using the
AMMs with CS-FS and LG-FS compared to that by the GAMMs with
olBrain (CS-FS: left amygdala: 28% versus 80%, right amygdala: 28%
ersus 77%; LG-FS: left amygdala: 39% versus 80%, right amygdala:
3% versus 77%, respectively). In contrast, the statistically-significant
𝑔𝑒×method (FSL versus manual tracing) interaction was detectable
left amygdala: 𝑝 < 0.001; right amygdala: 𝑝 = 0.001). This indicated

significant difference in the growth rate of the bilateral amygdala
olume between the FSL and manual segmentation.

The post-hoc method-wise GAMMs further revealed the growth
atterns of the human amygdala as well as their sex differences. All
est-fitting growth curves for each method determined by AIC were
he smoothing-age models, which were significantly different from the
ull model on age effect. For all methods except FSL, the best models
ere determined by AIC as the fourth model, which included sex as a

ixed effect and age adjusted for a smoothing spline function (Table 5),
ndicating no need for an interaction between age and sex. This model
evealed bigger amygdalae in boys than in girls, but their growth rates
id not differ by sex. Specifically, as shown in Fig. 4, the growth curve
atterns were parallel in girls and boys for both manual and automatic
racing methods although boys demonstrated larger volumes of their
mygdalae than girls across the entire school age range (6–18 years
ld). As the reference standard, the manual tracing method revealed
hat the human amygdala (both left and right) exhibited linear growth
uring the school-age years in both boys and girls (left amygdala:
= 0.003; right amygdala: 𝑝 = 0.001, respectively). The volBrain

raced left amygdala yielded less linear growth (𝑝 < 0.001), and traced
ight amygdala yielded growth curves very similar to that established
y the manual tracing method (𝑝 = 0.001). CS-FS tracing method
roduced less linear and flatter curves and not statistically significant,
xcept for a marginal significant growth curve in the right amygdala
𝑝 = 0.066). This growth curve had an inverted U shape: increasing
uring childhood and early adolescence, and then decreasing in late
dolescence (the peak age around 14.18 years old). LG-FS produced
imilar shape with those of CS-FS, all exhibiting somehow nonlinearity
lthough its degree of nonlinearity is left–right flipped between the
wo FS segmentation methods. In addition, LG-FS detected statistical
ignificant increases with age (left amygdala: 𝑝 = 0.034; right amygdala:
= 0.022, respectively). For FSL method, the best model was the third

odel, which only included the smooth age effect. This model revealed
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Fig. 2. Spatial overlap, false positive rate and false negative rate for segmentation using volBrain, CS-FS, LG-FS and FSL compared to the manual ‘gold standard’ in
the devCCNP-SWU wave-1 samples.
8



Developmental Cognitive Neuroscience 52 (2021) 101028Q. Zhou et al.
Fig. 3. Percentage of spatial overlap of automatic methods as function of the amygdala volume. ∗ 𝑝 < 0.05; ∗∗ 𝑝 < 0.01; ∗∗∗ 𝑝 < 0.001.
Fig. 4. Volumetric growth curves for human amygdala traced by manual tracing, volBrain, CS-FS, LG-FS and FSL. The blue color indicates trajectories for boys while the
red color indicates trajectories for girls while the purple color for each sex plotted together. The trajectories are surrounded by shaded 95% confidence intervals. Note that boys
and girls showed very similar developmental trajectories with no significant age-by-sex interactions, although boys had significantly larger amygdala volumes across the school
ages (all 𝑝𝑠 < 0.001), except FSL showing the same trajectories for boys and girls. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
the same pattern of trajectories for girls with boys while the bilateral

amygdala exhibited two-phase growth patterns significantly different
9

from that established by the manual tracing: robust volume increase

during childhood and gradual decrease in late adolescence in left
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Table 4
GAMM estimates on age, method, and age*method effects for bilateral amygdala.

Left Amygdala Right Amygdala

Manual vs. volBrain

Intercept Estimate SE t p - value Intercept Estimate SE t p - value
Method: volBrain −0.40 0.00 −81.68 0.000 Method: volBrain −0.38 0.00 −77.35 0.000
Sex 0.12 0.02 7.10 0.000 Sex 0.12 0.02 6.88 0.000
Slope edf Ref.df F p - value Slope edf Ref.df F p - value
s (age) 2.98 2.98 6.43 0.000 s (age) 2.44 2.44 8.47 0.000
s (age): volBrain 1.00 1.00 0.80 0.371 s (age): volBrain 1.53 1.53 0.41 0.706
R2 = 0.80 R2 = 0.77

Manual vs. CS-FS

Intercept Estimate SE t p - value Intercept Estimate SE t p - value
Method:CS-FS 0.12 0.01 19.80 0.000 Method: CS-FS 0.13 0.01 19.81 0.000
Sex 0.14 0.02 6.78 0.000 Sex 0.17 0.02 7.41 0.000
Slope edf Ref.df F p - value Slope edf Ref.df F p - value
s (age) 2.23 2.23 3.36 0.041 s (age) 1.76 1.76 5.70 0.003
s (age): CS-FS 1.00 1.00 0.14 0.710 s (age): CS-FS 1.84 1.84 1.45 0.154
R2 = 0.28 R2 = 0.28

Manual vs. LG-FS

Intercept Estimate SE t p - value Intercept Estimate SE t p - value
Method: LG-FS 0.18 0.01 28.86 0.000 Method: LG-FS 0.22 0.01 33.00 0.000
Sex 0.15 0.02 6.85 0.000 Sex 0.18 0.02 7.84 0.000
Slope edf Ref.df F p - value Slope edf Ref.df F p - value
s (age) 3.11 3.11 3.86 0.010 s (age) 1.28 1.28 9.09 0.001
s (age): LG-FS 1.00 1.00 0.02 0.896 s (age): LG-FS 1.90 1.90 1.30 0.207
R2 = 0.39 R2 = 0.33

Manual vs. FSL

Intercept Estimate SE t p - value Intercept Estimate SE t p - value
Method:FSL 0.04 0.01 4.56 0.000 Method: FSL 0.02 0.01 1.88 0.060
Sex 0.09 0.03 3.53 0.000 Sex 0.10 0.02 4.83 0.000
Slope edf Ref.df F p - value Slope edf Ref.df F p - value
s (age) 1.00 1.00 1.50 0.222 s (age) 1.00 1.00 2.45 0.118
s (age): FSL 2.89 2.89 15.64 0.000 s (age): FSL 2.18 2.18 2.21 0.135
R2 = 0.12 R2 = 0.05

Note: Smooth function (edf) as well as degrees of freedom (Ref.df) and F -statistic and associated p-value for age (bold highlights p<.05).
Table 5
GAMM estimates for bilateral amygdala across both sexes in manual tracing, volBrain, FSL, CS-FS, and LG-FS segmentation separately.

Hemisphere Best model fit R2(adjusted) Sex Age spline

Estimate SE t p-value edf Red.df F p-value

Manual Left amygdala s(age) + sex 0.14 0.13 0.02 6.07 0.000 1.12 1.12 8.32 0.003
Right amygdala s(age) + sex 0.12 0.12 0.02 5.86 0.000 1.38 1.38 8.47 0.001

volBrain Left amygdala s(age) + sex 0.19 0.10 0.01 7.15 0.000 2.17 2.17 8.07 0.000
Right amygdala s(age) + sex 0.17 0.11 0.02 6.84 0.000 1.83 1.83 7.34 0.001

CS-FS Left amygdala s(age) + sex 0.15 0.16 0.03 6.08 0.000 1.48 1.48 0.69 0.317
Right amygdala s(age) + sex 0.17 0.21 0.03 7.15 0.000 2.05 2.05 2.77 0.066

LG-FS Left amygdala s(age) + sex 0.16 0.17 0.03 6.13 0.000 2.04 2.04 3.52 0.034
Right amygdala s(age) + sex 0.20 0.24 0.03 7.81 0.000 1.89 1.89 3.42 0.022

FSL Left amygdala s(age) 0.11 3.15 3.15 19.48 0.000
Right amygdala s(age) 0.06 2.74 2.74 11.13 0.000

Note: Smooth function (edf) as well as degrees of freedom (Ref.df) and F -statistic and associated p-value (bold highlights p < .05) for age.
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amygdala (𝑝 < 0.001; the peak age around 15.20 years); robust volume
increase during childhood and a phase of plateau over adolescence in
right amygdala (𝑝 < 0.001; the peak age around 16.03 years).

Correction for GMV abolished the significant sex differences of tra-
ectory patterns derived by volBrain across the entire age range (see de-
ails on the parameters for best-fitting models in Supplementary Table
S2). The growth patterns derived by the manual tracing method after
controlling for either volBrain-estimated GMV or FreeSurfer -estimated
GMV or FSL-estimated GMV remain consistent with those without
the GMV corrections (Fig. 5). After the GMV-based correction, the
growth patterns derived by volBrain, CS-FS and LG-FS showed almost
identical shapes to those obtained using the manual tracing method
(Fig. 6). This correction highly increased the reproducibility of the
human amygdala growth curves across volBrain, CS-FS and LG-FS. The
shape discrepancies between manual tracing and FSL derived growth
10

p

curves after the GMV-based correction did not resolved. As shown in
Fig. 5, the growth patterns derived by the manual tracing method
remained consistent with those without ICV corrections, but with much
less statistical power: controlling for volBrain-estimated ICV or FSL
stimated ICV led to much less significant age-related changes while
ontrolling for CS-FS-estimated ICV led to no significant age-related
hanges (see Supplementary Table S3). Correction for ICV reduced the
eproducibility of the human amygdala growth curves across the three
utomatic methods (Fig. 6). The significant positive linear association
ith age remained for volBrain traced amygdala with less statistical
ower, even after controlling for the ICV (Fig. 6). However, correction
or ICV changed the CS-FS-derived growth curves of the amygdala
olume from nonlinear (not significant) to linear decrease (significant)
atterns (Fig. 6). The growth patterns derived by the FSL were still
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Fig. 5. Growth curves of manually traced volume for human amygdala adjusted by GMV and ICV. Amygdala volumes are adjusted by GMV in different ways: CS.adj,
adjusted by CS-FS produced GMV; LG.adj, adjusted by LG-FS produced GMV; v.adj, adjusted by volBrain produced GMV; fsl.adj, adjusted by FSL produced GMV. Amygdala volumes
are adjusted by ICV in different ways (B): CS.adj, adjusted by CS-FS produced ICV; v.adj, adjusted by volBrain produced ICV; fsl.adj, adjusted by FSL produced ICV. solid line =
male, dotted line = female. The trajectories are surrounded by shaded 95% confidence intervals.
inconsistent with manual tracing without ICV corrections, showing
nonlinear increases (Fig. 6).

4. Discussion

This study evaluated the performance of segmentation of the amyg-
dala using the automatic software volBrain, the cross-sectional and
longitudinal pipeline of Freesurfer and FSL compared to manual tracing
in a longitudinal developmental sample. Importantly, we also explored
how the segmentation differences could impact the growth curve mod-
eling of the amygdala development. The findings indicated systematic
differences in tracing performance across the three methods. CS-FS
overestimated the volumes with more spatial overlapping with the
manual tracing method, but had higher false-positive rates. LG-FS also
11
segmented larger amygdalae than the manual method and showed
smaller spatial overlaps and higher false-positive with the manual
tracing than CS-FS segmentation. In contrast, volBrain tended to un-
derestimate the volumes with less spatial overlap with the manual
tracing method, but had lower false-positive rates. FSL estimated the
volumes with more spatial overlapping but had inconsistency with
the manual tracing. We noted that the tracing accuracy of automatic
methods was worse for smaller amygdalae. Furthermore, the growth
curves of the amygdala volume estimated by different methods were
inconsistent. These discrepancies indicated the importance to evaluate
the segmentation performance across methods, especially in a develop-
mental sample. This study presented manual tracing of the amygdalae
in a large-scale longitudinal sample and presented a systematic inves-
tigation of the method-wise variability of the growth curves of the
human amygdala across school age. This variability of growth patterns
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Fig. 6. Growth curves of automatically segmented volume for human amygdala adjusted by GMV (black line) and ICV (gray line). solid line = male, dotted line = female.
The trajectories are surrounded by shaded 95% confidence intervals.
of amygdala volume derived from volBrain and FreeSurfer could be
normalized by adjusting for the total gray matter volume, but not
adjusting for intracranial volume. The manual tracing method revealed
linear growth of the amygdala in both boys and girls throughout the
school-aged years, which is valuable to provide a growth norm for
pediatric studies in the future.

The measurement accuracy of the amygdala volume varied across
the automatic methods. FreeSurfer overestimated amygdala volumes
(13%–28%), and this overestimation has been observed in previous
studies of the amygdala volume measurement by Freesurfer (Morey
et al., 2009; Schoemaker et al., 2016). It is likely due to the greater vari-
ability in the definition of the amygdala boundary and liberal inclusion
of voxels near this boundary (Morey et al., 2009; Schoemaker et al.,
2016). The degree of overestimation observed here was greater than
that reported for adults (7−9%) (Morey et al., 2009), but less than that
reported for children aged 6–11 years (93%–100%) (Schoemaker et al.,
2016). In addition, FSL had comparable volume estimates with manual
tracing or had slightly higher estimates than the manual method.
Although the FSL did not excessively overestimate and underestimate
amygdala volume, it showed high absolute difference percentage (17%–
21%) with manual tracing. The degree of volume difference observed
here was also greater than that reported for adults (3−6%) (Morey et al.,
2009), but less than that reported for children aged 6–11 years (40%–
50%) (Schoemaker et al., 2016). Schoemaker et al. (2016) suggested
it might be caused by using a standard brain template derived from
adults. This may introduce greater bias when applied to a pediatric
sample, in which amygdala sizes and shapes differ from adults. Another
possible reason for this volume difference might be artifacts caused
by more movements in children during imaging, causing a less precise
differentiation and classification of amygdala structures by FreeSurfer.
In contrast, volBrain underestimated the amygdala volume (35%–37%)
compared to the manual tracing. The underestimation may reflect
the stringent inclusion of the amygdala during the segmentation by
volBrain. This underestimation has been also observed previously, but is
greater in children than for adults (3.38%) (Manjón and Coupé, 2016).
volBrain segmentation uses manually labeled brain templates from 50
individuals with ages from 2 years old and 24–80 years old (Manjón
and Coupé, 2016), which have no overlap with the age range of
12
the current study (6–19 years old). The opposite directions of the
estimation differences between FreeSurfer and volBrain methods imply,
other than using unmatched templates, the vast variation in automatic
extraction that may exist. Further studies are clearly warranted to
explore whether the use of age-matched templates could improve the
accuracy of automatic amygdala segmentation (Dong et al., 2020).
Given the systematic differences in the amygdala volume between
automatic and manual segmentation, it calls for caution on interpreting
the results of the absolute amygdala volumes obtained by using the
automatic methods in children and adolescents.

FreeSurfer and FSL exhibited more spatial volume overlap than
volBrain with the manual tracing method. The spatial overlap (76–
79%) observed between automatic methods (CS-FS and FSL) and the
manual segmentation is consistent with the results reported by Morey
et al. (2009). A higher overlap of volBrain was reported in a previ-
ous study (Manjón and Coupé, 2016), which is inconsistent with the
observation in the present work. This could be related to the exces-
sive underestimation of volume caused by the age-mismatched brain
templates used by volBrain when segmenting amygdala for children
and adolescents. In terms of spatial overlap, FreeSurfer and FSL outper-
formed volBrain for human pediatric amygdala segmentation. However,
in terms of false-positive rate, FreeSurfer performed less than FSL, which
in turn less than volBrain. The high false-positive rate of FreeSurfer
could be an indication of its overestimation of the volume. A previous
study suggested that it was due to excessive segmentation of brain
structures in FreeSurfer by including structures and areas not part of
the target structure (Næss-Schmidt et al., 2016). Correspondingly, the
overestimation of FreeSurfer help to reduce errors of the exclusion of
larger proportions of amygdalar structure, which resulting lower false-
negative rates than volBrain. In terms of false-negative rate, FreeSurfer
performed best among these automatic methods. Although few stud-
ies have explored the performance of volBrain on human amygdala
segmentation in terms of the false-positive rates and false-negative
rates, similar performance results have been shown for the automatic
segmentation of the hippocampus and thalamic volume (Næss-Schmidt
et al., 2016). According to inter-individual differences in segmented
amygdala volumes, the two automatic methods only demonstrated
moderate correlation with the manual segmentation, while FSL was not
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significantly correlated with manual tracing. These are consistent with
previous work (Morey et al., 2009; Grimm et al., 2015), implying its
potential challenge for reliable measurements of their growth curves.
Though, LG-FS showed slightly lower (not statistically significant) false-
egative rates than the CS-FS segmentation, which outperformed LG-FS

in terms of volume difference, spatial overlap and false positive rate
metrics. The possible bias by matching head sizes across all the time
points in children caused the worse accuracy of LG-FS than CS-FS.

verall, the CS-FS, volBrain and FSL methods have advantages and
disadvantages for the assessment of amygdala volume. The complex
amygdala structure adds difficulty to reliably and validly estimate its
volume. It is a trade-off to choose which method should be used,
requiring careful evaluation, and also demonstrates which facet of the
automatic methods should be further improved in the future.

In this study, we found that the automatic segmentation performed
worse in smaller amygdalae in developmental neuroimaging studies
of children and adolescents. After controlling the quality of scan, the
segmentation accuracy increased with amygdala volume, and then
remained stable when the amygdala has reached a large enough size
(around 1.3–1.4 ml). Previous studies have found that smaller brain
structures were associated with greater automatic segmentation errors
due to their sizes and shapes differing from adults (Schoemaker et al.,
2016; Biffen et al., 2020; Sánchez-Benavides et al., 2010). Our results
are consistent with that neuro-anatomical and geometric features could
systematically influence the accuracy of their automatic segmentation.
This bias is likely less problematic in adults, whose structures are
commonly larger than in children. Poor scan quality caused less precise
differentiation and classification of amygdala structures when using
FreeSurfer and volBrain (see Supplementary TableS1). However, after
ontrolling the quality of scans, the segmentation accuracy was still
mproved when the amygdala volume increased, and then remained
table when the amygdala reached a large enough size. The patterns
f the spatial overlap function were highly similar between the two
odels (i.e., with/without controlling CJV and SNR). Therefore, we

onsidered the nonlinearity presented in Fig. 3 is more likely attributed
o the use of age-unmatched brain templates and the anatomical com-
lexity of human amygdala. Previous studies on the amygdala have
eported that the human amygdala could undergo the significant and
omplex deformation during childhood and adolescence (Schoemaker
t al., 2016). The adult templates used in the automatic protocols
ismatched with the current developing samples, especially with the

oung children, more likely causing poor segmentation results of young
mygdalae. The human amygdala has been widely investigated in
ediatric studies and associated with many developmental disorders
uch as autism (Mosconi et al., 2009; Schumann et al., 2009, 2004)
nd anxiety disorder (De Bellis et al., 2000; Hill et al., 2010; Milham
t al., 2005). Our findings further highlighted the importance of using
ge-matched template and improving the measurement accuracy of
utomatic segmentation for developing individuals. We argue that, in
he current stage, manual tracing should be given priority for amygdala
olume estimation in pediatric research. In the future, eliminating the
ias in automatic segmentation methods will be of great importance.

Although the statistical models indicated that the systematic differ-
nces in amygdala volume exhibited moderately marginal effects on
rowth curve modeling between the FSL and manual segmentation, our

post-hoc growth chart analyses demonstrated remarkable discrepancies
in age-related changes of the human amygdala across development.
As the ‘gold standard’, manually traced amygdala volumes exhibited
linear growth patterns without sex differences in growth rate. This
is completely consistent with the patterns validated by the manual
tracing method for amygdala growth from youth to adulthood in the
macaque monkey (Schumann et al., 2019). Most previous studies of
amygdala development in children and adolescents have been based on
automatic segmentations (Wierenga et al., 2014; Goddings et al., 2014;
Herting et al., 2018; Uematsu et al., 2012) while manual segmentation
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has been used in only two studies (Giedd et al., 1996; Merke et al.,
2003). We noted that the developmental patterns of the amygdala
have been inconsistent across these studies between automatic and
manual methods. The growth patterns we detected by manual tracing
are generally consistent with that by Giedd et al. (1996) and Merke
et al. (2003) although they observed volume increases only in boys,
but not in girls. In our study, the amygdala volumes grew in both
boys and girls along highly similar trajectories. Such distinction may
be an indication of the difference in scanning field strengths (3T
versus 1.5T). Higher-resolution MRI enabled us to detect subtle changes
in the human amygdala volume. Regarding automatic segmentation,
previous studies generated amygdala growth curves with inverted U
shapes from childhood to adolescence with peaks around 12–15 years
old (Wierenga et al., 2014; Goddings et al., 2014; Herting et al., 2018;
Uematsu et al., 2012). These were similar to our findings based on CS-
FS and FSL segmentation, which showed a nonlinear trend of growth,
especially for the right amygdala, with an inverted U-shaped trajectory
(the volume peak at 14.18 years old). LG-FS produced similar shape
with those of CS-FS, all exhibiting somehow nonlinearity although
its degree of nonlinearity is left–right flipped between the two FS
segmentation methods (Fig. 4). Although the LG-FS detected the sta-
tistical significance of amygdala’s age-related increases, it achieved by
overestimating amygdala volume more than CS-FS and sacrificing its
segmentation accuracy. Therefore, only in the case of exploring the
growth trend of the amygdala, LG-FS is preferable to CS-FS. volBrain
segmentation yielded growth curves most similar to that obtained by
the manual tracing for the amygdala development. volBrain seems to
have less error modeling growth curves than FreeSurfer. However, given
limited studies using volBrain to investigate amygdala development in
children and adolescents, it is hard to compare our results with others
directly.

The growth curves between the automatic methods (except for FSL)
and manual tracing became similar when we adjusted amygdala vol-
umes by the total gray matter volume rather than intracranial volume.
This may reflect the reduction in the bias related to the amygdala size in
automatic segmentation as mentioned above correcting the amygdala
volume. As shown in Figure S7, the GMV derived with all methods (ex-
cept for FSL) decreased as growing. The inclusion of GMV as a covariate
in regression of amygdala volume on age could explain some variances
of the amygdalar volume decreases (ei.ge., the decreasing part of the
inverted-U shapes), resulting in the changes of developmental patterns
from weak linearity to strong linearity as we demonstrated. We also
found that a smaller GMV was associated with worse performance of
automatic amygdala segmentation (except for FSL) but remain stable
for large enough GMVs (Figure S4). As the GMV decreased with age,
the measurement bias for younger children could be removed more
than older children by controlling for GMV. This further strengthened
the linearity of the developmental patterns of volBrain and FreeSurfer.
In contrast, the measurement bias of FSL was negatively related to
GMV, leading to more corrections of the measurement bias for older
participants and thus the aggravated decreases. As shown in Figure S8,
the ICV obtained with the three methods all increased when growing.
The inclusion of ICV as a covariate in regression could explain some
variances of age-related increases of amygdala volume. volBrain demon-
strated a segmentation bias associated with ICV (Figure S5), indicating
a smaller brain associated with worse amygdala segmentation but
remain stable for big enough brains. This might cause the changes
of developmental patterns of volBrain-derived amygdala from strong
linearity to weak linearity. However, CS-FS did not demonstrate such
an ICV-related segmentation bias (Figure S5) but higher false positive
rates of segmentation associated with larger brains (Figure S6). After
controlling ICV, the amygdala volumes of the smaller brains were
corrected little, while the volume estimates of the larger brains were
corrected more. This might explain that the changing pattern of CS-
FS derived growth curves from increasing with age to decreasing with

age. These results suggest that controlling for the gray matter volume
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improved the accuracy of curve-fitting on the volBrain and FreeSurfer
of amygdala from childhood to adolescence.

Accurate delineation of the development of the human amygdala
is fundamentally important by providing neuroimaging biomarkers for
various developmental disorders (DiMartino et al., 2014; Zuo, 2020;
Holla et al., 2020). Our findings present an unaddressed bias and chal-
lenge for charting the growth of the human amygdala across school-age
children and adolescents-the growth curve modeling was highly de-
pendent on the segmentation method. The methodological differences
may contribute to the inconsistencies among previous findings re-
garding the patterns of amygdala development during childhood and
adolescence (Wierenga et al., 2018; Uematsu et al., 2012; Albaugh
et al., 2017; Herting et al., 2018). Given the inconsistency, we give
researchers working on the amygdala of children and adolescents some
suggestions: (1) Manually tracing the amygdala if possible. This seems
affordable but prohibitive for very large-scale MRI datasets, considering
it takes 90 min to manually tracing an amygdala and will take 3
months to manually trace 500 amygdalae. A practical solution would
be distributing the mission to a tracing team achieved high within-
operator and between-operator reliability of the tracing operation by
an established training protocol. (2) Checking and correcting the au-
tomatic segmentation of the amygdala by a trained professional to
improve the accuracy and save the effort if the manual segmentation
is not feasible. This would likely lead to significantly improved accu-
racy and time cost of the tracing segmentation although need further
investigations in future. In addition, a very promising solution is to
train a computational segmentation tool by integrating the knowledge
aggregated from big data of the manually segmented amygdalae by
using some novel methods (e.g., the deep learning algorithms). (3)
Using age-matched brain templates for automatic segmentation (Dong
et al., 2020). (4) Using high-resolution MRI protocol on scanning the
amygdala. (5) Adjusting the amygdala volume by total gray matter
volume when conducting statistical analysis. (6) Comparing and in-
terpreting previous findings cautiously using different segmentation
methods than the study proposed, particularly for the smaller amyg-
dalae (e.g., younger children and females). To facilitate the use of
the growth curves for human amygdala development at school age,
we made the manually traced amygdalae publicly available to the
community via the National Science Data Bank (http://www.doi.org/
10.11922/sciencedb.01299).

Our study has some limitations that should be noted. First, the
age span of our sample might not be sufficient for examining the
full range of development of the human amygdala from childhood,
adolescence and into young adulthood. While the previous work in
the macaque monkey revealed the linear pattern of amygdala growth
from youth to adulthood (Schumann et al., 2019), further work would
benefit from the extension of the age span into adulthood for direct
growth assessments in human in future. Second, we did not investi-
gate the measurement reliability across different versions of automatic
segmentation tools, which has been shown remarkable influences on
the brain segmentation (Gronenschild et al., 2012). This factor should
be carefully evaluated by using different versions of these tools to
model amygdala growth. Finally, we only examined the overall volume
measurement of the human amygdala. In the future, we will employ
more local and shape measurements (Li et al., 2012; Roshchupkin et al.,
2016) for investigating more details of human amygdala growth. To
provide more efficient and accurate tracing of the pediatric amyg-
dala, we also plan to develop an automatic algorithm based upon the
manually traced samples using more advanced methods such as deep
learning (Ataloglou et al., 2019).

5. Conclusion

By manually tracing a large-sample pediatric MRI dataset from
the accelerated longitudinal cohort, we charted the growth of human
amygdala across school age. We identified measurement biases for
14
the automatic amygdala segmentation methods and their impacts on
modeling growth curves of the amygdala volumes from childhood
to adolescence. There is considerable room for the methodological
improvement on next generation tools of automatic segmentation to
achieve more accurately tracing of the human amygdala during devel-
opment. Our work provides not only a practical guideline for future
studies on amygdala in children and adolescents but also its growth
standard resources for translational and educational applications. This
can be implemented with normative modeling (Holla et al., 2020;
Marquand et al., 2016; Liu et al., 2021) for individualized assessments
on typical or atypical development as well as their associations with
behavioral performance, school achievement and clinical symptoms.

6. The chinese color nest consortium

The Chinese Color Nest Consortium members are at http://deepneuro
bnu.edu.cn/?p=163.
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