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Letter to the Editor

Nilotinib, imatinib (structures shown in Supplementary Figure S1) and other tyrosine kinase 

inhibitors (TKIs) have been shown to be transported by the ABC drug transporters P-

glycoprotein (P-gp) and ABCG2 (1, 2). This is clinically important, as the transporters not 

only hamper the bioavailability of these TKIs but may also cause the emergence of drug 

resistance in patients. We have previously shown that imatinib and nilotinib interact at the 

substrate-binding pocket of ABC transporters, but do not interact at the ATP sites of these 

transporters (3). Identification of the key structural features of nilotinib and similar TKIs is 

essential for understanding their interaction with P-gp. Towards this goal, molecular 

docking, mutational mapping and quantitative structure-activity relationships were used to 

identify nilotinib’s binding site on P-gp.

Nilotinib was docked in a human P-gp homology model that was developed based on the 

mouse P-gp crystal structure (4) using the XP-Glide docking method to understand the 

orientation and the complementarity of pharmacophore features of nilotinib with respect to 

the residues in the drug-binding pocket of P-gp (Figure 1a). Comparison of binding energy 

data for the docked poses of nilotinib at sites 1–4 (5) suggested site-1 (QZ59-RRR site) (4, 6) 

as the most favorable site (binding energy score of −9.52 kcal/mol). The binding pocket is 
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lined by residues that form electrostatic and hydrophobic contacts with a pyridine, a 

pyrimidine, a methyl-substituted phenyl ring, the carbonyl oxygen atom of the amide linker 

and the trifluoromethylphenyl ring of nilotinib (Figure 1a). Among these, the Y307 residue 

showed significant interaction through hydrogen bonding to the pyridine ring (-N---HO-

Y307, 2.4 Å) while A985 had hydrophobic contact with the CF3 group (3.3 Å), phenyl ring 

(3.2 Å) and imidazole ring (4.1 Å) of nilotinib. Furthermore, M949 also showed 

hydrophobic contact with the imidazole ring (5.1 Å) of nilotinib, (highlighted in red in 

Figure 1a). Therefore, the residues (Y307, M949, and A985) that interact with three major 

functional groups (pyridine, CF3 and imidazole) of nilotinib were selected for further 

analysis. The docking studies indicated these residues might determine the orientation and 

stabilization of nilotinib within the substrate-binding site of P-gp. These residues were 

mutated to Cys residues in a Cys-less P-gp to verify their role in interaction with nilotinib. 

Control Cys-less WT P-gp, Y307C, M949C and A985C P-gp mutants were expressed in 

HeLa cells (Supplementary Figure S2; mutants exhibited similar expression and function as 

Cys-less WT P-gp) and High-Five insect cells, as described in supplementary methods. 

Crude membranes from High-Five insect cells (expressing similar levels of mutant proteins 

(Figure 1b) were used to determine the interaction of these mutant P-gps with nilotinib. The 

effect of nilotinib was evaluated on ATPase activity and photolabeling of mutant P-gps with 

[125I]-IAAP binding (Figure 1c and Supplementary Table S1), as these approaches can be 

used to determine the interaction of substrates at the substrate-binding pocket of P-gp (7, 8). 

Nilotinib’s ability to stimulate the ATPase activity of Y307C-, M949C- and A985C- mutant 

P-gps was significantly reduced or abolished compared to Cys-less WT P-gp 

(Supplementary Table 1). Similarly, nilotinib’s ability to compete for [125I]-IAAP 

photolabeling was significantly reduced for Y307C- and almost completely lost for M949C- 

and A985C mutant P-gps (Figure 1c, Supplementary Table S1). These observations 

provided experimental support to the in silico docking studies. The residues Y307, M949 

and A985 contribute to nilotinib binding, indicating that site-1 may be the primary binding 

site for nilotinib on P-gp. In silico introduction of these mutations in the homology model 

helped to visualize the local changes in the binding pocket (Supplementary Figure S3). In 

the nilotinib docked model of P-gp, pyridine nitrogen was present at a position 2.4 Å from 

the side chains of Y307; M949 was 5.1 Å from the imidazole ring, while A985 was 4.1 Å 

from the imidazole ring of nilotinib (Figure 1). In the triple mutant, the pyridine nitrogen 

atom lost one critical hydrogen bonding interaction with the Y307 residue, increasing the 

distance to 5.9 Å (Supplementary Figure S3). Similarly, the hydrophobic interactions with 

the imidazole ring and the trifluoro-methyl aniline moiety were lost when M949 and A985 

were mutated to hydrophilic cysteine residue (Supplementary Figure S3). These data, taken 

together, provide clear evidence that site-1 is indeed the primary site of nilotinib binding on 

P-gp, with Y307 interacting with the pyridine ring, A985 interacting with the 

trifluoromethylphenyl group and M949 interacting with the imidazole ring of nilotinib.

To further validate the importance of functional groups of nilotinib for interacting with P-gp, 

five structural derivatives of nilotinib (Figure 2a) that lacked critical functional groups such 

as the pyridine ring, pyrimidine ring, CF3 group and imidazole ring were synthesized (as 

described in Supplementary methods). These derivatives were evaluated for their interaction 

with P-gp by testing their ability to inhibit rhodamine 123 efflux from HeLa cells. 
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Compound 1 (CF3 replaced by CH3) showed inhibition similar to that of nilotinib (data not 

shown), suggesting that substitution of fluorine with hydrogen at the CF3 group is not a 

critical determinant of nilotinib’s binding to the P-gp. Derivative 2 (no pyrimidine-pyridine 

ring system) was comparable to 3 (no pyridine ring) and 4 (imidazole replaced with a 

benzoic acid) was comparable to 5 (no imidazole ring) with respect to their ability to inhibit 

P-gp transport activity (data not shown). Therefore, 5 and 3, derivatives lacking the key 

imidazole or pyridine/pyrimidine rings, respectively, were further tested for interaction with 

P-gp. Compared to nilotinib, 3 completely lost the ability to inhibit photolabeling of P-gp 

with [125I]-IAAP, but 5 was still able to inhibit approximately 30–35% of [125I]-IAAP 

photolabeling (Figure 2b, Supplementary Table S2). Similarly, 3 did not stimulate the 

ATPase activity but 5 was equally effective as nilotinib in stimulating the ATPase activity of 

Cys-less WT P-gp (Supplementary Table S3). In addition, 5 inhibited the rhodamine 123 

efflux by P-gp, while 3 had no effect (Figure 2c). These results show that the interaction of 

nilotinib at the substrate-binding pocket of P-gp is significantly affected when the pyridine 

and/or pyrimidine ring is absent, while loss of the imidazole rings only slightly perturbs this 

interaction. Taken together, the results with derivatives corroborate the docking 

conformation and the mutational mapping data. While the pyridine and pyrimidine moieties 

of nilotinib are important for interaction at the drug-binding pocket, the imidazole group is 

not critical for this interaction.

Nilotinib and imatinib were also compared for their binding orientation in the substrate-

binding pocket of P-gp (Supplementary Figure S4). As described in supplementary results, 

the observed affinity differences between nilotinib and imatinib for P-gp can be explained 

based on the above docking analysis and its comparison with the known crystal structures of 

imatinib and nilotinib bound to BCR-ABL kinase (9, 10).

Several studies have used a docking-based approach to identify the substrate-binding pocket 

in P-gp, but most of those studies relied on either SAR or mutagenesis alone [reviewed in 

(11)]. We used a two-pronged approach, where the docked orientation of nilotinib was not 

only validated by directed mutagenesis of selected residues but was also verified using the 

structural derivatives of nilotinib. Although the data derived from modeling and mutational 

studies with nilotinib and its derivatives corroborates well with the docked conformation of 

nilotinib, there is still a possibility that nilotinib may bind to a secondary site due to the 

chemical and structural flexibility of a large drug-binding pocket that can accommodate 

more than one ligand simultaneously (12–16).

In recent years, multidrug resistance-linked transporters have gained considerable attention 

as potential targets to improve cancer chemotherapy and to increase bioavailability/tissue 

penetration of drugs. Therefore, the interaction of these transporters with targeted 

therapeutic drugs such as nilotinib at the molecular level needs further elucidation. To our 

knowledge, this is the first report that provides an understanding of the interaction of 

nilotinib with human P-gp through molecular modeling, mutational mapping and SAR 

studies. We identified residues that are crucial for binding of nilotinib to the primary site on 

P-gp and by using derivatives we defined the molecular determinants of nilotinib for binding 

to P-gp. We believe these findings will help to synthesize novel inhibitors of TKs that do not 
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interact with P-gp, thus minimizing the possibility of development of resistance in cancer 

cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Docking of nilotinib in the drug-binding pocket of human P-gp and analyses of mutant 

proteins. (a) Glide-predicted binding pocket of nilotinib in the homology model of human P-

gp. Nilotinib was docked in a human P-gp homology model using Glide, as described in 

supplemental Materials and Methods. The amino acids that contribute to nilotinib’s binding 

site are shown here. Three residues (Y307, M949 and A985) used for mutational analyses 

are highlighted by red boxes. The predicted distance of these residues from the closest 

functional group of nilotinib is marked. (b) Expression of mutant P-gps. Colloidal blue stain 

of crude membrane protein (10 μg/lane) from Cys-less WT-P-gp, Y307C, M949C and 

A985C P-gps expressd in High-Five insect cells. (c) Nilotinib does not inhibit the labeling of 

mutant P-gps with [125I]-IAAP. A representative autoradiogram from three independent 

experiments with Cys-less WT, Y307C, M949C and A985C mutant P-gps photo-crosslinked 

with [125I]-IAAP in the absence or presence of 5 μM nilotinib is shown.
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Figure 2. 
Synthesis of nilotinib derivatives and characterization of their interaction with P-gp. (a) 

Chemical structures of nilotinib and its derivatives used in this study. Nilotinib and 

derivatives 1, 2, 3, 4 and 5 were synthesized as described in supplementary methods. (b) A 

representative autoradiogram from three independent experiments with Cys-less WT P-gps 

photo-crosslinked with [125I]-IAAP in the absence or presence of 5 μM nilotinib or 

derivative 3 and 5 is shown. (c) The histogram shows accumulation of rhodamine 123 in the 

presence and absence of 5 μM of nilotinib or derivative 3 or 5 in BacMam-P-gp virus-

transduced HeLa cells (additional details are given in the legend to supplementary Figure 

S2)
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