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Identification of copy number variations using high density 
whole-genome single nucleotide polymorphism markers in 
Chinese Dongxiang spotted pigs
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Objective: Copy number variations (CNVs) are a major source of genetic diversity comple­
mentary to single nucleotide polymorphism (SNP) in animals. The aim of the study was to 
perform a comprehensive genomic analysis of CNVs based on high density whole-genome 
SNP markers in Chinese Dongxiang spotted pigs.
Methods: We used customized Affymetrix Axiom Pig1.4M array plates containing 1.4 million 
SNPs and the PennCNV algorithm to identify porcine CNVs on autosomes in Chinese Dong­
xiang spotted pigs. Then, the next generation sequence data was used to confirm the detected 
CNVs. Next, functional analysis was performed for gene contents in copy number variation 
regions (CNVRs). In addition, we compared the identified CNVRs with those reported ones 
and quantitative trait loci (QTL) in the pig QTL database.
Results: We identified 871 putative CNVs belonging to 2,221 CNVRs on 17 autosomes. We 
further discarded CNVRs that were detected only in one individual, leaving us 166 CNVRs 
in total. The 166 CNVRs ranged from 2.89 kb to 617.53 kb with a mean value of 93.65 kb 
and a genome coverage of 15.55 Mb, corresponding to 0.58% of the pig genome. A total of 
119 (71.69%) of the identified CNVRs were confirmed by next generation sequence data. 
Moreover, functional annotation showed that these CNVRs are involved in a variety of 
molecular functions. More than half (56.63%) of the CNVRs (n = 94) have been reported in 
previous studies, while 72 CNVRs are reported for the first time. In addition, 162 (97.59%) 
CNVRs were found to overlap with 2,765 previously reported QTLs affecting 378 phenotypic 
traits.
Conclusion: The findings improve the catalog of pig CNVs and provide insights and novel 
molecular markers for further genetic analyses of Chinese indigenous pigs.
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INTRODUCTION 

Copy number variations (CNVs) refer to the insertion, deletion and duplication of DNA 
segments of 1 kb or larger with variable copy number compared with the reference genome. 
Since the milestone work by Iafrate et al [1] and Sebat et al [2] that first reported CNVs in 
the human genome, thousands of CNVs have been detected across the human genome. It 
has been reported that CNVs account for 3.7%, 4.6%, 4.2%, 1.4%, 3.6%, and 5.8% of human, 
cattle, dog, rat, horse, and pig assembled genomes, respectively [3-8].
  A list of CNVs are known to affect phenotypic traits in humans [3]. In livestock, CNVs 
have also been repeatedly shown to cause phenotypic variations. For instance, the dupli­
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cation of the proto-oncogene receptor tyrosine kinase (KIT) 
gene is responsible for the white coat phenotype in pigs [9]. 
The copy number alteration in intron 1 of the sex determin­
ing region Y-Box (SOX5) gene contributes to the pea-comb 
phenotype in chickens [10]. A 4.6-kb duplication in intron 6 
of the syntaxin 17 gene causes hair graying and melanoma in 
horses [11], and CNV and missense mutations of the agouti 
signaling protein gene lead to different coat colors in goats 
[12].
  Currently, CNVs can be identified using three different 
approaches, including single nucleotide polymorphism (SNP) 
genotyping array, comparative genomic hybridization and 
next-generation sequencing [13]. Of these three approaches, 
SNP genotyping array has been popular in large-scale CNV 
surveys due to it relatively lower cost [14]. In pigs, Fadista 
et al [15] first reported 37 copy number variation regions 
(CNVRs) that were identified in 12 unrelated Duroc pigs 
using the comparative genomic hybridization method. Then, 
Ramayo-Caldas et al [16] detected 49 CNVRs in 55 animals 
belonging to several generations of the Iberian boars crossing 
with Landrace sows using Porcine SNP60K BeadChip array. 
Afterwards, a number of CNVs were inferred from whole-
genome 60K SNP data of diverse pig breeds [8,14,17]. 
  Dongxiang spotted pigs, a representative Chinese local pig 
breed, was originally distributed in Dongxiang county, Jiangxi 
province of China. Dongxiang spotted pigs are well adapted 
to local environments and roughage feed occurring in the 
middle and lower area of the Yangtze River. This breed is also 
known for strong disease resistance and desirable meat qual­
ity, providing a valuable genetic resource for further genetic 
improvement of commercial breeds in Chinese pig industry 
[18]. We herein used a customized Affymetrix Axiom Pig1.4M 
array plate containing 1.4 million SNPs and the PennCNV 
algorithm to identify porcine autosomal CNVs in Chinese 
Dongxiang spotted pigs, aiming to improve the catalog of pig 
CNVs and facilitate the identification of trait-related CNVs 
for further selective breeding of pig breeds.

MATERIALS AND METHODS 

Ethics statements
All animal work was carried out according to the approved 
guidelines established by the Ministry of Agriculture of China. 
The Ethics Committee of Jiangxi Agricultural University spe­
cifically approved this study.

Experimental animals
Samples were collected from ear tissues of 96 Dongxiang spot­
ted pigs as described in our previous report [19]. Briefly, these 
96 pigs were sampled from the nucleus population of Dong­
xiang spotted pigs in a national conservation farm in Dongxiang 
county, Jiangxi Province, China. The farm is the only state-

supported farm specifically for the conservation of Dongxiang 
spotted pigs. The nucleus population currently comprises 
~120 sows and 15 boars and is managed to maintain its ge­
netic diversity without intensive selection for any particular 
traits.

Genotyping and quality control
Genomic DNA from the 96 individuals was extracted from 
ear tissue using a standard phenol/chloroform method [20]. 
DNA quality was measured by spectrophotometry and agarose 
gel electrophoresis and was finally diluted to a concentration 
of 50 ng/μL. All 96 pigs were genotyped with a customized 
Affymetrix Axiom Pig1.4M array plate as previously described 
[19]. Briefly, a total of 1,362,630 SNPs were successfully geno­
typed for these 96 pigs. Before CNV calling, we first performed 
a quality control by Plink v1.07 [21]. After quality control 
procedures, one individual was removed due to its missing 
genotype date rate (>0.1), 678 SNPs were discarded due to 
Hardy-Weinberg exact test, and 85,205 and 711,888 SNPs 
were discarded due to their genotype call rates (<0.90) and 
minor allele frequencies (<0.05), respectively. A final set of 
566,795 SNPs were retained for subsequent CNV calling.

Copy number variations calling 
The CNVs were called using the PENNCNV software based 
on a hidden Markov model (HMM) and SNP chip data [22]. 
The PENNCNV algorithm incorporates various sets of in­
formation such as total signal intensity (Log R ratio [LRR]), 
the allelic intensity ratio (B allele frequency, [BAF]), the dis­
tance between SNPs, the population frequency of B allele 
(PFB) simultaneously for accurate CNV detection. Canonical 
genotype clustering files were generated successively by gener­
ating affy_geno_cluster.pl and normalize_affy_geno_cluster.
pl programs from three original chip genotype information 
files: AxiomGT1.call.txt, AxiomGT1.confidences.txt and 
AxiomGT1.summary.txt. Individual-based signal intensity 
(LRR) was split by kcolumn.pl program from the canonical 
genotype clustering files that contain the LRR values and the 
BAF values for each marker in each individual [23]. 
  The Sscrofa genome assembly (10.2 version, ftp://ftp.en 
sembl.org/pub/release-89/fasta/sus_scrofa/dna/) was explored 
to annotate SNPs. The PFB file was created from signal in­
tensity data, which was then explored to detect raw CNV 
calls using the default –test algorithm of the hhall.hmm model 
program. To minimize false-positive rate in CNV identifi­
cation, we used strict quality control and filtering criteria 
to generate raw CNV calls. Individuals with a standard de­
viation of LRR>0.3, BAF drift>0.02, a waviness factor>0.05 
or <–0.05 were filtered. Five samples were discarded during 
quality control, leaving us 90 animals for further analyses. 
Finally, the PENNCNV software was explored to identify 
loss (deletion) and gain (duplication) events in target regions. 
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Overlapped CNVs that were detected by more than one in­
dividual in a certain region were merged to form CNVRs. 
According to the distribution frequencies of these CNVs in 
their covered region, the location of the 2.5% cumulative 
frequencies at both end of the region was defined as the start 
and end position of CNVRs. 

Validation of copy number variation regions by whole-
genome sequence data
Two DNA pools each comprising 12 Dongxiang spotted pigs 
were re-sequenced with paired-end reads of 150 bp at 30× 
coverage using a Hiseq/NovaSeq platform. One pool con­
tained DNA of 12 sows and the other included DNA of 10 
sows and two boars. Reads were aligned against the Sscrofa 
reference genome (version 10.2) using Burrows-Wheeler 
Aligner (BWA) [24]. The bam file of mapped paired-end 
reads was sorted and indexed with marked PCR duplicates 
and local realignment and qualities were recalibrated. CNV 
caller software was then explored to detect CNVs [25]. The 
main steps included: i) divided the reference genome into 
the specified size of sliding window; ii) counted the number 
of read segments in the matching window; iii) absolute copy 
number correction to the similarity between the windows; 
iv) corrected and normalized GC contents; v) detected copy 
number based on the standardized reading signal [25]. We 
selected 400 bp as a sliding window and adopted the sug­
gested parameters.

Gene contents and functional annotation in copy 
number variation regions 
Gene contents in CNVRs were retrieved using the genes in 
ensemble genes 89 database downloaded from ftp://ftp.en 
sembl.org/pub/release-89/gff3/sus_scrofa//Sus_scrofa.Sscrofa 
10.2.89.chr.gff3.gz. We first converted the unannotated pig 
ensemble genes to orthologous mouse ensemble genes, then 
functional annotation was performed with the clueGO func­
tion in Cytoscape v3.6.0 (http://www.cytoscape.org/) for gene 
ontology (GO) and Kyoto encyclopedia of genes and genomes 
(KEGG) pathway enrichment analyses. We also compared 
the identified CNVRs with the reported quantitative trait loci 
(QTL) in the pig QTL database (http://www. animalgenome.
org/cgi-bin/QTLdb/SS/index) or those CNVs reported in pre­
vious studies. 

RESULTS 

Genome-wide detection of copy number variations 
In the present study, 90 Dongxiang spotted pigs were suc­
cessfully genotyped using the Affymetrix Axiom Pig1.4M 
array plate. After quality control, the filtered SNPs were ex­
plored to detect CNVs using the PennCNV software. A total 
of 3,871 CNVs were identified on 17 autosomes. The average 

number of CNVs was 43.01 per individual. By aggregating 
the overlapping CNVs, we detected 2,221 CNVRs on the 17 
autosomes. We further eliminated the CNVRs that were 
detected only in one individual, leaving us 166 CNVRs. The 
166 CNVRs ranged from 2.89 kb to 617.53 kb, with a mean 
value of 93.65 kb and a genome coverage of 15.55 Mb, cor­
responding to 0.58% of the pig genome. Of the 166 CNVRs, 
111 (66.87%) were identified as gain events, 46 (27.71%) as 
loss events, and 9 (5.42%) as gain-loss event (Supplementary 
Table S1). The 166 CNVRs were not uniformly distributed 
across the pig genome (Figure 1). Twenty-six (15.66%) CNVRs 
were detected on Sus scrofa chromosome (SSC) 2, while no 
CNVR was found on SSC18. On average, 1.84 CNVRs were 
detected per individual. 

Validation of copy number variation regions by whole-
genome sequence data
Whole-genome sequence data of two DNA pools of Dong­
xiang spotted pigs were explored to detect CNVRs using 
CNVcaller [25]. We detected 700 discrete CNVRs based on 
the whole-genome sequence data, of which 119 perfectly 
overlapped with the 166 CNVRs inferred from the whole-
genome 1.4 M SNP data (Supplementary Table S2).

Comparison of the identified copy number variation 
regions with previous reports
We compared the predicted CNVRs in this study with the 
reported CNVRs inferring from whole-genome chip SNP 
markers in 11 previous studies (Table 1). In total, 94 (56.63%) 
CNVRs were consistent with previous studies. The other 72 
(43.37%) CNVRs were reported for the first time, of which 
39 were validated by the whole-genome sequence data (Sup­
plementary Table S3). The best concordance (36.75% CNVR 
count, 9.52% CNVR length) was observed between this study 
and the previous report by Paudel et al [26]. The second best 
match (21.69% CNVR count and 7.58% CNVR length) was 
found when compared to the results of Chen et al [8].

Analysis of genes content and overlapped quantitative 
trait loci within copy number variation regions 
A total of 100 genes partially or entirely spanning 77 CNVRs 
were retrieved from the ensemble genes 89 database, includ­
ing 92 protein-coding genes, three snRNA genes, one miRNA 
gene, one rRNA gene and three pseudogenes (Supplementary 
Table S4). To better understand the functional enrichment of 
the 100 genes, we performed GO and KEGG pathway analyses 
of these genes using the clueGO function in the Cytoscape 
software (http://www.cytoscape.org/). We found 8 statisti­
cally significant GO terms enriched for these genes after 
Bonferroni correction. The significant GO terms included 
sensory perception of chemical stimulus or smell, detection 
of chemical stimulus involved in sensory perception of smell 
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and ATP hydrolysis coupled ion transmembrane transport 
activity (Table 2). For the KEGG analysis, CNVRs-harbored 
genes were significantly enriched in one pathway: olfactory 
transduction (Table 2). In addition, 162 (97.59%) CNVRs 
were found to overlap with 2,765 previously reported QTLs 
affecting 378 phenotypic traits related to meat and carcass 
quality, reproduction, exterior, health and production, etc. 
(Supplementary Table S5). 

DISCUSSION 

We herein detected 166 CNVRs in this breed. These CNVRs 
covered 15.55 Mb, accounting for 0.58% of the pig autosomal 
genome, a proportion larger than 0.33% reported in highly 
inbred Iberian pigs using the 60k BeadChip SNP data [27], 
but within the range of 0.33% to 6.14% CNVR coverage as 
previously reported in other pig populations [28-30]. The 
different genome coverage and imperfect overlap of CNVRs 
among different studies may be due to several factors, such 

Figure 1. Distribution of copy number variation regions in the genome of Dongxiang spotted pigs. The X-axis values represent the chromosome position in Mb on the Sus 
scrofa 10.2 reference genome assembly. The Y-axis show all autosomal chromosomes.

Table 1. Comparison of CNVRs identified in this study with those 11 previous studies 

Study Platform Sample CNVR Total length (Mb) Overlapping Concordant length (Mb)

Chen et al [8] 60k SNP array 1,693 565 139.9 36 1.18
Wang et al [33] 60k SNP array 14 63 9.98 6 0.27
Paudel et al [26] NGS 16 3,118 39.2 61 1.48
Wang et al [28] 60k SNP array 302 348 150.5 10 0.28
G. Schiavo et al [45] 60k SNP array 297 170 72.33 10 0.29
Fernandez et al [27] 60k SNP array 223 65 9.68 6 0.33
Dong et al [14] 60k SNP array 96 105 16.71 15 0.54
Wang et al [30] NGS 49 3,131 42.1 16 0.13
Wang et al [46] NGS 252 455 11.36 2 0.02
Xie et al [17] 60k SNP array 120 172 80.41 23 0.80
Revilla et al [29] NGS 7 540 9.65 26 0.35

CNVRs, copy number variation regions; SNP, single nucleotide polymorphism; NGS, next-generation sequencing.
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as sample size, genetic background, CNV calling platforms 
and algorithms, and filtering criteria. In this study, we detected 
72 novel CNVRs, which could be attributed to the high-den­
sity SNP markers (n = 566,795) with a small average distance 
(3.08 Kb) among adjacent SNPs on the customized Axiom 
Pig1.4M array plate. 
  It has been shown that CNVs tend to occur near telomeres 
or centromeres and some genomic regions are particularly 
apt to structural rearrangements that create CNV hotspots 
[31]. We herein identified two or more genes in each of 30 
CNVRs, one in each of 47 CNVRs, and none in 89 CNVRs 
(Supplementary Table S4), suggesting that CNVs are prefer­
ably located in gene-poor regions in pigs [32]. We further 
showed that CNVR-related genes were significantly enriched 
in GO terms related to sensory perception of chemical stimulus 
or smell and ATP hydrolysis coupled ion transmembrane 
transport. These genes were also overrepresented in the olfac­
tory transduction KEGG pathway. Our finding is consistent 
with previous reports that most of CNVR-overlapped genes 
are related to the olfactory receptors in pigs [8,14,33].
  A total of 162 (97.59%) CNVRs resided in 2,765 reported 
QTLs affecting 378 phenotypic traits. These QTLs mainly 
affect several economically important traits, such as meat and 
carcass quality, reproduction, exterior, health and production. 
We note that CNVR30 overlap with a QTL for mycoplasma 
hyopneumoniae antibody titer. This CNVR comprises the 
cytochrome P450 4F2 gene that may play a key role in swine 
mycoplasma pneumoniae susceptibility. Mycoplasma pneu­
monia of swine (MPS) is a chronic and endemic respiratory 
disease caused by Mycoplasma hyopneumoniae and inflicts 
significant economic loss in swine industry [34]. There are 
obvious sensitivity differences among various pig breeds. For 
instance, compared with Western modern breeds, Chinese 
local pig breeds have a more intense immune response and a 
higher antibody level after infection with mycoplasma pneu­
monia [35]. Cytochrome P450 enzymes is known to mediate 
the suppression of inflammatory response caused by Myco­
plasma hyopneumoniae (MPS) via peroxisome proliferator 
activated receptor gamma signal pathway in pigs [36]. There­
fore, we assume that CNVR30 may have effects on immunity 

and resistance to MPS in Dongxiang spotted pigs. It is de­
served to be mentioned that 72 unique CNVRs were identified 
in Dongxiang spotted pigs. These CNVRs correspond to 32 
QTLs affecting meat and carcass quality, immunity function 
and reproduction traits (Supplementary Table S6). CNVR65 
is located in multiple overlapped QTLs for carcass quality and 
harbors the thyrotropin releasing hormone degrading enzyme 
gene related to growth and meat production traits in sheep 
[37,38]. Moreover, CNVR100 overlaps with QTLs for repro­
duction traits including litter size, teat number and uterine 
capacity. Lymphoid enhancer binding factor 1 (LEF1), one 
gene associated with teat number [39], falls in CNVR100. 
LEF1 belonging to T-cell specific factor family, a small family 
in vertebrates including four members. As a major tran­
scription factor of wingless signaling (Wnt), LEF1 mediates 
β-catenin that binds to DNA through a high conserved se­
quence CTTTGT [40]. LEF1 is an outstanding candidate 
gene for melanoma susceptibility as it can regulate microph­
thalmia-associated transcription factor, KIT-ligand (KITLG), 
tyrosinase, and other melanogenic genes [41,42]. LEF1 has 
be shown to associate with the development of white/black 
coat color in mink skin [43]. Dongxiang spotted pigs also 
have white/black coat colors, and we suspect that LEF1 CNVR 
may play a role in the formation of their coloring. Further 
studies are needed to test this assumption.
  We are aware that there are some limits in the current study. 
First, a larger sample size would have enabled us to identify 
more CNVs. Second, SNPs in sex chromosomes were dis­
carded. An improved algorithm is required to detect CNVs 
on the sex chromosomes. Finally, to reduce false-positive 
findings, we focused on the CNVs containing three or more 
consecutive SNPs (on average 3.08 kb) and discarded the 
CNVRs that were presented in only one individual. A pro­
portion of true low-frequency CNVs that comprise sporadic 
cases may have not been analyzed [44]. 
  In summary, we used a customized Affymetrix Axiom 
Pig1.4M data to uncover 3,871 CNVs and 166 CNVRs from 
90 Dongxiang spotted pigs. The 166 CNVRs are unevenly 
distributed across the pig genome. The GO and KEGG en­
richment analyses illustrate that 166 CNVRs are involved in 

Table 2. Go ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses of genes in the identified copy number variation regions

SUID ID Term p value Associated gene (%) No. gene

62 GO:0007606 Sensory perception of chemical stimulus 1.05E-33 6.57 35
63 GO:0007608 Sensory perception of smell 2.04E-34 7.47 34
66 GO:0009593 Detection of chemical stimulus 6.32E-33 6.67 34
69 GO:0050906 Detection of stimulus involved in sensory perception 7.85E-33 6.53 34
73 GO:0050907 Detection of chemical stimulus involved in sensory perception 5.05E-34 7.25 34
81 GO:0050911 Detection of chemical stimulus involved in sensory perception of smell 2.19E-35 8.00 34
89 GO:0090662 ATP hydrolysis coupled transmembrane transport 3.06E-03 4.17 3
90 GO:0099131 ATP hydrolysis coupled ion transmembrane transport 5.42E-03 4.35 3
93 KEGG:04740 Olfactory transduction 8.94E-33 7.64 32
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a number of molecular functions especially in olfactory trans­
duction. Of these CNVRs, 94 (56.63%) have been reported 
in previous studies, whereas 72 (43.37%) CNVRs are identi­
fied for the first time. These novel CNVRs improve the catalog 
of pig CNVs, which would benefit further identification of 
trait-related CNVs and contribute to selective breeding of 
Dongxiang spotted pigs and other breeds.
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