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Abstract

In this paper, a mathematical model with a standard incidence rate is proposed to assess the role of media such as facebook,
elevision, radio and tweeter in the mitigation of the outbreak of COVID-19. The basic reproduction number R0 which is the

threshold dynamics parameter between the disappearance and the persistence of the disease has been calculated. And, it is
obvious to see that it varies directly to the number of hospitalized people, asymptomatic, symptomatic carriers and the impact
of media coverage. The local and the global stabilities of the model have also been investigated by using the Routh–Hurwitz
criterion and the Lyapunov’s functional technique, respectively. Furthermore, we have performed a local sensitivity analysis
to assess the impact of any variation in each one of the model parameter on the threshold R0 and the course of the disease
accordingly. We have also computed the approximative rate at which herd immunity will occur when any control measure is
implemented. To finish, we have presented some numerical simulation results by using some available data from the literature
to corroborate our theoretical findings.
© 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

COVID-19 is an infectious disease caused by a strain of coronavirus called SARS-CoV-2 which has led the
hole world to a pandemic situation in such a short period of time. It is highly contagious with human-to-human

ransmission through out of respiratory droplets or contaminated surfaces. Symptoms of the disease are variable
nd as time passing, other variants have appeared. The most common signs are fever, coughing and difficulty
n breathing which can cause acute respiratory distress that can lead to death. Appeared in November 2019 in

uhan, mainland China, COVID-19 very quickly turned out to be a serious health problem around the world, with
atastrophic consequences for the evolution of humankind. Our modern world has never been confronted with a
isease of such magnitude [13,60]. Recent statistics of the course of the disease from its onset until September
021, estimate that around 232 million people have been affected, of which more than 4.76 million have died [2,4].
he latency period of COVID-19 is up to two weeks and infected people can spread the virus even if they do not
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show symptoms of the disease [8,18,26]. The recommended measures for prevention are social distancing, wearing
of masks in public, hand washing, mouth protection when sneezing or coughing. We can also list the disinfection
of certain surfaces, the tracing of infected people and the quarantine of those exposed or showing the symptoms
of the disease. Many types of vaccines are under development and vaccination campaigns are being implemented
to counter the spread of the disease [6,24]. At the same time, work is underway to produce therapeutic drugs
that could be efficacious against the virus. Meanwhile, the world is still shaken by the pandemic and to therefore
control the quick spread of the disease, everywhere the authorities have responded by implementing lockdowns,
travel restrictions by closing borders, etc [24,56,62]. The different measures taken to tackle the pandemic have
provoked social and economic disruptions in many parts of the world. For instance, we have seen postponements,
cancellations or to a lesser extent changes in the organization of many social events. The panic buying has led
to supply shortages. In addition, agricultural disruptions have also caused food shortages [18,25]. Besides, many
educational establishments have been partially or totally closed. Yet, this pandemic has had a positive impact on
the environment such as the decrease in pollution [5,37,43].

The study of the novel coronavirus has relatively attracted some attention in mathematical epidemiology
due to its seriousness and the way it has spread worldwide. Much work is underway to better understand the
dynamics of disease transmission and to propose efficient strategies to control it spreading and all the related
losses [2,8,13,41,50,65]. For instance, an interesting summary of several mathematical models that deal with some
important aspects of COVID-19 is presented in Padmanabhan et al. [48]. Among the aspects of the disease dynamics
that have received much attention and interest from the authors, we can point out the impact of the environment
in Asamoah et al. [8], the impact of detection on COVID-19 transmission in Mushanyu et al. [43] and the impact
of some public health measures in Cotta et al. [15]. Demongeot et al. [16] wrote an article devoted to identifying
parameters in the SI model of COVID-19. A real-time surveillance and evaluation with a second derivative model
in the first two months of COVID-19 epidemic in China has been proposed by Chen et al. [13]. Moreover, the
work of Z. Liu et al. [38] has helped to predict the cumulaive number of cases for the COVID-19 epidemic in
China from early data. Kassa et al. [25,26] and Obsu et al. [46] analyzed the relevance of the different strategies
used to control the spread of the disease. In addition, the role of asymptomatic people, quarantine, isolation and
the use of face mask has been investigated by Ivorra et al. [24], Ali et al. [4], Zeb et al. [62] and Eikenberry
et al. [18], respectively. In contemporary times, media coverage is identified as an alternate control measure which
brings behavioral changes among susceptible individuals, and it can be seen as partial treatment at low cost. Thus,
several authors have proposed some mathematical models to investigate the effect of media coverage in the control
of COVID-19 among which we can list Feng et al. [19], Kumar et al. [33], Rai et al. [49], Yan et al. [59], Zhou
et al. [63].

Furthermore, one of the major issues public health policy-makers meet in the implementation of any strategy
for COVID-19 control is public adherence due to people’s perceived beliefs. To raise awareness in these uncertain
times, one of the priorities of the world’s media was to cover the pandemic. But the ever-changing and sometimes
unverified nature of the published data on the ongoing of the disease has left journalists and researchers with
difficulty to provide accurate information to the public [28,31,54]. Also, since it is a global disease, COVID-19
is called an infodemic. For example, direct access to information through platforms such as Facebook, Twitter
and Youtube makes users vulnerable to rumors and questionable information [8,37,46]. And even though a lot
of misinformation have circulated through social media and mass media, in general the use of social media led
to behavioral changes and therefore made government measures more effective against the rapid spread of the
virus [11,46]. Some platforms have also been used by political movements and public health organizations to
effectively disseminate information and reach as many people as possible [18,25,37]. It is therefore evident that
media coverage has had a great influence on the disease dynamics. In the light of that, we hereby consider the impact
of the media in the mitigation of the epidemic [11,23,37]. For that, we built a compartmental mathematical model by
considering a standard incidence function in which we consider the contribution of asymptomatic, hospitalized and
symptomatic people, the loss of immunity even though this aspect about the COVID-19 is not yet well understood,
and mainly the introduction of the parameter M accounting for the media (facebook, television, radio, tweeter)
coverage that led to new habits and more seriousness in applying self-protective measures.

After the statement of the problem, we organize the remaining part of the paper as follows. In Section 2, we
explain the different steps and assumptions upon which we have built our model, we present our compartment

diagram and our disease transmission model. Section 3 concerns the mathematical study of the proposed model.
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O. Koutou, A.B. Diabaté and B. Sangaré Mathematics and Computers in Simulation 205 (2023) 600–618

w
s

2

s
S

t
σ

t
t
d
t
i
r

w
e

Fig. 1. Compartmental representation of the disease transmission dynamics.

More precisely, in this section, we proved the well-posedness of the model, we computed the disease-free
equilibrium point and the basic reproduction number that has been shown to be the key threshold parameter in
investigating the disease dynamics. Moreover, thanks to certain conditions on R0 (R0 < 1 or R0 > 1), to the
Routh–Hurwitz criterion and to Lyapunov’s function principle [29,30,32], we have studied the local and global
stabilities of the steady states. The sensitivity of R0 to the various parameters that compose it and herd immunity

ere studied in Section 4. We devoted Section 5 to the numerical simulations. The paper ends with a conclusion
ection where we give recommendations and perspectives.

. Model formulation

A deterministic model of COVID-19 global behavior is hereby presented. The population under consideration is
plit into several compartments. We then consider Susceptible S(t), Exposed E(t), Asymptomatic infectious A(t),
ymptomatic infectious I (t), Hospitalized H (t) and Recovered individuals R(t); we also consider a compartment

D(t) that tracks cumulative deaths due to the disease after hospitalization [18]. Therefore, at any time N (t) =

S(t) + E(t) + A(t) + I (t) + H (t) + R(t) is the total size of human population [1]. In addition, β is the baseline
ransmission rate, η1 and η2 account for the relative infectivity potential of hospitalized and asymptomatic carriers.

is the rate at which an exposed individual moves to the infectious class where individuals show symptoms of
he disease and α is the proportion of cases that goes to the symptomatic class after the latency period. We assume
hat only symptomatic people are hospitalized and the rate of hospitalization is ϕ. However, besides the natural
eath rate µ of the human population, there is the COVID-induced death rate denoted by δ. γA, γI and γH are
he recovery rates of asymptomatic, symptomatic and hospitalized individuals, respectively. Besides, ω is the losing
mmunity rate. The inflow of individuals into the population is assumed to enter the susceptible compartment at the
ate Λ (i.e recruitment rate which comprises new births and immigrants) [8,18,60].

We choose a standard incidence function as the force of new infection given by the following quantity

λv = (1 − M)β
η1 H + η2 A + I

N
(1)

ith M = f + m tv + r + T w where f is the efficiency rate of information shared through facebook, m tv is the

fficiency rate of information shared on television, r is the efficiency rate of information shared through radio and
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T w is the efficiency rate of information shared on tweeter [42]. Indeed, the parameter M , represents the rate of
efficiency of the media coverage within the community. It should be noted that the media coverage efficiency rate M
hardly reaches 1 (M < 1). In other words, it is very difficult that the impact of the media coverage in the behavior
hange reaches 100% [33,42,49,58,63]; this is because human behavior is very unpredictable. In fact, the advisable
hanges in behavior relates to community habits and therefore the implementation is much more difficult for most
eople. Lot of people understand, accept, incorporate and implement barrier measures after several media campaigns.
e can add to this the exorbitant cost of the media coverage, the decrease of media coverage impact as time passing,

he lack of knowledge about certain aspects of the COVID-19 disease dynamics. In general, other control methods
re then added to media awareness work in order to achieve a rapid extinction of the disease [33,42,49,58,63].
n this work, one of our objectives is to approximate a minimum value of M from which an extinction of the

COVID-19 disease is possible in an adequate environment. Moreover, the overall dynamics described above can be
summarized by the following diagram of Fig. 1.

Otherwise, the disease transmission dynamics is then given by the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = Λ + ωR − (1 − M)β
η1 H + η2 A + I

N
S − µS,

Ė(t) = (1 − M)β
η1 H + η2 A + I

N
S − (σ + µ)E

İ (t) = ασ E − (ϕ + γI + µ)I,

Ȧ(t) = (1 − α)σ E − (γA + µ)A,

Ḣ (t) = ϕ I − (δ + γH + µ)H,

Ṙ(t) = γI I + γA A + γH H − (ω + µ)R

Ḋ(t) = δH.

(2)

ith the following nonnegative initial conditions S(0) = S0 > 0, E(0) = E0 > 0, A(0) = A0 > 0, I (0) = I0 > 0,
H (0) = H0 > 0 and R(0) = R0 > 0, [1,22,27,47].

. Mathematical investigation of our model

.1. Positivity and boundedness properties

heorem 3.1. If S0, E0, A0, I0, H0, R0 are nonnegative, then so are S(t), E(t), A(t), I (t), H (t), R(t) for all time

> 0. Moreover, lim sup
t→+∞

N (t) ≤
Λ

µ
.

Proof. For that, we first show by using the contradiction that the state variable S is nonnegative for all t ≥ 0. Let
(t) = min

{
S(t), E(t), A(t), I (t), H (t), R(t)

}
and suppose that there exists t1 > 0 such that e(t1) = 0 and e(t) > 0

or all t ∈ (0, t1). Therefore, if e(t) = S(t) then each state of model (2) is positive and from the first equation of
2), we have

Ṡ(t) > −µS(t). (3)

t then follows that

0 = S(t1) > S0 exp (−µt1) > 0 (4)

hich leads to a contradiction.
Similar proof can be given for the other state variables. Thus, any solution of system (2) is nonnegative for t ≥ 0.
Moreover, the total number of the population N (t) at any time is governed by

Ṅ (t) = Λ − µN (t) − δH. (5)
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Thus, for the initial conditions 0 ≤ N (0) ≤
Λ

µ
, by using Gronwall inequality [10,32], we get

0 ≤ N (t) ≤
Λ

µ
. (6)

Hence, system (2) defines a dynamical on

Ω =

{
(S(t), E(t), A(t), I (t), H (t), R(t)) ∈ R5

⏐⏐ 0 ≤ N (t) ≤
Λ

µ

}
. □

.2. Basic reproduction number and no-disease steady state stability

.2.1. Basic reproduction number
To compute the equilibrium solutions, we set the right-hand-side of system (2) to zero. We then obtain the

isease-free equilibrium as follows

E0 =

(
Λ

µ
, 0, 0, 0, 0

)
. (7)

The basic reproduction number which is a key value to analyzing the threshold dynamics of the model is
calculated by using the well-known method of the next-generation matrix given in [17,57]. Adopting the notation
X = (E, I, A, H ) for the infected states of model (2), we obtain the following vector functions

F(X ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − M)β
η1 H + η2 A + I

N
S

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and V(X ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(σ + µ)E

ασ E − (ϕ + γI + µ)I,

(1 − α)σ E − (γA + µ)A,

ϕ I − (δ + γH + µ)H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

he next-generation matrix is JF (E0) (JV (E0))
−1 where

JF (E0) =

⎛⎜⎜⎝
0 (1 − M)β (1 − M)βη2 (1 − M)βη1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
nd

JV (E0) =

⎛⎜⎜⎝
−(σ + µ) 0 0 0

ασ −(ϕ + γI + µ) 0 0
(1 − α)σ 0 −(γA + µ) 0

0 ϕ 0 −(δ + γH + µ)

⎞⎟⎟⎠ .

he basic reproduction number denoted by R0 is the average number of secondary cases induced by an infected
ndividual during his/her entire period of infectiousness in a wholly susceptible population [17,31,54,57]. In the

athematical framework, R0 can be defined as the spectral radius of JF (E0) (JV (E0))
−1.

Therefore,

R0 = RI + RA + RH (8)

here

RI =
(1 − M) βασ

(σ + µ) (ϕ + γI + µ)
,

RA =
(1 − M) βη2(1 − α)σ

(σ + µ) (γA + µ)
,

RH =
(1 − M) βη1ασϕ

.

(σ + µ) (ϕ + γI + µ) (δ + γH + µ)
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Furthermore, RI , RA and RH are the secondary infection numbers seeded through direct contact by the infectious
individuals I, the asymptomatic carriers A, and the hospitalized people H, respectively [7,8,31].

3.2.2. Local and global stability analysis of E0

The forthcoming result is a direct application of Theorem 2 in [57].

Theorem 3.2. For R0 < 1, E0 is locally asymptotically stable and unstable if R0 > 1.

roof. When we consider the infected states (E, I, A, H ) and then linearizing model (2) about E0, yields

B0 =

⎛⎜⎜⎝
−(σ + µ) (1 − M)β (1 − M)βη2 (1 − M)βη1

ασ −(ϕ + γI + µ) 0 0
(1 − α)σ 0 −(γA + µ) 0

0 ϕ 0 −(δ + γH + µ)

⎞⎟⎟⎠ .

etting b1 = σ +µ, b2 = ϕ +γI +µ, b3 = γA +µ, b4 = δ +γH +µ and considering an eigenvalue λ of the matrix
0, we then compute the characteristic polynomial as follows

P(λ) = det (B0 − λI4) = det

⎛⎜⎜⎝
−(b1 + λ) (1 − M)β (1 − M)βη2 (1 − M)βη1

ασ −(b2 + λ) 0 0
(1 − α)σ 0 −(b3 + λ) 0

0 ϕ 0 −(b4 + λ)

⎞⎟⎟⎠ .

onsequently,

P(λ) = d0λ
4
+ d1λ

3
+ d2λ

2
+ d3λ + d4

here,

d0 = 1,

d1 = b1 + b2 + b3 + b4 > 0,

d2 = b1b2(1 − RI ) + b1b3(1 − RA) + b1b4 + b2b3 + b2b4 + b3b4 > 0,

d3 = b1b2(b3 + b4)(1 − R0) + b1b3b4(1 − RA) + b2b3b4 +
(1 − M)βη1ασϕb3

b4

+
(1 − M)βη2(1 − α)σb2b4

b3
> 0,

d4 = b1b2b3b4(1 − R0) > 0.

oreover, referring to the Routh–Hurwitz criterion, it then follows that:

∆1 = d1d2 − d0d3

= b1d2 + b1b2
2(1 − RI ) + b1b2

3(1 − RA) + (1 − M)βη1ασϕ

+ (b2 + b4)(b2
3 + b1b3 + b1b4 + b2b3 + b2b4 + b3b4) > 0,

∆2 = d3∆1 − d2
1 d4

= b1b2(b3 + b4)(1 − R0)[b1b2(b1 + b2)(1 − RI ) + b1b3(b1 + b3)(1 − RA) + b2
2b3

+ b2b2
3 + b2

4(b1 + b2) + 2b1b2b3 + (1 − M)βασ ] + b1b2b2
4(1 − R0)(b1 + b2)2

+

(
b1b3b4(1 − RA) + b2b3b4 +

(1 − M)βη2(1 − α)σb2b4

b3
+

(1 − M)βη1ασϕb3

b4

)
∆1 > 0.

From above, since ∆1 = d1d2 − d0d3 > 0 and ∆2 = d3∆1 − d2
1 d4 > 0 then the disease-free equilibrium point of

the model (2) is locally asymptotically stable [32,52]. □

Now, let us investigate the global stability results of the no-disease equilibrium point.

Theorem 3.3. If R < 1 then E is globally asymptotically stable.
0 0
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Proof. For the demonstration of the above statement, we use the Lyapunov’s functional technique. Therefore, we
consider this Lyapunov candidate [21,29]

L = E +

(
(1 − M)β

b2
+

(1 − M)βη1ϕ

b2b4

)
I +

(1 − M)βη2

b3
A +

(1 − M)βη1

b4
H.

It is obvious to see that the functional L is equal to zero at the empty disease equilibrium point E0 and positive
elsewhere. However, by computing the derivative of the Lyapunov functional L and substituting Ė, İ , Ȧ, and Ḣ
we obtain

L̇ =

(
(1 − M)β

η1 H + η2 A + I
N

S − b1 E
)

+

(
(1 − M)β

b2
+

(1 − M)βη1ϕ

b2b4

)
(ασ E − b2 I )

+
(1 − M)βη2

b3
((1 − α)σ E − b3 A) +

(1 − M)βη1ϕ

b4
(ϕ I − b4 H )

=

(
(1 − M)βη1

S
N

− b4 ×
(1 − M)βη1ϕ

b4

)
H +

(
(1 − M)βη2

S
N

− b3 ×
(1 − M)βη2

b3

)
A

+

(
(1 − M)β

S
N

−
(1 − M)βb2

b2
−

(1 − M)βη1ϕb2

b2b4
+

(1 − M)βη1ϕ

b4

)
I

+

(
−b1 +

(1 − M)βασ

b2
+

(1 − M)βη1ϕασ

b2b4
+

(1 − M)βη2(1 − α)σ
b3

)
E .

Noticing that
S
N

≤ 1, it then follows that

L̇ ≤ b1(R0 − 1)E .

onsequently, L̇ ≤ 0 whenever R0 < 1. Furthermore, L̇ = 0 if and only if E = I = A = H = 0. So, the invariant
ssociated with the infected states of system (2) is defined as

ζ =
{

x = (E, I, A, H) ∈ R4
: L̇(x) = 0

}
.

hus, by the Krasovskii–LaSalle theorem, since the set ζ contains only the disease-free equilibrium E0 then E0 is
globally asymptotically stable whenever R0 < 1 [34,35]. □

.3. Computation of the endemic steady-state E∗

.3.1. Existence of E∗

heorem 3.4. System (2) admits a unique positive endemic equilibrium E∗
= (S∗, E∗, I ∗, A∗, H∗, R∗) whenever

0 > 1.

roof. By putting the right hand side of system (2) to zero, and keeping each state variable different from zero
S ̸= 0, E ̸= 0, I ̸= 0, A ̸= 0, H ̸= 0 and R ̸= 0) then one obtains

S∗
=

b4Λ − δϕ I ∗

µb4R0
, E∗

=
b2

ασ
I ∗, A∗

=
(1 − α)b2

αb3
I ∗, H∗

=
ϕ

b4
I ∗

R∗
=

αγI b3b4 + (1 − α)γAb2b4 + αϕγH b3

α(ω + µ)b3b4
I ∗

and

I ∗
=

α(ω + µ)b3b4Λ(R0 − 1)
αb3b4Q1 + (1 − α)b2b4Q2 + αϕb3Q3

,

with

Q1 = (1 − M)β(ω + µ) − ωγIR0,

Q2 = (1 − M)βη2(ω + µ) − ωγAR0,
Q3 = ((1 − M)βη1 − δ) (ω + µ) − ωγHR0.

606



O. Koutou, A.B. Diabaté and B. Sangaré Mathematics and Computers in Simulation 205 (2023) 600–618

e

3

T

P

w

T

A

w

F

a

It is obvious that R0 = 1 leads to the disease-free equilibrium, whereas when R0 > 1 then there exists a unique
ndemic equilibrium. □

.3.2. Local and global stability of E∗

heorem 3.5. If R0 > 1, then the endemic steady-state E∗ is locally asymptotically stable.

roof. Indeed, the linearization of model (2) about the endemic equilibrium point gives

B1 =

⎛⎜⎜⎜⎝
−b1 − C

(1 − M)β
R0

− C
(1 − M)βη2

R0
− C

(1 − M)βη1

R0
− C

ασ −b2 0 0
(1 − α)σ 0 −b3 0

0 ϕ 0 −b4

⎞⎟⎟⎟⎠ ,

here

C =
µb1b2b4 I ∗

ασ (b4Λ − δϕ I ∗)
.

herefore, the characteristic polynomial is given by

Q(λ) =

⏐⏐⏐⏐⏐⏐⏐⏐⏐
−(b1 + λ) − C

(1 − M)β
R0

− C
(1 − M)βη2

R0
− C

(1 − M)βη1

R0
− C

ασ −(b2 + λ) 0 0
(1 − α)σ 0 −(b3 + λ) 0

0 ϕ 0 −(b4 + λ)

⏐⏐⏐⏐⏐⏐⏐⏐⏐ .
nd then,

Q(λ) = D0λ
4
+ D1λ

3
+ D2λ

2
+ D3λ + D4

ith,

D0 = 1,

D1 = b1 + b2 + b3 + b4 + C > d1 > 0,

D2 = b1b2

(
1 −

RI

R0

)
+ b1b3

(
1 −

RA

R0

)
+ b1b4 + b2b3 + b2b4 + b3b4 + (b2 + b3 + b4)C + ασC

+ (1 − α)σC > d2 > 0,

D3 = b1b3b4

(
1 −

RA

R0

)
+ b2b3b4 +

(1 − M)βη1ασϕb3

b4R0
+

(1 − M)βη2(1 − α)σb2b4

b3R0

+ (b2b3 + b2b4 + b3b4)C + ασ (b3 + b4)C + (1 − α)σ (b2 + b4)C + ασC > 0,

D4 = b2b3b4C + ασb3b4C + (1 − α)σb2b4C + ασϕCb3 > 0.

urthermore,

∆′

1 = D1 D2 − D0 D3

= b1 D2 + b1b2
2

(
1 −

RI

R0

)
+ b1b2

3

(
1 −

RA

R0

)
+

(1 − M)βη1ασϕ

R0

+ (b2 + b4)(b2
3 + b1b3 + b1b4 + b2b3 + b2b4 + b3b4)

+
(
b2

2 + b2b3 + b2b4 + b2
3 + b3b4 + b2

4 + ασ (γI + µ) + (1 − α)σb3 + D2
)

C > 0

nd

∆′

2 = D3∆
′

1 − D2
1 D4

= [b1b2(2b2b2
3 + b1b2

4 + 2b2b3b4 + 2b2b2
4 + b3b2

4 + b2
4) + b2

2b3(b2
3 + b2

4 + b2b3 + b2b4 + b3b4)
+ b2

2b2
4(b2 + b4) + b3b4(2b1b2 + b2

2) + b2
4(b1b2 + b1b3 + b1b4 + b2b3) + ασb2

4(b2
1 + b2

2 + b1b2 + b2b4)
2 2 2 2 2 3 2 2 3 2 2 2 2
+ (1 − α)σ (2b1b2b3 + b1b2 + b2b3 + b2b3 + b1b3b4 + b2b3b4 + b3b4 + b3b4) + ασϕ(b1b4 + b1b4
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+ b2
2b4 + b2b2

4 + 2b1b2b4) + ασ (γI + µ)(b3
3 + 2b1b2

3 + b2b2
3 + b2

3b4) − ασϕb2
1b3]C + [b1b2(b2

3 + 2b2
4

+ b2b3 + b2b4 + b3b4 + b3 + 2b4) + b2b3(b2
2 + b2

3 + b2
4 + 2b2b3 + 2b2b4 + b3b4 + b2 + 2b4) + b2b2

4

+ b2
2b4(1 + b2 + 2b4) + (b3b4 + b1b4)(b3 + b4) + b3

4 + ασ (b3
3 + b2

2b4 + b2b2
4 + b1b2

3 + σb1b3 + σb1b4)
+ (1 − α)σ (b1b2b3 + b1b2

2 + b3
2 + b2b3b4 + b3b2

4 + ασb2
3 + σb3b4 + σb1b2 + σb1b4 + (1 − α)σb2b3)

+ ασϕ(b1b2 + 2b1b4 + b2
2 + b2

4 + b2b4 + σb1 + (1 − α)σb3)]C2
+ [b2b3(2 + b2 + b3 + b4) + b3b4

+ b2b4(2 + b2 + b4) + b2
4 + ασ (b2

3 + σ (b2 + b3 + b4)) + (1 − α)σ (b2
2 + σb4) + ασϕ(b2 + b4 + σ )]C3

+

[
b1b3b4

(
1 −

RA

R0

)
+ b2b3b4 + b3b4C +

(1 − M)βη2(1 − α)σb2b4

b3R0
+

(1 − M)βη1ασϕb3

b4R0

]
∆′

1

+

[
b1b2 (b1 + b2 + C)

(
1 −

RI

R0

)
+ b1b3 (b1 + b3 + C)

(
1 −

RA

R0

)
+

(1 − M)βη1ασϕ

R0

]
((b2C

+ ασC)(b3 + b4) + (1 − α)σC(b2 + b4) + ασϕC) > 0.

hen, using Routh–Hurwitz criterion, all the eigenvalues of the Jacobian matrix have negative real parts. Thus, the
ndemic equilibrium point E∗ is locally asymptotically stable [39,44]. □

In the following paragraph, we seek to investigate the global stability of E∗. For that, we need to find a suitable
yapunov function.

heorem 3.6. Let R0 > 1. Whenever sign(N − N ∗) = sign(H − H∗), the endemic equilibrium E∗ of model (2)
s globally asymptotically stable.

roof. With the following Lyapunov candidate [14,29]

V̇ =
(
S − S∗

)
+

(
E − E∗

)
+

(
I − I ∗

)
+

(
A − A∗

)
+

(
H − H∗

)
+

(
R − R∗

)
−

(
S∗

+ E∗
+ I ∗

+ A∗
+ H∗

+ R∗
)

ln
(

S + E + I + A + H + R
S∗ + E∗ + I ∗ + A∗ + H∗ + R∗

)
,

ne can easily check that the above function is zero at the endemic equilibrium and positive elsewhere. Moreover,
t can also be rewritten as follows:

V = N − N ∗
− N ∗ ln

N
N ∗

.

herefore, the derivative form of the function V is given as

V̇ =

(
1 −

N ∗

N

)
Ṅ

=

(
1 −

N ∗

N

)
(Λ − µN − δH)

=
N − N ∗

N

(
µN ∗

+ δH∗
− µN − δH

)
=

N − N ∗

N

[
−µ(N − N ∗) − δ(H − H∗)

]
= −

(N − N ∗)2

N
−

δ(N − N ∗)(H − H∗)
N

≤ 0.

Consequently, thanks to LaSalle’s invariance principle, the solution E∗ is said to be globally asymptomatically
stable [34,35]. □

4. Sensitivity analysis and herd immunity

4.1. Sensitivity analysis

Performing a sensitivity analysis helps us to understand how changes in the model parameters will affect the

disease spreading dynamics [8,39]. And to carry it out, a simple approach is used to calculate the sensitivity index
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Fig. 2. Sensitivity indices diagram for R0.

of each parameter that appeared in R0 through out of the following formula [7,45]:

χR0
p =

∂R0

∂p
×

p
R0

≃
%∆R0

%∆p
.

herefore,

χ
R0
β = 1, χ

R0
M = −

M
1 − M

, χR0
σ = 1 −

σ

b1
, χR0

α =
α (b3b4 − η2b2b4 + η1ϕb3)

αb3b4 + η2(1 − α)b2b4 + η1αϕb3
,

χR0
η1

=
η1αϕb3

αb3b4 + η2(1 − α)b2b4 + η1αϕb3
, χR0

γI
= −

γI (αb3b4 + η1αϕb3)

b2 (αb3b4 + η2(1 − α)b2b4 + η1αϕb3)
,

χR0
γA

= −
γAη2(1 − α)b2b4

b3 (αb3b4 + η2(1 − α)b2b4 + η1αϕb3)
, χR0

γH
= −

γHαη1ϕb3

b4 (αb3b4 + η2(1 − α)b2b4 + η1αϕb3)

χ
R0
δ = −

δαη1ϕb3

b4 (αb3b4 + η2(1 − α)b2b4 + η1αϕb3)
, χR0

ϕ = −
ϕ (αb3b4 − η1αb2b3 + η1αϕb3)

b2 (αb3b4 + η2(1 − α)b2b4 + η1αϕb3)
,

χR0
µ = −µ

(
1
b1

+
αb2

3b2
4 + η2(1 − α)b2

2b2
4 + η1αϕb2

3(b2 + b3)
b2b3b4 (αb3b4 + η2(1 − α)b2b4 + η1αϕb3)

)
, χR0

η2
=

η2(1 − α)b2b4

αb3b4 + η2(1 − α)b2b4 + η1αϕb3
.

In Fig. 2, each one of parameters’ impact on the basic reproduction number is shown. Indeed, Λ and ω do
ot appear in the expression of R0, therefore there is no sensitivity index related to them. After making the local
ensitivity analysis, we noticed that the transmission rate β and the efficiency rate of the media coverage M are
ore influential in increasing and decreasing the reproduction number, respectively. However, χ

R0
β = +1 that is 1%

ncrease in β leads to an increase of 1% in R0. For M = 50%, χ
R0
M = −1 meaning that 1% increase in M leads to

% decrease in R0. Similarly, χ
R0
α = 0.2158 expressing that 1% increase in α will induce 0.2158% increase in R0,

nd χ
R0
ϕ = −0.1499 means that 1% increase in ϕ will produce 0.1499% decrease in R0. The same interpretation

an be made for the rest of the parameters that appeared in the expression of R0 [7,8,39].

.2. Herd immunity threshold computation

The course of a communicable disease can be slowed down or the spread of the disease can be somewhat blocked
n an area when a certain rate of people recover from the disease with permanent immunity. In such situations,
ven though few people are still vulnerable, susceptible people are now rare in the population. This phenomenon
alled group immunity or herd immunity represents some kind of indirect protection for susceptible people due to
heir scarcity. In that case, if new infections do occur, isolation or containment strategy is easier to apply, [25,26].
owever, the herd immunity threshold is related to the basic reproduction number and it can be computed as follows:

R0 − 1
= 1 −

1
.

R0 R0
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Fig. 3. Subfigures (a)–(d) describe the global dynamics of the disease when the media coverage has no effect on people behaviors at all.
or this first case, R0 ≃ 2.45.

ndeed, it represents the proportion of the population that needs to be infected to reach the group immunity
evel. Moreover, from the above formula one can see that larger the value of R0, the faster herd immunity will
ccur [18,25]. Thus, after (1 − 1/R0) % of the total population is infected, the disease may eventually die out (at
east temporarily) until the mixing structure of the population changes. In this study, by first using data from Table 1
nd secondly by assuming that the media coverage has no efficiency (M = 0) leads to R0 ≃ 2.45; so herd immunity

normally occurs when about 59% of the total population is infected [18,25,26].

5. Numerical simulation

Here, by using the parameters from Table 1 which have mostly been borrowed from the literature [18,20,53],
we have performed some simulations in order to numerically illustrate our theoretical results. We have assessed
the impact of media coverage on the disease transmission dynamics by simulating the followings eventualities: if
the media coverage had no efficiency at all, if the rate of efficiency of the media coverage were average or intense
within an endemic area. Therefore, the parameter values that have been used lead to R0 ≃ 2.45 when there is no

edia coverage impact.
610
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Fig. 4. Subfigures (a)–(d) describe the global dynamics of the disease when the media coverage efficiency rate is about 25%. We therefore
have R0 ≃ 1.84.

From Figs. 3–7, in each of the subfigures (a), (b) and (d), we have presented the evolution of the population of the
symptomatic individuals, recovered individuals, and dead persons, respectively by using various initial conditions.
Besides, we have presented the evolution of asymptomatic individuals and hospitalized people all together in
subfigure (c).

Fig. 3, 4 and 5 show the convergence of the solution of the system (2) towards endemic equilibrium when the
rate of efficiency of the media coverage is zero, when it is 25% and when it is up to 50% respectively.

The simulation of model (2) by considering that the rate of efficiency of the media coverage is 67% and when it
is about 75%, gives Figs. 6 and 7 respectively, which illustrate a convergence of the solution of this model towards
the disease-free equilibrium.

Fig. 8, 9 and 10 are obtained by plotting in 3D the evolution of the different threshold parameters of the model,
namely RI , RA, RH and R0 when we have 25%, 50% and 75% as media coverage efficiency respectively.

Our numerical results show that the introduction of media coverage has trivial changes on the course of the
disease relative to our baseline model. More precisely, an increase of the efficiency rate of the media coverage
slows down the disease spreading dynamics. Moreover, we have noticed from our different scenarios of simulation

that within an adequate environment, the disease extinction will occur when the media coverage efficiency exceeds
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Fig. 5. Global dynamics of the disease when the efficiency rate of media coverage is up to 50%. In this case, we obtain R0 ≃ 1.22.

threshold value M ∈ ]59%, 60%[. Therefore, media coverage is a good strategy to control the outbreak of the
urrent pandemic of the COVID-19, (see Figs. 3–7).

. Conclusion and recommendations

In this manuscript, we have constructed and studied a deterministic compartmental mathematical model by
onsidering the media coverage as a control strategy of the current pandemic of COVID-19 that is troubling the
hole world [18,24,37]. Our modeling process first began with the study of some biological aspects of the disease

hat enabled us to better approach the modeling problem [13,25,44]. Mathematical analysis of the model shows
hat the course of the disease is governed by the basic reproduction number R0. Indeed, when R0 < 1 the disease
isappears from the population giving a disease-free equilibrium which has been proved to be locally and globally
symptotically stable. Moreover, when R0 exceeds 1, the disease persists and leads to an endemic state which is
lso locally and globally asymptotically stable [12,17,55,57]. The sensitivity analysis of R0 shows how the different
arameter variations will affect the disease dynamics [7,8,61]. In addition, computing herd immunity threshold
arameter (1 − 1/R0) % for R0 ≃ 2.45 when no control strategy is undertaken shows that a certain group immunity

ccurs when about 59% of the population is infected. There is then low transmission of the disease from this point
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Fig. 6. Global dynamics of the disease when the rate of efficiency of the media coverage is up to 67%. So, R0 ≃ 0.81.

n [25,26,39]. We used different scenarios for the model simulation and the results have shown that being aware
nd respecting safety guidelines such as wearing of masks, social distancing, frequent disinfection of hands with
ater and soap or using any other means to keep from being infected and cutting down as much as possible on

ravel has positive effect in the combat against the coronavirus rapid spread [13,40,62]. The course of a pandemic
s determined by individual and collective actions of people, who internalize the information available to them such
s the severity, mortality, and modes of transmission of the disease [8,18,26,58]. Such information enhance the
ublic adherence to the government interventions, policies and directives so that to achieve the expected results.
herefore, a large campaign of education through media coverage may play a crucial role in the fight against the
ngoing pandemic of COVID-19 [1,2,37].

In this study, the model is formulated by using ordinary differential equations. However, it has been proven
hat the use of fractional derivatives gives more realistic description of most biological issues compared to
rdinary derivatives. Therefore, for future investigations, it will be interesting to consider fractional derivative while
ormulating a COVID-19 transmission model that would give a better description of the biological process [1–3,9,
1].
613
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Fig. 7. Subfigures (a)–(d) present the global dynamics of the disease when the media coverage efficiency rate reaches M = 75%, such that
R0 ≃ 0.61.
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Fig. 8. Evolution of the threshold parameters when the efficiency rate of the media coverage is M = 25%.

Fig. 9. Evolution of the threshold parameters when the efficiency rate of the media coverage is M = 50%.
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Fig. 10. Evolution of the threshold parameters when the efficiency rate of the media coverage is M = 75%.

Table 1
Model parameters values and sensitivity indices.

Parameters Values References Dimensions Sensitivity indices

Λ 200 estimated humans/day –
ω 0.42 estimated /day –
β 0.55 [18,36] /day +1
η1 0.2 [18,53] – +0.1327
η2 0.5 [20,36] – +0.3137
σ 1/6 [18,36] /day +0.00025
α 0.6 [20,36] – +0.2158
ϕ 0.1 [20,64] /day −0.1499
γA 1/7 [53,64] /day −0.3136
γI 1/7 [53,64] /day −0.4036
γH 1/14 [53,64] /day −0.1135
µ 4.25 × 10−5 estimated /day −0.00055
δ 0.012 [18,20] /day −0.0191
M 50% estimated – −1
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