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COVID-19
The Coronavirus Disease (COVID-19) was declared a pandemic disease by the World Health Organization
(WHO), and it has not ended so far. Since the infection rate of the COVID-19 increases, the computational
approach is needed to predict patients infected with COVID-19 in order to speed up the diagnosis time
and minimize human error compared to conventional diagnoses. However, the number of negative data
that is higher than positive data can result in a data imbalance situation that affects the classification per-
formance, resulting in a bias in the model evaluation results. This study proposes a new oversampling
technique, i.e., TRIM-SBR, to generate the minor class data for diagnosing patients infected with
COVID-19. It is still challenging to develop the oversampling technique due to the data’s generalization
issue. The proposed method is based on pruning by looking for specific minority areas while retaining
data generalization, resulting in minority data seeds that serve as benchmarks in creating new synthe-
sized data using bootstrap resampling techniques. Accuracy, Specificity, Sensitivity, F-measure, and
AUC are used to evaluate classifier performance in data imbalance cases. The results show that the
TRIM-SBR method provides the best performance compared to other oversampling techniques.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Coronavirus Disease (COVID-19) was declared a pandemic
disease by the World Health Organization (WHO) starting from
March 11th, 2020, it spreads to 114 countries with a total of more
than 118,000 cases and 4,300 deaths. A research report from Chen
(Chen et al., 2020) shows that 51% of the patients observed were
suffering from chronic diseases, with 11% of them experiencing
conditions that getting worse and dying from organ failure.

The article from Mahase (Mahase, 2020) states that COVID-19
has a low mortality rate compared to Severe Acute Respiratory
Syndrome (SARS) and the Middle East respiratory syndrome
(MERS). However, COVID-19 has resulted in more deaths com-
pared to SARS and MERS. This is because COVID-19 is a disease that
has a low mortality rate but spreads faster than SARS and MERS.
Hence if detected, better to get treated soon to avoid any
complications.

A COVID-19 diagnostic test can be performed in three ways: lat-
eral flow test (LFT), polymerase chain reaction (PCR), and com-
puted tomography (CT) scan. All three diagnostic tests have
advantages and disadvantages. The advantage of the LFT test is that
it has the lowest price compared to other diagnostic tests but
sometimes gives inaccurate results. PCR test results are more reli-
able than other diagnostic tests but take longer because it requires
laboratory analysis than other diagnostic tests. The last is a CT scan
that gives accurate results but requires special tools and experi-
enced staff to carry out the test.

LFT and PCR have the same collection method by performing a
swab taken from the back of the nose or throat. These two diagnos-
tic tests have different working methods, for PCR tests by detecting
viral RNA (genetic material) while LFT detects virus-specific pro-
teins contained in patient samples. The use of LFT has become a
hot topic of discussion due to poor sensitivity results compared
to PCR (Deeks and Raffle, 2020; Armstrong, 2020; Kmietowicz,
2021). Poor sensitivity occurs because LFT cannot detect in
asymptomatic patients and is corroborated by a study report from
Ferguson (Ferguson et al., 2021), which concluded that LFT could
not detect very early or very late stages of infection. WHO
recommends that initial testing can use LFT, while for confirmation

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2021.09.021&domain=pdf
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testing can use the PCR test (World Health Organization (WHO),
2020).

High consumption of PCR tests makes CT scans an alternative in
diagnosing patients infected with COVID-19. The way a CT scan
works is to take images using X-rays in the chest area. A radiologist
will examine the images to identify abnormalities that are associ-
ated with COVID-19 disease. Studies that have been carried out
show that CT scans have better results than PCR (Ai et al., 2020;
Long et al., 2020; Zheng et al., 2020). However, researchers do
not recommend CT scanning as the primary diagnostic test
(Dennie et al., 2020; Dickson et al., 2020; Hope et al., 2020;
Laghi, 2020) and recommend using PCR instead. Another option
is to combine the two diagnostic tests for better detection perfor-
mance. While PCR and CT scans have yielded the desired results, a
computational approach is required to speed up diagnosis and
minimize human error compared to traditional diagnostics.

The main challenge when using imbalanced datasets is that the
number of negative test results is unbalanced compared to positive
test results or vice versa. This issue also often occurs in computer
vision (Wang et al., 2019; Oksuz et al., 2020; Wang et al., 2020)
and big data (Rendón et al., 2020; Wibowo and Fatichah, 2021),
where the class imbalance problem can severely impact the classi-
fication method. When the classification method is used on an
imbalanced dataset, the machine learning algorithm results will
become biased against the majority class because the results are
usually focused on accuracy. It leads to a phenomenon where the
overall results are given very high accuracy but poor generalization
of data against minority data. In general, there are two main strate-
gies to address data imbalances, namely the cost-sensitive method
and the resampling method (Leevy et al., 2018). The cost-sensitive
method is a method that considers the cost of misclassification to
minimize the total cost so that it will be more appropriate when
applied to complex datasets. The downside of this cost-sensitive
strategy is that it is unstable when applied to small datasets or
has significantly skewed data (Zhang et al., 2011; Lu et al., 2019),
so a resampling approach will be utilized in this study to alleviate
the problem of data imbalance. (Longadge and Dongre, 2013;
Nanni et al., 2015).

Resampling is a common practice for solving class imbalance
problems in data sets (Estabrooks et al., 2004). This resampling
process tries to change the training data so that the data distribu-
tion is balanced. There are two groups in resampling, namely
undersampling and oversampling. Oversampling flattens class data
by creating new samples, duplicating minority data classes, and
undersampling flattens class data by subtracting or removing sam-
ples from the majority class. This study focuses on the oversam-
pling techniques since the majority of class data has relevant
information for processing and using the oversampling technique
will result in more balanced minority class data. However, it will
increase the risk of overfitting (Santos et al., 2018).

One state of the art of oversampling techniques is Synthetic
Minority Oversampling Technique (SMOTE) (Chawla et al., 2002).
This method generates sample data on the feature space between
the original minority classes by taking each minority class and
introducing the sample data along the line of the closest neighbors
selected from the minority class. SMOTE’s advantage is to make the
decision area larger and less specific, causing the area that is often
studied is the minority class rather than the surrounding majority
class (He and Garcia, 2009). However, SMOTE has a drawback,
namely overgeneralization, where the sample data is generated
into the majority of the area (Bunkhumpornpat et al., 2009). This
happens because SMOTE does not consider the distribution of the
majority class area.

This study proposes a new oversampling technique for the diag-
nostic classification of patients infected with COVID-19. The main
contributions are outlined as follows:
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� TRIM-Smoothed Bootstrap Resampling (TRIM-SBR) is a pro-
posed method to reduce the overgeneralization problem that
usually occurs when synthetic data is formed into a majority
class region with evenly distributed synthetic data effects. Our
method is based on pruning by looking for a particular minority
area while maintaining the generality of the data so that it will
find the minority data set while filtering out irrelevant data. The
pruning results will produce a minority data seed that is used as
a benchmark in duplicating data. To ensure the duplication of
data is evenly distributed, the bootstrap resampling technique
is used to create new data.

� Conduct extensive experiments with various learning algo-
rithms so that they can be compared with the current state of
the art research.

� This study will also show how to preprocess data and create
new features to capture essential features in COVID-19 datasets.

This paper is organized into 5 sections. Section 1 introduces the
highlighted issues. Section 2 presents the details of the material
and supporting theories. Section 3 outlines the methodology for
the proposed work, and Section 4 describes the experimental
results, followed by discussion and analysis in Section 5.
2. Related works

During the pandemic, especially in developing countries, the
need of PCR as the primary test diagnosis increases and requires
a long diagnosis time to delay the initial steps to prevent the
spread of COVID-19. The first researchers who tried to make a com-
putational approach were (Yan et al., 2020), who modelled the pre-
diction of survival rates in critical patients with Covid-19. This
study utilized 404 blood samples of infected patients in Wuhan
using three features: lactate dehydrogenase (LDH), lymphocyte,
and high-sensitivity C-reactive protein (hs-CRP). The prediction
model used is XGBoost because it can make tree-based interpreta-
tions by giving significant values to each feature during the tree
creation process. The results show an accuracy rate of 93% with a
predictive value of 100% mortality and a predictive value of sur-
vival of 90%. Although this study yields good accuracy, the authors
suggest more than 3,000 patient data and 80 clinical data explored
further.

Furthermore, a research by (Vaid et al., 2020) predicts the mor-
tality rate for positive COVID-19 patients in New York City. This
study used 3,055 positive patient data for COVID-19 obtained from
five different hospitals using a decision tree. The predictive result
obtained was 84% for AUC by concluding that age features, inflam-
matory markers, coagulation parameters, and D-Dimer are essen-
tial features of the model. This analysis’s drawback is that it only
used the AUC metric value in the classification assessment to
demonstrate how accurate the classification model was (Batista
et al., 2020) tried to predict the diagnosis of COVID-19 in emer-
gency care patients using a machine learning approach. This study
used 235 data with 15 features derived from patient data at Hospi-
tal Israelita Albert Einstein using five machine learning algorithms:
neural networks, random forest, gradient boost, logistic regression,
and support vector machine (SVM). This study obtained good
results with an average AUC value of 84%, a sensitivity of 74%,
and an F1 score of 75%. Furthermore (Soares et al., 2020), con-
ducted an analysis focusing on blood testing based on 599 patient
results. The model used SVM and added a SMOTE to produce syn-
thetic data. The results show a sensitivity value of 70% and a speci-
ficity of 85%. Compared to Batista, this study’s strength is the use of
resampling techniques to resolve class data imbalance. However,
the biggest downside is the lack of exploration of resampling
methods, which could have better results than the main algorithm.
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COVID-19 data has the characteristics of data imbalance and
medical data such as cancer, diabetes, and hepatitis data (Dua
and Graff, 2019). Therefore, the data balancing method is needed
to produce good evaluation results. In data imbalance, the overlap
is a common problem faced by researchers and becomes a crucial
problem when the data is highly skewed (Vuttipittayamongkol
and Elyan, 2020). The problem of overlapping is also supported
by the results of the paper, which indicate that there is a very
strong relationship between class imbalance and class overlap that
influences the performance of the classification (García et al., 2006;
Almutairi and Janicki, 2020; Stefanowski, 2013). One way to over-
come overlap is to select instances to be sampled (Fernández et al.,
2018). This strategy aims to reduce overlap and noise in the dataset
by choosing the closest sample or not duplicating data depending
on the number of minority classes in the area. In the case of
COVID-19, the current data is very valuable to process. Hence,
the undersampling technique is not a good choice in this study
for its major weakness that can throw away potentially valuable
data in the classification process (Batista et al., 2005). The over-
sampling technique is the best choice in this study because it does
not lose data when processed.

Several studies prove that oversampling techniques can
improve test evaluation of unbalanced datasets, such as research
conducted by (Akbani et al., 2004) which tried to add oversampling
techniques to medical data using the SMOTE method by taking into
account the cost of each minority data. The results show a signifi-
cant increase in data using oversampling techniques from 36% to
70% in the sensitivity evaluation metric. Some studies compare
several oversampling methods, such as SMOTE, Borderline-
SMOTE, and random oversampling (Douzas et al., 2018). The
results show a significant increase in the F1 score and AUPRC
results compared to the initial data.

Several oversampling techniques are often used to overcome
data imbalance problems. The random oversampling method
(ROS) operates by randomly replicating a set of selected minority
classes (Batista et al., 2004). Because the sampling process is car-
ried out randomly, the selection function will find it difficult to find
the difference between the two classes. The drawbacks of the ran-
dom oversampling method are the increased training time for clas-
sification and the possibility of overfitting (Ganganwar, 2012) in
duplicating minority class data and making class imbalance worse.
The Synthetic Minority Oversampling (SMOTE) technique creates
artificial samples based on features rather than data based on sim-
ilarities between minority classes of the sample (Chawla et al.,
2002; He and Garcia, 2009). This synthetic example will create a
segment line based on the portion or whole of the K nearest neigh-
bors of the minority class. Depending on the amount of oversam-
pling data required, neighbors are randomly selected.

There are many extensions made using SMOTE as a technique to
balance class distribution. Borderline-SMOTE is used to take
minority classes near the boundary line and the same class’s sur-
rounding area (Han et al., 2005). When compared to the original
SMOTE, borderline-SMOTE does not synthesize data but focuses
on data that is in the border area so that it will help in creating
areas between classes. The Adaptive Synthetic Sampling for Imbal-
anced Learning (ADASYN) approach uses the density distribution
in the minority class as a criterion for synthesizing data in each
minority sample (He et al., 2008). This approach can differentiate
the density distribution in each minority sample and add as many
minority samples as needed to balance the majority class. This
approach helps focus minority class centers depending on mod-
elling difficulties. Safe-Level-SMOTE is a method that creates a safe
level for minority sample data before generating synthetic data
(Bunkhumpornpat et al., 2009). Each synthesized data will be
approached with the highest security level so that all synthesized
data will only be in a safe area. The safety level ratio depends on
7832
each sample data set and each sample data area. DBSMOTE uses
a density-based clustering approach and generates samples syn-
thesized along with each minority data (Bunkhumpornpat et al.,
2012). DBSMOTE can work in overlapping areas, such as
Borderline-SMOTE, but the difference from Borderline-SMOTE is
that it can maintain the accuracy of the minority and majority
classes. The next approach is to perform class decomposition by
finding the similarities of the majority class instances and grouping
them into one called CDSMOTE (Elyan et al., 2021). This approach
tries to reduce the dominance of the majority class without elimi-
nating the information on the majority class.

A distance-based approach is known as the Mahalanobis
distance-based oversampling (MDO) technique, a multiclass
approach based on Mahalanobis (Abdi and Hashemi, 2015). MDO
synthetic data was created using the same Mahalanobis distance
in each class average based on other minority classes. Vuttipittaya-
mongkol (Vuttipittayamongkol and Elyan, 2020) uses the fuzzy
C-Means method approach to eliminate overlapping classes to
identify negative and positive classes accurately. After identifying
between negative and positive classes, data duplication was
carried out using the concept of Borderline-SMOTE so that the
duplicated data was in the minority area.
3. Methodology

3.1. Diagram system of oversampling data for imbalanced dataset

The system design is prepared to obtain a good predictive
model, as shown in Fig. 1.

Before the data modeling from the dataset, data preprocessing
is applied to get the ideal dataset. The preprocessing data consist
of data cleaning, data reduction, and data transformation. Data
cleaning and reduction will be carried out to eliminate data
deemed not to significantly affect the pattern data or interfere with
the classification evaluation results. In the data transformation,
feature correlation is used to find correlations between features
and find any features with almost the same characteristics to make
the data processed simpler. The data preprocessing is very influen-
tial in the evaluation results. Afterward, the data modeling is
applied to get the best predictive model, that is focused on using
machine learning. First, the splitting dataset using the Holdout
method into two parts, namely training data and testing data. An
oversampling technique is carried out to strengthen the value
between classes in training data. The hyperparameter optimization
is applied to produce the most optimal model evaluation in each
classification model.
3.2. The proposed oversampling method

The proposed method is called TRIM-Smoothed Bootstrap
Resampling (TRIM-SBR), which aims to reduce the overgeneraliza-
tion problem that usually occurs when synthetic data is formed
into the majority class region with the effects of synthetic data
being evenly distributed. As in Fig. 2, the proposed method is
divided into two parts: pruning and data duplication. The TRIM
method is used in the pruning section, a preprocessed method to
avoid overgeneralizing data using a greedy approach in finding
minority data sets while filtering irrelevant data. However, this
method does not guarantee the best global results but offers a rea-
sonable estimate for the optimal set (Puntumapon and Waiyamai,
2012). The pruning results will produce a minority data seed used
as a benchmark in duplicating data. A smoothed bootstrap tech-
nique is used to create new data to ensure the duplication of data
is evenly distributed. This technique will reduce overfitting by test-



Fig. 1. The system designs.

Fig. 2. Block diagram for the proposed method.
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ing the dimensional estimation of observations belonging to the
data duplication class to minimize data redundancy.

3.3. Pruning method

TRIM is a method that aims to avoid overgeneralization of data.
The basic idea is to identify the collection of minority data with the
best compromise between generalizability and precision between
data (Puntumapon et al., 2016). Equation (1) is used to measure
the precision and generalization of data. The higher the TRIM crite-
rion value, the more precise and general the seed data will be.

TRIM ¼ minorityj j2
N
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The value of jminorityj is the measure of the minority data. To
get the TRIM Gain T � Gainð Þ seed data, two separate datasets are
evaluated and compared with TRIM. If T � Gainð Þ > TRIM, the seed
data is obtained by performing a binary separator operation.
jminorityleft j and jminorityrightj are the sum of the left and right
minority data subsets; N is the total number of sample data, Nleft

and Nright are the numbers of left and right subset data. As a result,
Equation (2) will be formulated as follows:

T � Gain ¼ max
minorityleft
�� ��2

Nleft
;
minorityright
�� ��2

Nright

 !



Table 1
Characteristics of the COVID-19 dataset.

Characteristic Value

Total data 5,644
Number of features 111
Data comparison negatives: positives 90:10
Data frequency null on feature 65%�100%
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Eq. (2) is designed to capture the characteristics of the resam-
pling data. The first characteristic is to create new synthetic data
based on several samples from the minority data to evaluate the
precision of the minority data. Furthermore, the second character-
istic is that synthetic data are always generated in the convex hull
of the minority data. The purpose of T � Gainð Þ is to identify the
most irrelevant data that lie on the outside of the convex hull
and filter it. The pseudocode of TRIM is presented in Algorithm 1.

Algorithm 1 TRIM (N)

Input: data (N)
Output: seed (Seed)

Method:
1. D = {}
2. Add data N to D
3. while (D is not empty)
4. Trim = ComputeTRIM Dð Þ
5. DataSplit = splitting point in data jmajorityleftj or

jmajorityright j
6. TrimSplit = maxDataSplit

(ComputeTrimSplit D;DataSplitð Þ)
7. if TrimSplit > Trimð Þ
8. Split data D to Dleft and Dright

9. if (jmajorityleftj == 0),
10. Dnew = Dright

11. else
12. Dnew = Dleft

13. end if
14. D = Dnew

15. end if
16. Trim = ComputeTRIM Dð Þ
17. DataSplit = splitting point in data Dð Þ
18. TrimSplit =maxDataSplit (ComputeTrimSplit D;DataSplitð Þ)
19. if TrimSplit > Trimð Þ
20. Split data D to Dleft and Dright

21. Add data Dleft to D
22. Add data Dright to D
23. end if
24. end while
25. return Seed

3.4. Data duplication method

Random Over Sampling Examples (ROSE) is a data duplication
method with a smoothed bootstrap approach (Menardi and
Torelli, 2014). This method has three main procedures in forming
new synthetic data, namely:

� Choose y ¼ yj 2 y with probability 1
2

� Select xi; yið Þ on Tnas yi ¼ y with probabilitypi ¼ 1
nj

� Sample x of KHj
:; xið Þ where KHj

is the middle probability distri-
bution on xi and depends on the scale of the matrix parameter
Hj

Operationally, ROSE requires a Hj matrix to duplicate data. In
theory, the selection of a smoothing matrix will affect the size of
KHj

. Previous studies discussed this in selecting smoothing param-
eters (Bowman and Azzalini, 1999; Silverman, 1986). From the
number of alternatives available, the Gaussian Kernel was chosen

with a diagonal smoothing matrix Hj ¼ diag h jð Þ
1 ; � � � ;h jð Þ

d

� �
as in

Equation (3) where br jð Þ
q is a sample estimate of the standard devia-

tion of the q� th dimension whose observations belong to the class
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yj. After getting the h jð Þ
q matrix smoothing, data distribution is car-

ried out through the Gaussian Kernel through Equation (4) where
l is the mean, r is the value of the standard deviation, and r2 is
the variance.

h jð Þ
q ¼ 4

dþ 2ð Þn
� � 1

dþ4

r̂ jð Þ
q q ¼ 1; � � � ; d ¼ 1;2ð Þ

p xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
x�lð Þ2
2r2

Pseudocode smoothed bootstrap resampling presented in Algo-
rithm 2.

Algorithm 2 SMB (N)

Input: data (N)
Output: The synthetic minority class (Samples)

Method:
1. X = transform N stack arrays in sequence vertically
2. Y = transform N stack arrays in sequence horizontally
3. Xmin = add X and Y
4. CalcStd = ComputeStdDev Xminð Þ
5. ValueData = ReturnValue Nð Þ
6. ValueXmin = ReturnValue Xminð Þ
7. Hmatrix = ComputeMatrix CalcStd;ValueData;ValueXminð Þ //

using Eq. 3
8. Samples = {}
9. for each index in N

10. Rand ¼ random number
11. ValueXmin = ReturnValue Xminð Þ
12. Hindex = ComputeRandomIndex Rand;ValueXminð Þ
13. ValueGauss ¼ ComputeGaussianDistrib Xmin Hindex½ �;ð

HmatrixÞ // using Eq. 4
14. Add ValueGauss to Samples
15. end for
16. returnSamples

4. Experiment and result discussion

4.1. Dataset description

This study’s dataset uses data collected and processed by Hospi-
tal Israelita Albert Einstein through the results of reverse
transcription-polymerase chain reaction (RT-PCR) (Data4u, 2020)
the source code can be access with link https://github.com/praswi-
bowo/TRIM-SBR. The dataset is public access and anonymous, with
111 features containing 5,644 patient data derived from patient
examination results and laboratory data. The summary of the data-
set can be seen in Table 1.

As shown in Table 1, a lot of missing data is due to medical per-
sonnel’s decision-making, which requires a complex process such
as taking each patient’s medical records, complaints suffered, and
laboratory results. This dataset’s most crucial aspect is the positive
dataset’s imbalanced features for COVID-19, respectively 10% and
90% for negative COVID-19 patients.

https://github.com/praswibowo/TRIM-SBR
https://github.com/praswibowo/TRIM-SBR
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4.2. Preprocessing and data transformation

The initial step is to investigate how much the distribution of
negative and positive data for COVID-19 patients is based on the
variable SARS-COV-2 exam result. The results show that the posi-
tive data value is 0.09886, and the negative data value is
0.90113. Therefore, it concluded that the data is imbalanced. After-
ward, the percentage of null data in each feature variable to be pro-
cessed is determined. Removing features that contain more than
50% null data is the right choice to get a reliable dataset (Salgado
et al., 2016). About 65% of the data from 111 features contained
null data, so the data cleaning was done by removing variable data
containing null data. The data cleaning process resulted in 39 vari-
able data that can be processed further.

In this dataset, some variables can be combined into new vari-
ables based on simplifying the patient’s disease variables. Eighteen
disease features can be used as a new variable. This feature is cat-
egorical, which contains whether or not a person is affected by a
disease. One Hot Encode is a way to convert categorical features
to binary variables by creating additional variables to differentiate
between the various feature categories. This technique has been
used in the medical world to simplify datasets that are often too
complex when data is not transformed (Wollenstein-Betech
et al., 2020; Dickson et al., 2020; Schwab et al., 2020). The result
of a transformation of 18 disease features became a new feature
named has_disease.

The next step is to check the null data in each row of the data-
set. Line-based data checking occurs because the data experiences
Missing Completely at Random (MCAR) and Missing at Random
(MAR) (Salgado et al., 2016). MCAR occurs when observational data
is missing and is not related to specific values obtained through
observational data. MAR occurs when probability data is missing
on observational data, which still has a dependence on observa-
tional data but is not related to specific feature data. Data from
MCAR or MAR can be deleted to simplify the features that will be
used for modelling. One of the techniques often used in overcom-
ing the problem of missing data is listwise or case deletion (Kang,
2013; Newman, 2014). This technique will eliminate all existing
data on the row. The first check was carried out on 5,644 rows of
data, resulting in about 3,596 rows of data with 32 null feature
variables. The data were then cleaned with the rule that if there
are less than 26 feature variables filled in the data, the data will
be deleted. The final result left 1,588 data ready to be processed
to look for important variables using the correlation function.

The correlation feature used the Spearman technique since it
can handle categorical and numeric features simultaneously
(Khamis, 2008). Several variables have a strong relationship with
each other. In the SARS-COV-2 exam result variable, crucial vari-
ables can be seen in this dataset. The variables Leukocytes, Plate-
lets, Eosinophils, and has_disease have values close to the minus
area, in contrast to the Monocytes and age variables showing a
positive correlation. From the resulting correlation, two feature
variables are highly correlated with each other such as Hematocrit,
Hemoglobin, and Red Blood Cells. Also Mean Corpuscular Hemo-
globin (MCH) and Mean Corpuscular Volume (MCV) so that both
can be reduced to decrease the number of feature variables pro-
cessed by the data set.

Based on the rule of thumb from feature correlation (Hinkle
et al., 2003), the Hematocrit, Hemoglobin, and Red blood cells have
a high correlation with each other. A high assessment was obtained
because the features of Hematocrit, Hemoglobin, and Red blood
cells were included in the Hematologic parameters so that the
highest value was taken based on the SARS-COV-2 exam result,
i.e., Red blood cell (Gligoroska et al., 2020).

There are also highly correlated features: Mean corpuscular
hemoglobin (MCH) and Mean corpuscular volume (MCV). These
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two variables are included in the Red blood Cell Indices, so the
highest value was chosen based on the SARS-COV-2 exam result,
i.e., the Mean corpuscular volume (MCV) used in this test (Von
Tempelhoff et al., 2016). Fig. 3 is the final result of the preprocess-
ing using Principle Component Analysis (PCA) to reduce the data-
set’s dimensions to visualize data efficiently.

4.3. Modeling

The proposed method was compared with four different resam-
pling techniques: random oversampling (ROS), SMOTE, Borderline-
SMOTE, and ADASYN. In addition, this study used two different
types of models, namely: random forest (RF), Logistic Regression
(LR), and support vector machine (SVM). To minimize bias towards
the model, hyperparameter selection and optimization were used
(Wong et al., 2019; Schwab et al., 2020). For each prediction model,
hyperparameter optimization was carried out by selecting based
on a predetermined list ranges, as shown in Table 2. Each hyperpa-
rameter optimization performance was evaluated, and the best
candidate was chosen in each model of the test set.

4.4. Evaluation metrics

There are four characteristics of values commonly used in
matrices, namely: the number of true positive (TP), false positive
(FP), false negative (FN), and true negative (TN). TP and TN mean
the number of samples from the test set that are correctly classi-
fied as positive and negative. In contrast, FN and FP represent the
number of samples from the test set that are mistakenly classified
as negative and positive. The usual evaluation criterion for classifi-
cation is to use accuracy. This metric provides a comprehensive
picture when the dataset in size is relatively balanced between
classes. In the metric accuracy section, the percentage of sample
data is calculated correctly as defined in Eq. (5)

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

Specificity aims to measure how much negative actual sample
data is predicted to be negative as defined in Eq. (6)

Specificity ¼ TN
TN þ FP

Sensitivity/Recall intends to measure how much positive actual
sample data is predicted to be positive as defined in Eq. (7)

Sensitivity=Recall ¼ TP
TP þ FN

Afterward, measurement of how much positive predictive data
is a positive prediction called precision as defined in Eq. (8)

Precision ¼ TP
TP þ FP

In the case of imbalanced data, getting high precision and recall
is very difficult and often happens where one of the models gets a
high value on one metric, but the other is very low. The F-Score is a
metric that interprets the average weights of precision and recall to
get a balanced result from the two metrics as defined in Eq. (9)

F �Measure ¼ 2
precision:recall
precisionþ recall

To achieve good results for both classes, sufficient positive and
negative class indicators are combined using the ROC curve. ROC is
a chart type that demonstrates the TP rate against the FP rate. The
ROC also shows that each classifier can increase true positives
without increasing false positives. The area under the ROC (AUC)
curve is a value that tries to tell how well the model is at differen-



Fig. 3. The distribution of COVID-19 data set with the red is minority class and the blue is majority class.

Table 2
Hyperparameter ranges used for the experiment.

Model and hyperparameter Choice

Random forest
Number of trees 10, 50, 100, 200, 500
Features auto, sqrt, log2, 0.5, 0.1, 0.3
Depth of the tree 2, 8, 16, 32, 64, 128
Number of samples 2, 4, 8, 16, 24
Number of leaf 1, 2, 5, 10, 15, 30
Logistic Regression
Penalty l1, l2
Regularization strength C 100, 10, 1, 0.1, 0.01, 0.001
Support vector machine
Regularization C 0.1, 1, 10, 100, 1000
Kernel coefficient auto, 1, 0.1, 0.01, 0.001, 0.0001
Kernel type linear, poly, rbf, sigmoid
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tiating labelling between classes. The higher the value obtained,
the better the model will differentiate between class labels. Calcu-
lated using Eq. (10) with TP rate is the percentage of ‘positive’ TP
instances classified as ‘positive’, and FP rate is the percentage of
‘negative’ instances classified as ‘positive’.

AUC ¼ 1þ TPrate � FPrate

2

4.5. Result discussion

The results of the distribution of the TRIM-SBR class are shown
in Fig. 4. TRIM-SBR uses the Gaussian distribution in duplicating
data so that the distribution results are given more equally. This
data distribution increases the data variance so that the modelling
assessment can be improved. The interesting thing from TRIM-SBR
is that it shows a series of minority data duplications in the outer
areas of the data distribution center resulting in a strengthening of
the minority data region.

Table 3 shows the composition of the majority and minority
data on the training data processed by oversampling. In the origi-
nal data, the number of class data is not balanced with one another,
with the majority data percentage of 86.27% and minority data of
13.72%. This is a problem because unbalanced data can cause bias
in the model being created; in this case, the oversampling tech-
niques used to provide satisfactory results in balancing class data.
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It can be seen that TRIM-SBR, ROS, SMOTE, and Borderline-SMOTE
give balanced results with the percentage of majority and minority
data was 50%. In contrast to the results given by ADASYN, it turned
out to be more duplicated by the minority than the majority’s
results. This happened because ADASYN made duplications based
on the density of minority data. When the minority data still did
not enter into the balanced criteria by ADASYN, it would be dupli-
cated until it was felt that the minority data were balanced based
on the density distribution. Table 3 shows that all oversampling
techniques have succeeded in balancing minority data to be equiv-
alent to majority data.

Table 4 displays the results of classification Accuracy, Speci-
ficity, Sensitivity, F-measure, and AUC of the five oversampling
methods on the COVID-19 dataset. Accuracy has a role in identify-
ing the predictive value that has a relationship with the predictive
response. The overall model results in 83%�91% with the best over-
sampling method held by Borderline-SMOTE with 91.74% results.
The comparison between Borderline-SMOTE and TRIM-SBR results
has a difference of about 3.3%, which shows that the TRIM-SBR is
very competitive with the best results from this experiment.

Specificity tries to find out how many relevant values are
predicted to be correct for all people who are, in fact, healthy.
The results obtained are based on evaluations between 82%�
97% with the best oversampling method held by ROS and
Borderline-SMOTE, i.e., 97.12%. Compared to the TRIM-SBR, there
was a difference of 7.70%, indicating that the proposed method
can be compared with other oversampling methods. High
Borderline-SMOTE results were obtained from duplicating data
using the concept of nearest neighbors, thereby increasing the
similarity of data between neighbors.

Sensitivity is a critical evaluation metric in this study
because it minimizes false negatives in the model used. The results
obtained were between 47%�82%, with the best oversampling
method owned by TRIM-SBR and ADASYN, i.e., 82.35%. The high
sensitivity value of TRIM-SBR was due to the varied and even repli-
cation of the data.

Precision and recall have a characteristic that is interdependent
with each other. The F1-score value is a metric that interprets the
average weights of precision and recalls to obtain a balanced result
for the two metrics. The experimental results were between 57%�
66%with the best oversampling method held by TRIM-SBR, SMOTE,



Fig. 4. The data class distribution of TRIM-SBR.

Fig. 5. ROC curve comparison TRIM-SBR.

Table 3
The results of the composition of the training data oversampling.

Oversampling Attributes #Class (maj; min) %Class (maj; min)

Original data 13 (415; 66) (86.27; 13.72)
TRIM-SBR 13 (415; 415) (50.00; 50.00)
ROS 13 (415; 415) (50.00; 50.00)
SMOTE 13 (415; 415) (50.00; 50.00)
Borderline-SMOTE 13 (415; 415) (50.00; 50.00)
ADASYN 13 (415; 417) (49.87; 50.12)
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and Borderline-SMOTE, i.e., 66.67%. This means that the TRIM-SBR
is very competitive with all oversampling methods. As in the previ-
ous explanation, TRIM-SBR tries to generalize all minority data so
that the trade-off effect between precision-recall is very influential
on the evaluation results of thismethod. Because the characteristics
of the imbalance dataset with very high spread data, causing all
results from machine learning models to be below 67%.

The AUC value tries to find out howwell themodel distinguishes
between class labels. The higher the value obtained, the better the
model will be in distinguishing between class labels. The experi-
mental results of the AUC ranged between 82%�90%, with the best
results being held by TRIM-SBR, i.e., 90.41%. Fig. 5 shows the AUC
classifier of TRIM-SBR, which is between 86%�90%, demonstrating
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that TRIM-SBR can consistently maintain data generalization. The
TRIM-SBRmethod enriches the diversity of synthetic data with data
distribution to improve class differentiation.

The subsequent comparison in this experiment compares the
proposed model with the state-of-the-art from other researchers,
which can be seen in Table 5. Using the same dataset from Hospital
Israelita Albert Einstein, the main difference is the preprocessing
method and the model used. The proposed method gave the best
results compared to the models produced by other researchers,
with the results of Accuracy, Specificity, Sensitivity, and AUC were
88.43%, 89.42%, 82.35%, 90.41%, respectively. This high result was
obtained because it preprocessed data by cleaning data that did
not significantly impact the model, and the addition of TRIM-SBR
strengthened the minority class, which often if there is data imbal-
ance it can cause modeling to tend to detect the majority class.

The proof that oversampling can improve modeling results is
also shown in the second model results using SMOTEBoost with
the results of Specificity, Sensitivity, and AUC were 85.98%,
70.25%, 86.78%, respectively. However, when a comparison is made
with the proposed technique, it shown the Sensitivity value is the
biggest weakness in this modeling because the generalization of
the data generated by SMOTEBoost is very minimal. Even though
oversampling can improve modeling results, choosing an incorrect
technique can result in an inadequate evaluation. For example, the
third model that uses the SMOTE technique shows a Sensitivity
value of 43.00%. Sensitivity detects how many predicted patients
labelled positive for COVID-19, so a low value indicates the diffi-
culty to distinguish between patients infected with COVID-19 or
not for the model.

When discussing preprocessing data, a method chooses direct
data sampling, as shown in the fourth model. The results are based
on the evaluation of the Specificity, Sensitivity, and AUC metrics
80.00%, 80.60%, and 84.20%, respectively. This modeling method
has a weakness in the minimum variation of data which can cause
a minimal scope of the data to be processed. However, with too
much data and features processed, it also affects the usedmodeling.
The fifthmodel tries to process all the data contained in the dataset.
The evaluation results of Specificity, Sensitivity, and AUC were
49.00%, 75.00%, and 66.00%, respectively. This result was obtained
because therewas no oversampling technique to balance the imbal-
anced data to affect the specificity of the model being processed.



Table 4
Experiment result comparison.

Model Oversampling Accuracy (%) Specificity (%) Sensitivity (%) F1-score (%) AUC (%)

Random Forest TRIM-SBR 88.43 89.42 82.35 66.67 90.41
ROS 90.08 97.12 47.06 57.14 90.27
SMOTE 90.91 95.19 64.71 66.67 90.36
Borderline-SMOTE 91.74 97.12 58.82 66.67 89.99
ADASYN 90.08 96.15 52,94 60.00 89.17

Logistic Regression TRIM-SBR 83.47 84.62 76.47 66.52 90.38
ROS 85.12 86.54 76.47 59.09 89.2
SMOTE 85.12 87.50 70.59 57.14 89.2
Borderline-SMOTE 83.47 85.58 70.59 54.55 89.88
ADASYN 82.64 82.69 82.35 57.14 89.08

Support Vector Machine TRIM-SBR 86.78 88.46 76.47 61.9 86.37
ROS 87.6 91.35 64.71 59.46 86.99
SMOTE 88.43 91.35 70.59 63.16 83.6
Borderline-SMOTE 86.78 90.38 64.71 57.89 82.41
ADASYN 85.95 88.46 70.59 58.54 85.61

Table 5
Comparison of the proposed model with other state-of-the art researchers.

Model Dataset Size
(Selection)

Total Feature
(Selection)

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

AUC
(%)

TRIM-SBR with RF Hyperparameter 5644 (481) 111 (13) 88.43 89.42 82.35 90.41
SMOTEBoost with SVM (Soares et al., 2020) 5644 (599) 111 (16) – 85.98 70.25 86.78
SMOTE with artificial neural networks (ANN) (Banerjee et al.,

2020)
5644 (598) 111 (14) 87.00 91.00 43.00 80.00

Gradient Boost Tree (Batista et al., 2020) 256 (256) 111 (15) – 80.00 80.60 84.20
Gradient Boost Hyperparameter (Schwab et al., 2020) 5644 (5644) 111 (106) – 49.00 75.00 66.00
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5. Conclusion

This paper proposed a new oversampling method called TRIM-
SBR that reduces over-generalization, which usually occurs when
synthetic data is formed into the majority class area with even dis-
tribution of synthetic data. The proposed method consists of three
steps. First, the calculation uses a greedy approach called TRIM to
search for minority data sets while filtering irrelevant data. Second,
TRIM’s optimal set forms a seed to be processed at the data dupli-
cation stage. Third, smoothed bootstrap approach is used to estab-
lish new synthetic data. The proposed method was evaluated using
five different evaluation metrics, namely: Accuracy, Specificity,
Sensitivity, F-measure, and AUC. The experimental results show
that the proposed method succeeded in obtaining a sensitivity
value of 82.35% and an F1-score of 66.67%. In addition, the pro-
posed method achieved a value of AUC 90.41% when compared
with other oversampling techniques. Although TRIM-SBR success-
fully resolved data imbalance issues, some drawbacks need to be
strengthened in the future. By incorporating an algorithm to con-
centrate on a particular area while duplicating data to boost this
process evaluation results. Furthermore, it also shows comparative
evidence with other studies to prove the reliability of the proposed
model. Selection of the appropriate preprocessing and oversam-
pling technique can improve the metric evaluation results of the
modelling. The experiments show that the proposed model results
are superior to the results of another models. There are still many
ways to do the preprocessing, one of which is by performing statis-
tical imputation of data. The missing data is input based on the sta-
tistical calculation of the variable.
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