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ABSTRACT We previously identified a series of triazolopyrimidines with antitubercu-
lar activity. We determined that Mycobacterium tuberculosis strains with mutations in
QcrB, a subunit of the cytochrome bcc-aa3 supercomplex, were resistant. A cyto-
chrome bd oxidase deletion strain was more sensitive to this series. We isolated re-
sistant mutants with mutations in Rv1339. Compounds led to the depletion of intra-
cellular ATP levels and were active against intracellular bacteria, but they did not
inhibit human mitochondrial respiration. These data are consistent with triazolopyri-
midines acting via inhibition of QcrB.
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We previously identified a series of triazolopyrimidines with antitubercular activity
(1); compounds were bacteriostatic for replicating Mycobacterium tuberculosis

but bactericidal for nonreplicating bacteria. We explored the structure-activity relation-
ship and determined druglike properties. We wanted to determine the target and/or
mechanism of action of the piperacillin-tazobactam (TZP) series. Since previous work in
our group and others had identified several common targets, we tested a set of ana-
logs for activity against strains carrying mutations in promiscuous targets (Fig. 1) (2).

We selected DprE1, MmpL3, and QcrB as the most common targets (3–6). We deter-
mined activity against strains carrying either DprE1C387S, MmpL3F255L, or QcrBA396T muta-
tions in the parental strain M. tuberculosis H37Rv-LP (ATCC 25618) (Table 1) (7). MICs
were determined as described after 5 days of growth in Middlebrook 7H9 medium
plus 10% (vol/vol) oleic acid-albumin-dextrose-catalase (OADC) supplement and 0.05%
(wt/vol) Tween 80 and were determined using a 10-point, 2-fold serial dilution series of
each compound (8). We saw a small shift in MICs in the QcrBA396T mutant strain,
namely, an ;2- to 4-fold increase in resistance. No significant changes were seen in
the DprE1C387S or MmpL3F255L mutant strains.

In order to confirm that the QcrB mutation did lead to resistance and is the likely
target, we tested compounds against two additional strains carrying QcrB mutations
(T313I and M342T) (5, 9). We determined MICs after 5 days of growth in Middlebrook
7H9 medium plus 10% (vol/vol) OADC supplement and 0.05% (wt/vol) Tween 80.
QcrBT313I is the most common mutation which confers resistance to inhibitors (Table 2).
We confirmed high-level resistance in both strains.

QcrB is a component of the cytochrome bc1 complex in the electron transport chain;
M. tuberculosis strains in which the alternative cytochrome oxidase (cytochrome bd) is
deleted are hypersusceptible to QcrB inhibitors (10, 11). We also tested three com-
pounds against M. tuberculosis H37Rv ATCC 272942 and the isogenic CydC deletion
strain (11). As expected, M. tuberculosis H37Rv ATCC 27294 was more resistant to the
compounds than H37Rv ATCC 25618, as has been noted with other QcrB inhibitors,
although the mechanism behind this is unknown (10–12). Deletion of cytochrome bd
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activity resulted in higher sensitivity to the three compounds (Table 2). Taken together,
these data strongly support the hypothesis that the target of the series is QcrB.

We have previously demonstrated that QcrB inhibitors lead to the depletion of in-
tracellular ATP that is independent of the inhibition of growth and is consistent with
disruption of the electron transport chain. We determined the effect of compounds on
ATP levels (Fig. 2). M. tuberculosis was exposed to compounds for 24 h; ATP levels were
measured using the BacTiter-Glo assay kit (Promega). Growth was measured by the op-
tical density at 590 nm (OD590). Q203 caused depletion of ATP levels at concentrations
lower than the MIC (Fig. 2F). Similarly, ATP levels were reduced in a dose-dependent
fashion on exposure to TZP molecules at concentrations which did not inhibit growth
(Fig. 2A to D). Depletion of ATP was not seen with the protein synthesis inhibitor kana-
mycin (Fig. 2E). These data further support the disruption of the electron transport
chain as the mechanism of action of the TZP series.

We wanted to determine if there were additional targets or mechanism(s) of resist-
ance, so we isolated and characterized mutants resistant to the series. We selected
compounds from our original set with the lowest liquid MIC and determined the MIC
against M. tuberculosis H37Rv ATCC 25618 on solid medium (Table 3). We selected two

FIG 1 Structures of molecules.

TABLE 1 Activity against strains ofM. tuberculosis

Molecule

MICa (mM) of:

Parental (n) DprE1 C387S MmpL3 F255L QcrB A396T
TPN-0006218 2.66 1.3 (9) 0.946 0.67 26 0.99 6.86 2.8
TPN-0006239 1.16 0.5 (10) 0.426 0.07 0.866 0.21 3.46 0.28
TPN-0006243 3.76 2.9 (14) 0.956 0.29 2.76 2.4 5.76 2.1
TPN-0006245 26 1.1 (11) 0.926 0.3 26 0.07 5.66 2.5
TPN-0006267 1.46 1.4 (8) 0.666 0.01 1.86 0.57 5.96 3.5
aMICs were determined after 5 days in two independent experiments (except for parental where n is the number
of independent biological replicates). The genotype of the strain is noted. The parental strain isM. tuberculosis
H37Rv-LP (ATCC 25618).
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compounds and plated ;108 bacteria onto 5� and 10� solid MIC as described (4). We
isolated colonies and confirmed resistant mutants by measuring the MIC on solid me-
dium; we obtained nine resistant isolates for TPN-0006239 and five resistant isolates
for TPN-0006267 (Table 3).

We sequenced the entire QcrB gene in all 14 isolates, but none of them had muta-
tions (Table 3). We had previously seen mutations in Rv1339 leading to resistance to
other QcrB inhibitors (5, 9), so we sequenced Rv1339. We found the same mutation in
11 strains (P121L); 1 strain had the mutation S120P (Table 3). Two strains had no muta-
tions in Rv1339. We have previously linked Rv1339 mutations to resistance to other
QcrB inhibitor series, namely, the imidazopyridines and the phenoxyalkylimidazoles (5,
9). Recent work in the related organism Mycobacterium smegmatis suggests that
Rv1339 is an atypical class II cAMP phosphodiesterase that has been linked to antibi-
otic tolerance (13). In addition, a P94L mutation in Rv1399 led to increased persistence
in animal models and increased resistance to external stress in Mycobacterium canetti,
which was proposed to be due to changes in cell wall permeability (14). It is possible
that the mutations we obtained lead to decreased compound permeation leading to
resistance. However, it is unusual that resistance is seen largely with QcrB inhibitors,
not as a general phenomenon; an alternative explanation for resistance could be
changes in the intracellular ATP pool due to decreased turnover of cAMP.

We had demonstrated previously that this series had bacteriostatic activity against
replicating M. tuberculosis but bactericidal activity against nonreplicating bacteria (1).
We have noted this biological activity profile for other QcrB inhibitors, and thus, it is

FIG 2 TZP molecules lead to the depletion of intracellular ATP levels. ATP levels were measured in M. tuberculosis using the BacTiter Glo assay kit; growth
was measured by OD590. Data were normalized to the untreated control (dimethyl sulfoxide [DMSO] only).

TABLE 2 Activity against strains ofM. tuberculosis

Molecule

MICa (mM) of:

H37Rv ATCC 26518 H37Rv ATCC 27294

QcrBT313I QcrBM342T Parental cydKO
.20 .20 5.96 0.6 0.386 0.04

TPN-0006239 .20 11 9.56 3.5 0.136 0.007
TPN-0006243 .20 .20 2.26 0.9 ,0.39
TPN-0006245 .20 .20 nd nd
TPN-0006267 .20 10 nd nd
aMICs were determined after 5 days. The genotype of the strain and parental strain is noted. nd, not determined.
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consistent with it being an inhibitor of aerobic respiration (5, 9, 12). Since other QcrB
inhibitors are active against intracellular bacteria, we tested the TZP series for activity
against M. tuberculosis in human THP-1 macrophages. Macrophages were infected with
M. tuberculosis expressing luciferase (15) at a multiplicity of infection of ;1 for 24 h,
washed to remove extracellular bacteria, and then exposed to the compound for 72 h.
Bacterial growth was measured by fluorescence. We tested five representative mole-
cules, and all had potent activity with an 50% inhibitory concentration (IC50) of ,1 mM
(Table 4).

Since we identified the target of the TZP series as aerobic respiration, we deter-
mined whether the series might also inhibit mitochondrial respiration. We determined
cytotoxicity against HepG2 cells cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with galactose as the carbon source to force the cells into using mitochondrial
respiration (16). HepG2 cells were exposed to the compound for 72 h, and viability was
measured using CellTiterGlo (Promega) (1). Of eight compounds, six showed some cy-
totoxicity (Table 5), although they still had a good selectivity index (activity was more
potent against M. tuberculosis). We compared the IC50s under this condition to those
generated when HepG2 cells were cultured in glucose when mitochondrial respiration
is not active (1). There was less than a 2-fold difference in the cytotoxicity, confirming
that molecules are not inhibiting eukaryotic respiration.

In conclusion, we have determined that the most likely target of the triazolopyrimi-
dine series in M. tuberculosis is QcrB, a component of the electron transport chain. We
demonstrated that mutations in either the target QcrB or the putative phosphodiester-
ase Rv1339 lead to resistance. This information adds another series of interest to the
list of known or proposed QcrB inhibitors, which include the imidazopyridine amides

TABLE 3 Characterization of resistant isolates ofM. tuberculosis

Strain Compound MICa (mM)

Genotype
of:b

Rv1339 QcrB
H37Rv-LP TPN-0006239 1.6 wt wt
LP-0497553-RM1 TPN-0006239 25 P121L wt
LP-0497553-RM2 TPN-0006239 25 P121L wt
LP-0497553-RM4 TPN-0006239 50 P121L wt
LP-0497553-RM5 TPN-0006239 50 P121L wt
LP-0497553-RM10 TPN-0006239 50 S120P wt
LP-0497553-RM11 TPN-0006239 50 P121L wt
LP-0497553-RM14 TPN-0006239 50 wt wt
LP-0497553-RM15 TPN-0006239 50 P121L wt
LP-0497553-RM23 TPN-0006239 50 wt wt

H37Rv-LP TPN-0006267 1.6 wt wt
LP-0499227-RM1 TPN-0006267 .100 P121L wt
LP-0499227-RM2 TPN-0006267 .100 P121L wt
LP-0499227-RM3 TPN-0006267 .100 P121L wt
LP-0499227-RM4 TPN-0006267 25 P121L wt
LP-0499227-RM7 TPN-0006267 .100 P121L wt
aMICs were determined in 24-well agar plates after 3 weeks of incubation. Two genes (qcrB and rv1339) were
sequenced in all strains.

bwt, wild type.

TABLE 4 Activity against intracellularM. tuberculosis

Molecule Intracellular IC50
a

TPN-0006218 0.236 0.08
TPN-0006267 0.216 0.11
TPN-0006273 0.196 0.13
TPN-0006288 0.0766 0.032
TPN-0006290 0.186 0.09
aIC50s were measured after 72 h in THP-1 cells infected at a multiplicity of infection of 1 (n = 2).
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(9), Q203 (17), lansoprazole (18), phenoxyalkylimidazoles (5), morpholino thiophenes
(6), quinolinyl acetamides (19), pyrazolopyridines (20), and arylvinylpiperazine amides
(21). Since QcrB is a clinically validated target (22), this series is an attractive one to de-
velop further.
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