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The actin cytoskeleton has the particularity of being assembled into many
functionally distinct filamentous networks from a common reservoir of
monomeric actin. Each of these networks has its own geometrical, dynami-
cal and mechanical properties, because they are capable of recruiting specific
families of actin-binding proteins (ABPs), while excluding the others. This
review discusses our current understanding of the underlying molecular
mechanisms that cells have developed over the course of evolution to segre-
gate ABPs to appropriate actin networks. Segregation of ABPs requires the
ability to distinguish actin networks as different substrates for ABPs,
which is regulated in three different ways: (1) by the geometrical organiz-
ation of actin filaments within networks, which promotes or inhibits the
accumulation of ABPs; (2) by the identity of the networks’ filaments,
which results from the decoration of actin filaments with additional proteins
such as tropomyosin, from the use of different actin isoforms or from
covalent modifications of actin; (3) by the existence of collaborative or
competitive binding to actin filaments between two or multiple ABPs.
This review highlights that all these effects need to be taken into account
to understand the proper localization of ABPs in cells, and discusses what
remains to be understood in this field of research.
1. Introduction
Actin plays a major role in many different biological processes such as cytokin-
esis, migration, vesicular trafficking and infection [1,2]. For each of these
functions, actin filaments are organized into networks of optimized architec-
tures, dynamics and mechanical properties. The main types of organizations
include (but are not limited to) branched and linear networks of actin filaments
[3,4]. Branched actin networks are generated by the association of a seven-
subunit complex called the Arp2/3 complex, which nucleates short actin
filament branches. Linear networks, where polar actin filaments are parallel
or randomly organized, are generated from the de novo nucleation of actin fila-
ments by factors such as formins, or from the debranching and reorganization
of branched networks.

Actin networks are regulated by the association of different families of actin-
binding proteins (ABPs). It is important to note that although all these proteins
coexist in the cell cytoplasm, only a specific subset of ABPs interacts with
each actin network while being excluded from the others [5–7]. Such an obser-
vation is surprising since it would be natural to assume that all actin filaments
in the cell represent equivalent substrates for ABPs. On the contrary, these
observations reveal the existence of complex mechanisms capable of precisely
addressing the cell’s ABPs, and research conducted in recent years has revealed
a much more complex picture than anticipated. This work will review the
multifarious strategies that cells use to guide ABPs to the appropriate actin
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Figure 1. Three main mechanisms that account for the segregation of ABPs to different actin networks in cells. Schematic of the different molecular mechanisms
described in this review. Actin networks are distinguished by different geometries. For example, the Arp2/3 complex generates branched networks and formins
generate linear arrays. Actin filaments have different molecular identities based on the use of various actin isoforms, post-translational modifications and/or
the presence of tropomyosin. Additionally, ABPs can compete or cooperate to restrict or promote their binding to actin filaments.
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networks, the molecular mechanisms behind these processes,
and discuss future directions for research in this area.
2. Cellular strategies for distinguishing
actin networks as different substrates
for actin-binding protein binding

There are multiple arguments to assert that the binding of
most ABPs to specific actin subnetworks does not rely
solely on their transport or on their local activation. First of
all, actin networks in cells are often very close to each
other. Sometimes an actin subnetwork can even form from
a pre-existing one. This is the case, for example, of filopodia,
which emerge through the elongation of actin filaments
assembled in lamellipodia. In this context, the fast diffusion
of proteins in the cytoplasm of cells (typical diffusion rates
measured for globular proteins of 10 to 100 kDa range from
around 10 to 100 µm2 s−1) would prevent a precise and effi-
cient targeting of ABPs [8,9]. Second, further evidence
comes from the fact that local activation of specific actin
assembly pathways in cells is often sufficient to induce the
formation of functional actin networks. For example, the
recruitment by optogenetic tools of specific RhoGTPases is
sufficient to trigger actin assembly, and to initiate actin-
dependent processes such as cell migration [10] or cytokinesis
[11]. Similarly, triggering actin assembly from cellular extracts
by specific factors such as WASp (which is an activator of the
Arp2/3 complex) or formins, leads to the formation of actin
filament networks with a composition of ABPs comparable
to branched and linear actin networks, respectively [12–14].

All of these observations unambiguously indicate that, to
a large extent, actin networks themselves represent different
substrates for downstream protein interactions. This has led
the community to ask what specific features could allow
actin networks to distinguish themselves from each other, in
order to be identified as different substrates for the cell’s
ABPs [15]. To date, two main hypotheses, not mutually exclu-
sive, are guiding this field towards a better understanding of
these principles. The first hypothesis is that the geometrical
organization of filaments within actin networks is itself a suf-
ficient characteristic to make these substrates distinct for
ABPs (figure 1). The second hypothesis is that the actin fila-
ments themselves within the actin networks could present
different biochemical signatures, which could differentiate
them for the different ABPs of the cell (figure 1).
3. The geometry of actin networks as an
intrinsic feature of actin-binding
proteins segregation

Actin filaments that are polymerized in vitro for standard
actin-binding assays are generally between 1 and 100 µm in
length, corresponding to approximately 360–36 000 actin sub-
units [16]. Since actin filaments are semi-flexible polymers
with a persistence length of about 17 µm, this size range is
of interest for studying certain biophysical aspects of actin
filaments and their interactions with ABPs [17]. However,
since most actin filaments in vivo are shorter than 1 µm, the
results of these studies may bias our interpretation of how
ABPs interact with actin filaments in cells.

Furthermore, actin filaments also differ significantly from
one actin network to another. Primarily, they vary in length
and relative orientation to eachother. Forexample, thebranched
actin networks of the lamellipodium are composed of short
actin filaments of 7–18 actin subunits [18], which are connected
to eachother by theArp2/3 complex at an angle of 70°.At endo-
cytic sites, filaments are also branched but appear to be longer,
between 18 and 68 actin subunits [19–22]. At these scales, actin
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Figure 2. Actin network architecture as an important property to consider in explaining the accumulation of ABPs. (a) Profile of accumulation of ADF/cofilin on
different actin network architectures reconstituted in vitro (adapted from [36]). Left: Schematic of the different actin network architectures assembled on a micro-
pattern coated with an activator of the Arp2/3 complex (two vertical bars), in the presence of soluble actin and Arp2/3. Branched actin networks are assembled on
the patterns, whereas linear actin networks ( parallel or mixed polarity) are assembled from the elongation of the filaments away from the patterns. Middle:
Localization of ADF/cofilin (in green) after its addition to polymerized actin network. Cofilin accumulates preferentially to linear actin networks. Right: Quantification
of ADF/cofilin over actin intensities for each architecture. (b) Accumulation of ADF/cofilin on different actin network architectures in vivo (adapted from [38]). Left:
Schematic of the different actin networks found in S. cerevisiae cells: branched networks in actin patches (dots), linear networks in actin cables (intra-cellular lines)
and the cytokinetic ring (at the yeast bud neck). Right: ADF/cofilin (in green) co-localizes preferentially with the actin patch protein Abp1 (in red), indicating that
other principles than network architecture are at play to account for the cellular localization of ADF/cofilin.
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filaments are short enough to be considered totally rigid. Linear
arrays, on the contrary, are often composed of longer filaments
with up to 300 actin subunits [23,24]. The actin filaments are
approximately parallel to each other, and may all have similar
(e.g. in the case of filopodia) or random (e.g. in the case of
cytokinetic rings or stress fibres) orientations.

Studying the relationship between the geometrical organ-
ization of actin networks and the apparent affinity of ABPs
has required the development of more complex biomimetic
systems than previously envisaged. The best description to
date of the impact of actin network organization on the bind-
ing and activity of an ABP concerns myosins, particularly
contractile myosins with multiple motor domains [25,26].
Several studies have shown that their recruitment and
activity strongly depend on whether the actin networks are
disorganized, branched by the Arp2/3 complex, parallel or
antiparallel [27–29]. More particularly, these motors are
capable of strong contractile activity, even to the point of dis-
assembling actin networks, when actin filaments do not have
the same orientation and polarity. These observations are
very consistent with the effects of these molecular motors
in vivo. This is the case, for example, at the sarcomeres of
muscle fibres or at cell–cell junctions in tissues, where the
contractile activity of the motors is exerted on actin filaments
of opposite polarity [30]. This is also the case for many disor-
ganized actin networks where myosin activity is capable of
driving actin flows or pulsatile phenomena [31–33]. On the
contrary, actin filament structures such as filopodia, where
the actin filaments all have the same orientation, are not con-
tractile structures [4,34]. On these structures, molecular
motors are generally used for trafficking. It is important to
note that the sensitivity of ABPs to different actin filament
organizations does not seem to be limited to the case of mol-
ecular motors, but seems, on the contrary, to be quite general.
For example, crosslinkers such as α-actinin bind preferentially
when the spacing between two actin filaments is favourable
[35]. Other proteins such as ADF/cofilin, which is involved
in the disassembly of actin networks, accumulate on linear
networks of actin filaments, but are not efficiently recruited
on branched actin networks in vitro [36] (figure 2a).

The geometrical organization of actin networks is, there-
fore, a key parameter to consider when evaluating the
affinity and activity of ABPs. However, other observations
made at the cellular level show that the geometric organiz-
ation of actin networks alone is not sufficient to fully
address how ABP recruitment is carried out in vivo. Indeed,
some proteins, such as ADF/cofilin mentioned above, are
not found in cells on actin networks for which their affinity
should be the strongest. While ADF/cofilin is clearly loca-
lized on branched actin networks such as endocytic actin
patches, ADF/cofilin is hardly detectable on linear networks
such as actin cables [37–39] (figure 2b). These observations
indicate that additional principles, beyond the actin filament
network architecture, need to be taken into account to obtain
a global picture of how ABPs are addressed in cells.
4. Biochemical opportunities for generating
different actin substrates

Although attractive, we saw that the segregation of ABPs
observed in cells could not be explained solely by the
geometric organization of actin filaments. The necessity to dis-
criminate different populations of actin filaments in cells must
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leadus to considerother possibilities, including that small differ-
ences in structure and surface properties of the actin filaments
themselves could modulate their affinity for certain ABPs. Our
community has been working on a number of additional
hypotheses to explain how actin filaments could be functionally
different and acquire identities of their own.A first hypothesis is
that cells could possibly use different actins, either through the
expression of different actin isoforms or through post-transla-
tional modifications (PTMs) [40,41]. A second hypothesis is
that specific ABPs could progressively decorate actin filaments
to give them a specific identity, reinforcing or limiting the bind-
ing of other ABPs to the same filaments by steric effects or by
stabilizing particular conformations of the filaments [5]. These
two hypotheses are not mutually exclusive, meaning that cells
could also use several strategies simultaneously to create the
greatest possible diversity of actin substrates.

Proof that both of these strategies exist in cells is evident
from a careful analysis of genomes of all eukaryotes (figure 3).
Many species express a variable number of actin isoforms,
which can be either cell-specific or expressed simultaneously
in the same cell types. An extreme example is plants, which
express multiple actin isoforms, that originated from genome
duplications (figure 3). The number of actins varies for each
plant species and can reach, for example, 21 isoforms in Zea
mays. A potential limitation of this strategy is that the actin
sequence must remain highly conserved in order to maintain
its assembly properties and its ability to interact with the
most essential ABPs. For example, even between two distant
eukaryotes such as budding yeast and human, which diverged
more than a billion years ago, actin sequences still retain around
90% identity. Actin mutations are generally rare, and usually
lead in humans to serious diseases such as Baraitser–Winter
syndrome [42]. Overall, while the existence of many actins in
eukaryotes supports the possibility that cells can use a variety
of actins to generate different actin-related functions, the diffi-
culty of bringing mutations and generating variety also
questions the effectiveness of such a mechanism to generate
diversity of functions.

An alternative strategy to differentiate actin filaments with-
out the need to mutate the actin itself is through the use
of specialized ABPs. This hypothesis has gained considerable
credibility with the comparison of eukaryotic genomes.
Indeed, whereas some species, such as plants and amoebas,
generally express dozens of different actin isoforms, other eukar-
yotes, for example, those from the kingdoms Animalia or Fungi,
express only one or a very limited number of cytoplasmic actin
isoforms (figure 3). Conversely, species expressing one or few
actin isoforms express a multitude of tropomyosins, which are
specific ABPs that wrap around actin filaments, whereas plants
or amoebas do not express any (figure 3) [43]. This very strong
anticorrelation is a signature that these twophenomenaareprob-
ably related to each other. It suggests thatwhile some species use
multiple actin isoforms, representing different substrates for
ABPs, in order to create different actin-related functions, other
species that had gained tropomyosins in the course of evolution
could use a limited number of actins, decorated by different
tropomyosins, to generate functional diversity.
5. Generating a diversity of actin substrates
by expressing a variety of actin isoforms

The question that will now be addressed is whether very
similar eukaryotic actins are nevertheless able (1) to assemble
separately within a common cytoplasm and (2) to form fila-
ments of sufficiently specific molecular identity to interact
differently with ABPs and carry specific cellular functions.
The answer to this question is far from being clear today
and is the subject of intense research.

5.1. Plant actins localization and functions
Plant actins were originally studied from the model organism
Arabidopsis thaliana, which has 10 actin genes. Eight of these
genes have been demonstrated to code for functional actin iso-
forms, grouped in two classes according to their sequence
similarities and their tissue-specific expressions: vegetative
(ACT2, 7 and 8) and reproductive (ACT1, 3, 4, 11 and 12)
[40]. Vegetative and reproductive actins are involved in differ-
ent cellular processes [44], and plant actin isoforms that are
expressed in the same tissue can also assemble into isoform-
specific structures. GFP-fusion proteins of ACT2 and ACT7,
the main vegetative actin isoforms, co-localize only partially
at the surface of chloroplasts, where ACT2 is mainly found in
thinner and longer bundles, whereas ACT7 is organized into
thick bundles [45]. Besides their differential expression and
their spatial segregation, these isoforms are not functionally
equivalent. Expression of the reproductive actin ACT1 in vege-
tative tissues causes dwarfing and alteredmorphology in most
organs, showing that expression of ACT1 in these tissues is
affecting the dynamics of actin and its associated proteins [46].

Another well-studied organism is the unicellular green
algae Chlamydomonas reinhardtii, which carries two actin
genes. The main isoform IDA5 is a conventional actin that is
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expressed in normal conditions. The second actin, called NAP1
(for Novel Actin-like Protein 1), is highly divergent as it shares
only 65% sequence identity with IDA5 [47]. The expression of
NAP1 in wild-type cells is negligible, but it is highly upregu-
lated in certain conditions, for example, when IDA5 is absent
or after addition of the actin monomer sequestering drug
latrunculin B [48,49]. This drug can prevent IDA5 polymeriz-
ation, but surprisingly NAP1 generates latrunculin B-resistant
structures. Despite being so different, essential actin functions
can be performed by either of these actins, and cells lacking
any of the actin genes can grow and divide normally. However,
they also seem tomaintain some specialized functions. The con-
ventional actin IDA5 has a function in mating since it is
involved in the elongation of the fertilization tube, a function
that NAP1 cannot substitute [50–52]. Both IDA5 and NAP1
are found in the axoneme of the flagella but apparently
in different structures. While IDA5 seems to be part of the
inner dynein arms, NAP1 plays a role in flagellar formation
independently of axonemal dyneins [52,53].

5.2. β- and γ-actin localization and functions
Generating actin structures from different actin isoforms
is also possible in higher eukaryotes, including mammals.
Mammalian organisms have six different actin isoforms: four
muscle actins and two cytoplasmic actins. The latter, called β-
and γ-actins, differ only in four amino acids at the N-terminal
end (figure 4a) and are simultaneously expressed in cells.
Due to their extreme similarities, determining the cellular local-
ization of β- and γ-actin is challenging. Specific monoclonal
antibodies, recognizing specifically the different N-terminal
regions, are now available to visualize the localization of
both isoforms in different cell types [54,55].

β-actin was originally found mainly in actin bundles of
basal stress fibres, filopodia, at cell–cell contacts and in con-
tractile rings, whereas γ-actin is present mainly in lamellar
and dorsal cell regions (figure 4b) [54,55]. In epithelial cells,
β-actin has been shown to play a role in adherens junction
maintenance, and γ-actin in tight junction integrity [56]. In
podosomes, which are actin-rich adhesive structures involved
in migration and invasion, the use of better super-resolution
microscopy techniques allowed a differential localization
between actin isoforms to be distinguished. Actin filaments in
podosomes are organized into two distinct networks, consist-
ing of a β-actin core, composed of branched actin filaments
nucleated with WASp, Arp2/3 and cortactin, and surrounded
by a γ-actin envelope, composed of linear actin filaments
bound to α-actinin and connected with myosins (figure 4c) [57].

These differences in localization suggest that these two iso-
forms, despite being so similar, could be associated with
different cellular functions. During wound closure, cells assem-
ble significantly more β-actin beneath the plasma membrane,
which suggests a role for this actin in cell motility [58]. β-actin
implication in cell motility was confirmed in fibroblasts where
decreased β-actin protein levels lead to reduced motility
[59,60]. The implication of γ-actin in cell migration is less clear.
While γ-actin knocked-down cells are shown to migrate less
in some studies [54,61], loss of γ-actin can also induce epi-
thelial-to-mesenchymal transitions in another model [62]. In
agreement with β-actin localization in the cytokinetic ring,
β-actin knocked-down cells also show reduced proliferation
and can be multinucleated [59,60,63,64]. In breast cancer cells,
cycle entryandproliferation seem tobe regulatedby γ-actin, par-
ticularly in G1, while β-actin plays a role in later mitotic stages,
especially in telophase for cytokinesis [64]. β-Actin implication
in cell motility and proliferation can be explained by the direct
activity of β-actin in the filaments of the structures controlling
these processes, but also by the role that this specific actin
plays in the regulation of transcription. β-Actin binds directly
to chromatin remodelling proteins as well as RNA polymerases,
a first indication of its role in nuclear processes [65]. This role is
also confirmed as β-actin was shown to regulate the expression
of cell cycle and actin dynamics related genes, as well as its
own expression [59,66].
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Cellular localization of these actinsdoes not suggest anypar-
ticular preference for a certain type of architecture. For instance,
β-actin is localized at the linear structure of the stress fibres and
contractile ring but it is also localized at the branched core of the
podosomes. This lack of a general obvious rule complicates our
understanding of the molecular mechanisms implicated in the
assembly of these two actin isoforms into distinct networks.
Moreover, this understanding is further complicated by func-
tional tests at the whole organism level. Despite their amino
acid sequences being so similar, the nucleotide sequences of
beta and γ-actin genes possess silent mutations that affect 40%
of the codons (figure 4a). By taking the β-actin gene, and chan-
ging only four codons to express γ-actin from this gene, it is
possible to generate viable mice that are not expressing the β-
actin protein [67]. This result is surprising, since β-actin knock-
out mice are reported to be embryonic lethal [68,69]. Therefore,
essential functions of β-actin may not be related primarily to its
amino acid sequence, butmay also rely heavily on its nucleotide
sequence. Thisdifference innucleotide sequence results in differ-
ent translation speeds [70], which could lead to protein
regulation at different levels: differential expression levels,
alternative splicing and differential co- and PTMs.
5.3. Biochemical similarities and differences
between actins

Differences in cell localization described above suggest that
different actins, although very similar, must still have
significantly different biochemical properties. However, while
divergent actins expressed by prokaryotes have clearly
distinguishable assembly properties, actins expressed in eukar-
yotes seem to have much more subtle biochemical differences
[71,72]. The search for these subtleties has long suffered from
the difficulty of purifying a variety of actin isoforms in order
to study them independently. Most of our knowledge is based
on studies using the same mammalian actin muscle isoform.
A more limited number of studies have used the yeast actin
S. cerevisiae, and only a few studies used mixtures of γ- and
β-actin or actins from other species.

Actins from budding yeast and rabbit muscle are 87%
identical, which indicates that these two actins are quite
different comparatively to all actins expressed in eukaryotes.
Budding yeast and rabbit muscle actins can nevertheless copo-
lymerize [73]. Surprisingly, this is less clear for beta and γ-actin,
despite being 99% identical. While these two isoforms were
shown to copolymerize in some studies, other studies reported
their ability to assemble into independent filaments [55,74,75].
Yeast and rabbit muscle actins show differences in flexibility,
with a persistence length of rabbit muscle actin two-to-three-
fold higher than yeast actin [76,77]. In the presence of
magnesium, yeast actin polymerizes faster than muscle actin,
which is due to a faster trimer nucleus formation rather than
a faster elongation of the filaments [78–81]. This difference in
rates of polymerization is also observed in plants, as the two
vegetative actins ACT2 and ACT7 polymerize faster than
the reproductive actins ACT1 and ACT11 [82]. Nucleotide
hydrolysis, nucleotide exchange and Pi release are also
faster for yeast actin compared to muscle actin filaments
[80,81,83–85]. This correlates with the fact that the nucleo-
tide-binding cleft of S. cerevisiae’s actin appears more open
than for muscle actin [86]. In summary, we can hypothesize
from few well-characterized actins, that many biochemical
and biophysical subtleties might overall account for important
functional differences in cells.

Differences among actins are also sufficient to modulate
some interactions with ABPs. Actin nucleators, which play an
important role in architecture formation, are reported in few
studies to favour specific actin isoforms. The formin DIAPH3,
for example, has a preference for β-actin compared to γ-actin,
suggesting that actin cables assembled from DIAPH3 could
be enriched with β-actin [55]. The VCA domain of N-WASP,
an activator of Arp2/3, does not show specificity for β- or
γ-actin [87], but S. pombe’s Arp2/3 is reported to be a better
nucleator of S. pombe’s actin than rabbit muscle actin [80]. In
Arabidopsis thaliana, the binding affinity of profilins for actin
monomers seems lower for a specific isoform, ACT2 [82].
Since profilin enhances formin-linear actin cable assembly,
at the expense of Arp2/3-branched network assembly, it is
tempting to speculate whether ACT2 would assemble more
specifically within branched networks. Moreover, to achieve
different actin functions, it appears that plant actins and ABPs
have co-evolved to generate class-specific protein–protein inter-
actions. The expression of the reproductive ACT1 isoform in
vegetative tissues leads to aberrant cell and tissue morphology,
a phenotype that is rescued by co-expression of the reproduc-
tive profilin (PRF4) and cofilin (ADF7) [88]. Evidence for
coevolution of actin with ABPs can be also found by studying
proteins from different species. For example, in both yeasts
S. cerevisiae and S. pombe, profilin inhibits endogenous actin
polymerization but has little effect on rabbit muscle actin
polymerization [81,89,90]. Another example is vertebrate cofi-
lin, which can bind to S. cerevisiae’s actin but does not increase
their flexibility nor promote severing [77,91].

These studies indicate to the scientific community that
highly similar actin isoforms have subtle but significantly
different properties to display preferential binding to a variety
of ABPs.We are just beginning to identify the molecular mech-
anisms by which actin isoforms could assemble into distinct
actin networks of specialized properties. However, we still do
not have a satisfying overview of the variety of possible differ-
ences among all actin isoforms expressed in eukaryotes.
Recently, new protocols have been developed [92–94], allowing
for a wider variety of actin isoforms to be purified. It is likely
that future comparisons of a greater diversity of actin isoforms,
purified from similar protocols, will strengthen our knowledge
of these mechanisms.
6. Actin’s post-translational modifications
Co- and PTMs are covalent modifications to one or several
amino acids of a protein, a process that is usually mediated
by specific enzymes. These modifications can affect the inter-
actions of the protein with its partners by changing its surface
charge density, its structure, or by steric hindrance.

First, actin can be arginylated, which is the addition of an
arginine residue at the N-terminal end. This modification is
mediated by the arginyl-tRNA-protein transferase Ate1, a
protein that has been identified in several organisms, including
mammals, plants and budding yeast [95]. In Dictostellium
discoideum, an organism expressing a large number of cyto-
plasmic actin isoforms, several actins (Act3, Act10, Act17,
Act22, Act23 and the most abundant one Act8) are arginylated,
and impairing Ate1 activity affects cell migration and substrate
adhesion [96]. In mammals, arginylation is possible for β- and
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γ-actins, but the latter is specifically degraded when it is arginy-
lated [70,97]. As this PTM does not affect both actin isoforms
equally, arginylation could be an important PTM to regulate
specifically β-actin-dependent cellular processes. For example,
arginylated β-actin, which corresponds to around 1% of total
β-actin, is likely to be involved in lamella formation, as down-
regulationofAte1 reduces the formationof this structure [97–99].

Studies in Ate1 knocked-out cells indicate that actin arginy-
lation is responsible for a decreased interaction with gelsolin,
but for an increased recruitment of capping protein (CP) and
twinfilin [100]. Arginylation adds positive charges to normally
negative charged surfaces, a change that logically affects actin’s
interaction with binding partners such as gelsolin, whose bind-
ing relies on the first 10 amino acids of actin [101,102]. On the
contrary, CP and twinfilin are not shown to bind to this area,
but their increased binding could be explained by an absence
of gelsolin which would leave excessive free actin filament
barbed ends for these two proteins to bind to.

The most abundant PTM for β- and γ-actin is N-terminal
acetylation, which is the addition of an acetyl group [103]. In
animals, this PTM occurs after cleavage of the first one or two
amino acids, and is modifying an important fraction of the
actin [104–107]. It is mediated by the acetyltransferase
NAA80, which is specific to actin and acetylates preferentially
the monomeric actin-profilin complex [108,109]. Interestingly,
plants and fungi do not expressNAA80, but do express the gen-
eral acetylase NatB, which acetylates many other proteins. In
yeast, actin is co-translationally acetylated by NatB [110,111],
but in plants, the role of NatB is less clear. Even though the
lack ofNatB affects plant growth, actin is not identified as a sub-
strate for this protein [112]. As NatB targets the N-terminal part
of proteins starting with Met-Glu-, Met-Asp-, or Met-Asn-,
plant actins, which start with Met-Ala-, may not be modified
or may be modified by a mechanism not yet identified [111].
Since plants like Arabidopsis thaliana already express several
actin isoforms, we can also speculate that actin acetylation
might be less important to generate different actin-based func-
tions in this organism. InHeLa cells, actin acetylation affects cell
motility and cytoskeletal organization [103]. Acetylated actin
has a faster polymerization rate, including formin-induced
polymerization, and a faster depolymerization rate, so fila-
ments composed of acetylated actin are shorter lived [103].
The N-terminal residue of actin is not the only amino acid
that can be acetylated. A complex of lysine-acetylated actin
and cyclase-associated protein (CAP) was shown to promote
the inhibition of the formin INF2 [113]. This proves that PTMs
can not only regulate actin properties and its binding to other
proteins, but also the activity of the other proteins themselves.

Arginylation and acetylation are two main PTMs of actin.
Other PTMs, including phosphorylation and methylation,
can also modify the chemistry of the actin molecule. For
more details, we refer readers to a more detailed review [114].
7. Tropomyosins and the biogenesis of new
actin substrates

7.1. Generating diversity from a limited number of actin
isoforms: tropomyosin as the missing link

Wewill now study the more complex case where a cell is able
to generate distinct actin networks from identical (or nearly
identical) actin molecules. The distinction between actin net-
works can no longer be made on the basis of biochemical
differences between the actin composing different networks,
but on the basis of biochemical particularities of the ABPs
composing each of the networks. For greater clarity, our dis-
cussion will distinguish two different cases: the first case
corresponds to the de novo generation of new actin networks
from determined actin nucleation factors; the second case
corresponds to the reorganization of pre-existing networks
into networks with different properties.

In the first case, the assembly of new actin filament net-
works suggests that filaments acquire particular identities at
the moment when they are generated by nucleation factors.
The idea that this function is carried by factors such as the
Arp2/3 complex or formins is a priori tempting. However,
the coincubation of the Arp2/3 complex, its VCA activator
and a formin (FMNL2) leads to the formation of mixed
actin networks (i.e. having both Arp2/3 branches and
formin-bound filaments) and not of distinct actin networks
[115]. It should be noted that in the experiment described,
the actin filament branches are much longer than the
branches present in the cells, and that we could not exclude
the possibility that formin cannot bind to very short branches.
It is also possible that formin FMNL2 is a peculiar isoform
that can bind to branched networks [115,116]. Nevertheless,
this experiment rather suggests that another regulator is
needed to effectively segregate formins and the Arp2/3
complex on separate networks. We have already seen in para-
graph 4 that careful genomic analysis strongly suggests
that proteins of the tropomyosin family are responsible for
functional diversity of the actin cytoskeleton in higher
eukaryotes [43]. We shall see that genetics, cell biology and
biochemistry have also provided additional evidence for the
importance of tropomyosins.

The second case corresponds to situations where actin net-
works undergo major dynamic reorganizations, independently
of any nucleation of new actin filaments. For instance, linear
actin structures found beneath the lamellipodia are not exclu-
sively generated by formins, but also emerge to a large extent
from pre-existing lamellipodial actin networks [117–120]. Inter-
estingly, in this case, where actin filaments are not generated
de novo, tropomyosin recruitment correlates also very well
with filament debranching and the re-organization of actin
filaments into new linear actin structures [121,122]. These obser-
vations suggest that regardless of themechanism bywhich actin
networks are formed, tropomyosins are consistently of key
importance in giving actin filaments a new identity.

7.2. Tropomyosins localization and functions
Most cells express multiple tropomyosin isoforms and splicing
variants, and those proteins have been proposed to provide
actin filaments specific identities [5,123–125]. This concept has
been reinforced by the observation of cellular localization of tro-
pomyosins, which is highly dependent on the type of
tropomyosin isoform [126,127] (figure 5a).Among the tens of iso-
forms that exist inmetazoans, individual actin structures usually
interact with a subset of tropomyosins. Most actin networks in
cells aredecoratedbyspecific familiesof tropomyosins, including
filopodia, lamella and stress fibres, with the exception of
branched networks such as lamellipodia or endocytic actin
patches which do not recruit tropomyosins (figure 5b)
[124,125,127,128]. Some tropomyosins do not form copolymers



(a) (b) (c)actin Tpm4

Figure 5. Functional differentiation of actin networks by tropomyosins. (a) Example of the specific localization of tropomyosin 4 (in red) in MTLn3 cells. Tropomyosin
localizes with actin (in green) in stress fibres and in lamellar structures (arrowheads), while it is absent from the branched actin structures at the leading edge
(arrows) (adapted from [128]). (b) Example of the differential localization of tropomyosin isoforms (in green) in U2OS cells. While Tpm2 shows a strong colocaliza-
tion with the focal adhesion-specific protein vinculin (in red), Tpm3 localizes proximally to focal adhesions (adapted from [131]). (c) In vitro single-filament scale
imaging reveals that while some tropomyosin isoforms (top images: Tpm2.1 in green and Tpm3.2 in red) can copolymerize with actin filaments, others cannot
(bottom images: Tpm3.1 in green and Tpm1.6 in red) (adapted from [134], scale bar, 5 µm).
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(figure 5c), indicating that they are therefore involved in many
different cellular functions [126,129], and modulation of the
expression of tropomyosins triggers specific cellular responses.
For example, some cancer cell lines can remarkably recover
rigidity sensing and rigidity-dependent growth, when a single
tropomyosin isoform (Tpm2.1) is over-expressed [127,130].
However, structures such as stress fibres are highly sensitive
to the expression level of any isoform of tropomyosin
[127,131]. Recent data also suggest thatmodulation of any tro-
pomyosin isoform impacts the whole myosin organization in
cells, thus acting on both tension and traction forces driven by
focal adhesions [132]. Therefore, some actin networks might
bind to multiple families of tropomyosins simultaneously,
which is coherent with the high concentration of tropomyosin
present in cells, and with the fact that some tropomyosin
isoforms have the ability to copolymerize as demonstrated
in vitro (figure 5c) [133,134].

The presence of tropomyosins on linear actin networks
suggests a preference for formin-generated filaments. Indeed,
incubation of the pan-formin inhibitor SMIFH2 in oocytes
decreases the cortical tropomyosin level [135]. Tropomyosin
depletion promotes the expansion of lamellipodia while its
overexpression inhibits this branched structure while promot-
ing linear networks [136–138]. Moreover, it seems that some
formins assemble actin filaments bound to specific tropomyo-
sins. This is beautifully illustrated in fission yeast, where an
exchange of the localization of the fission yeast formins For3
and Cdc12 results in an exchange in localizations of the tropo-
myosin forms on the corresponding actin networks [139]. Also,
the absence of CP in fission yeast cells induces simultaneously
ectopic recruitment of the tropomyosin Cdc8 and of both
formins Fus1 and Cdc12 [140]. However, specific downregula-
tion of some formins (mDia1 and mDia3) does not affect the
localization of tropomyosins, indicating that some formins
may not share this specificity for tropomyosins [141].

7.3. Impact of tropomyosins on actin filament
nucleation, debranching and the binding of other
actin-binding proteins

Tropomyosins are dimers of α-helices forming parallel coiled-
coils that span several actin subunits [123]. A biochemical
link between formins and tropomyosins has been described
in vitro, and cooperativity between these proteins is established
[136,142,143]. In budding yeast, the presence of tropomyosin
can specifically increase the nucleation rate of a formin.
Conversely, tropomyosins are generally strong inhibitors of
Arp2/3-induced actin nucleation and branch formation
[144,145]. Debranching and re-organization of actin networks
into linear arrays is also favourable to tropomyosins, as this
process generates more actin pointed ends from where tropo-
myosins can bind [121,122]. These observations agree well
with the localization of tropomyosin in cells.

The binding of tropomyosin around actin filaments contrib-
utes directly to the recruitment of particular families of ABPs,
and thedissociationof others. Tropomyosins regulate the activity
of the different families of myosins by modifying their binding
to actin filaments and their enzymatic kinetics [146,147]. This
mechanism is important because it allows cargoes to be directed
to appropriate locations and regulates contractility. Elegant
in vitro studies confirm at the level of single actin filaments
that tropomyosin excludes other ABPs, such as fimbrin or
ADF/cofilin, therefore preventing filaments from disassembly
[129,134,148,149]. Interestingly, tropomyosin is not required per
se to assemble cables in vitro in the absence of disassembling
factors but it becomes necessary to maintain cable assembly in
biomimetic assays where treadmilling has been reconstituted
[136,150]. Tropomyosins are hencemajor biochemical regulators
thatdefine the identityofactin filaments andregulate thebinding
of many families of ABPs, thereby leading to the segregation of
these proteins to different actin networks.
8. Regulation of actin networks protein
composition by competition
between ABPs

Numerous lines of evidence indicate that not only tropomyosins,
but most ABPs, display cooperative or competitive binding
effects to actin filaments, and that these effects need to be taken
into account to understand globally how an appropriate ABP
compositionofactinnetworks is reached [5].Anumberof cellular
biology studies demonstrate unambiguously that the removal of
a given ABP from one actin networkmay trigger a global reloca-
tionofABPs fromotheractinnetworks [6,140].As aconsequence,
phenotypes observed in cells are not only due to the absence of
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the ABP of interest, but also to themislocalization of other ABPs.
Several hypotheses could explain this phenomenon. First, it is
possible that the absence of a protein in a network may open a
binding site for other proteins, or allow the binding of competing
proteins. For instance, in yeast, removal of fimbrin from actin
patches, which are Arp2/3-branched networks, leads to an ecto-
pic localizationof tropomyosin to thosenetworks [6]. Second, it is
possible that ectopic protein localization triggers the cooperative
binding of additional proteins. For instance, loss of CP from actin
patches creates free actin filament barbed ends, where formins
can bind,which in turn favours the ectopic binding of tropomyo-
sin [140]. Finally, the absence of an ABP could also have
consequences on the geometryof thenetwork,whichwould con-
sequently impact its ABP composition. Overall, these results
indicate that although tropomyosins are key regulators for
addressing ABPs to appropriate networks, proper segregation
of ABPs on specific actin networks in cells also relies on a
global and complex biochemical equilibrium, involving many
different families of ABPs. Addressing these questions in the
futurewill require to integrate all theseparameters into acompre-
hensive model.

9. Conclusion
The aim of this review was to describe our current knowledge
of the different molecular mechanisms involved in the
definition of the identity of actin filaments and networks
for a proper segregation of ABPs in cells. We conclude this
work by emphasizing that these mechanisms are often not
purely distinct from each other, but interrelated. A clear
example is the fact that a protein like tropomyosin gives an
identity to actin filaments, but is also involved in competitive
binding with other ABPs. As many different protein–protein
interactions and molecular mechanisms are simultaneously
involved, a comprehensive understanding of these complex
systems requires non-superficial analysis.
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