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Abstract

Connectivity hyperalignment can be used to estimate a single shared response space across 

disjoint datasets. We develop a connectivity-based shared response model that factorizes 

aggregated fMRI datasets into a single reduced-dimension shared connectivity space and subject-

specific topographic transformations. These transformations resolve idiosyncratic functional 

topographies and can be used to project response time series into shared space. We evaluate this 

algorithm on a large collection of heterogeneous, naturalistic fMRI datasets acquired while 

subjects listened to spoken stories. Projecting subject data into shared space dramatically improves 

between-subject story time-segment classification and increases the dimensionality of shared 

information across subjects. This improvement generalizes to subjects and stories excluded when 

estimating the shared space. We demonstrate that estimating a simple semantic encoding model in 

shared space improves between-subject forward encoding and inverted encoding model 

performance. The shared space estimated across all datasets is distinct from the shared space 

derived from any particular constituent dataset; the algorithm leverages shared connectivity to 

yield a consensus shared space conjoining diverse story stimuli.
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1. Introduction

The developing infrastructure for data sharing (alongside evolving incentives) has led to a 

proliferation of publicly available “open” neuroimaging data. Although still overshadowed 

by traditional task and resting-state acquisitions, we are beginning to see more public data 

collected during rich, naturalistic paradigms (e.g., Hanke et al., 2014, 2016; Taylor et al., 

2017; DuPre et al., 2019). Although the neuroimaging community unequivocally benefits 

from the increasing availability of public data (Poldrack and Gorgolewski, 2014; Milham et 

al., 2018), this trend introduces a challenge. Namely, datasets are often markedly 

heterogeneous—i.e., collected on different scanners, using different acquisition parameters, 

with different samples of subjects—and require sophisticated harmonization (e.g., 

Yamashita et al., 2019). Furthermore, in the context of naturalistic stimuli (e.g., movie-

watching, story--listening), stimuli vary considerably from experiment to experiment. Here 

we focus on a particular aspect of harmonization: finding a shared functional response space 

across heterogeneous naturalistic datasets.

In order to fully realize the potential of “big” neuroimaging data for prediction and 

translational purposes, we need to obtain some level of correspondence across individuals 

(Gabrieli et al., 2015; Dubois and Adolphs, 2016; Woo et al., 2017). Typically, each 

individual brain is spatially normalized to a standard space based on macroanatomical 

features such as sulcal curvature (Fischl et al., 1999; Coalson et al., 2018). However, fine-

grained functional response topographies (e.g., Brett et al., 2002; Duncan et al., 2009; Frost 

and Goebel, 2012; Haxby et al., 2014; Zhen et al., 2015, 2017) and connectivity patterns 

(e.g., Langs et al., 2016; Braga and Buckner, 2017; Gordon et al., 2017; Bijsterbosch et al., 

2019) are not tightly coupled to macroanatomical features and are markedly idiosyncratic 

across individuals. Information encoded at this finer scale may be inaccessible based on 

anatomical alignment alone (Feilong et al., 2018; Kong et al., 2019). In order to leverage 

large volumes of data for prediction in individuals, we need to resolve these idiosyncrasies 

in functional–anatomical correspondence. Hyperalignment is a family of algorithms for 

normalizing functional data into a common space by resolving topographic idiosyncrasies 

(Haxby et al., 2011; Guntupalli et al., 2016). These methods hinge on functional 

commonalities to drive normalization—typically a rich stimulus is used to evoke 

stereotyped, time-locked response trajectories across subjects. However, recent work by 

Guntupalli et al. (2018) demonstrates that functional connectivity can be used to effectively 

drive functional normalization absent any shared stimulus. Each voxel’s participation in 

functional networks elsewhere in the brain can provide a shared functional signature 

sufficient for resolving topographic idiosyncrasies. One important product of this 

development, which the authors examined in detail, is the extension of hyperalignment to 

resting-state functional connectivity. In this case, the “rest” task yields rich and consistent 

enough connectivity patterns to support functional normalization. A separate, largely 

unexplored avenue is that connectivity hyperalignment may allow us to define a single 

common space across distinct naturalistic stimuli or tasks.

Here, we use a variant of connectivity-based hyperalignment (Guntupalli et al., 2018) to 

showcase the utility of aggregating disjoint naturalistic story-listening datasets into a single, 

shared response space. For a given region of interest (ROI), we first compute intersubject 
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functional correlations (ISFC; Simony et al., 2016) between each voxel and a set of parcels 

tiling the cortex (i.e., connectivity targets; Glasser et al., 2016). We then apply the shared 

response model (SRM; Chen et al., 2015) to these connectivity patterns to find a reduced-

dimension connectivity space shared across both subjects and stimuli. Critically, in the 

context of a task such as listening to spoken stories, we expect these coarse connectivity 

patterns to be well-preserved across subjects and stimuli. The SRM effectively decomposes 

the connectivity data across all datasets into a shared connectivity space, and a set of 

subject-specific transformation matrices that resolve topographic idiosyncrasies. Although 

the shared model is derived from functional connectivity, the subject-specific topographic 

transformations can be used to project response time series into shared space. We benchmark 

this algorithm on a large, heterogeneous collection of story-listening functional MRI datasets 

assembled over the course of approximately seven years. This data collection comprises 10 

unique auditory story stimuli across 300 scans with 149 unique subjects. We evaluate the 

shared space using between-subject time-segment classification (e.g., Haxby et al., 2011), 

temporal and spatial intersubject correlations (e.g., Nastase et al., 2019a), and between-

subject semantic model-based encoding and decoding (e.g., Huth et al., 2016).

2. Materials and methods

2.1. Participants

We aggregated fMRI datasets collected between 2011 and 2018 comprising 10 story stimuli 

and 149 subjects totalling 300 scans (mean age = 22.6 years, SD = 6.25, range: 18–53; 84 

reported female). Subjects with behavioral comprehension scores (where applicable) lower 

than 25% accuracy were excluded. Furthermore, we computed leave-one-subject-out ISCs in 

a left early auditory cortex ROI (Glasser et al., 2016) for all subjects in each dataset at 

temporal lags ranging from −100 to 100 TRs and excluded any subjects with a peak ISC at 

lags exceeding ±1 TR. Here we briefly summarize the resulting sample size and 

demographics for each dataset, and point to previously published work using these data (see 

Table 1). The datasets are named according to the names of the corresponding story stimuli, 

with abbreviated aliases used in analysis and figures. The “Pie Man” data (alias: pieman) 

comprised 46 subjects (mean age = 22.4 years, SD = 3.8, 23 reported female; (Simony et al., 

2016). The “Pretty Mouth and Green My Eyes” data (alias: prettymouth) comprised 19 

subjects (mean age = 20.2 years, SD = 2.1, 9 reported female) from the “cheating” condition 

of the context manipulation described by Yeshurun and colleagues (2017b). The “Milky 

Way” data comprised 16 subjects (mean age = 19.9 years, SD = 1.5, 7 reported female) from 

one condition (Story1) of the word-substitution manipulation described by Yeshurun and 

colleagues (2017a). The previously unpublished “Slumlord” and “Reach for the Stars One 

Small Step at a Time” stories were presented in a single scanning run (alias: slumlordreach) 

and comprised 16 subjects (mean age = 21.1 years, SD = 2.4, 8 reported female). The “It’s 

Not the Fall That Gets You” data (alias: notthefall) comprised 18 subjects (mean age = 21.4 

years, SD = 2.5, 8 reported female) from the “intact” condition described by Chien and 

Honey (2020). The “The 21st Year” data (alias: 21styear) comprised 24 subjects (mean age 

= 23.3 years, SD = 6.7, 14 reported female) and described by Chang et al. (2020). Finally, 

two stories recorded at the Princeton Neuroscience Institute (PNI) served as stimuli: “Pie 

Man (PNI)” (alias: pieman (PNI)) and “Running from the Bronx (PNI)” (alias: bronx (PNI)). 
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The “Pie Man (PNI)” data comprised 39 subjects (mean age = 23.3 years, SD = 7.7, 28 

reported female). The “Running from the Bronx (PNI)”, “I Knew You Were Black” (alias: 

black), and “The Man Who Forgot Ray Bradbury” (alias: forgot) data were collected at the 

same time and comprised roughly the same sample of 40 subjects (mean age = 23.3 years, 

SD = 7.6, 29 reported female; Lin et al., 2019). Overall, 83 subjects (56% of the total 

sample) contributed a single scan, 22 (15%) contributed to two scans, 5 (3%) contributed 

three scans, 37 (25%) contributed four scans (~40 subjects were acquired for the four 

“pieman (PNI),” “bronx (PNI),” “forgot,” and “black” stories by design), and 2 (1%) 

contributed five scans (Fig. S1). All data used herein are publicly available as part of the 

“Narratives” collection (Nastase et al., 2019b) on the OpenNeuro repository: https://

openneuro.org/datasets/ds002345.

2.2. Stimuli and design

Story stimuli were presented auditorily and ranged from ~7 to 56 min in duration 

(summarized in Table 1). The stimuli included professional storytellers performing for a live 

audience, actors performing written narratives, and authors reading their written works. For 

each dataset, TRs corresponding to the story stimulus were isolated by discarding any TRs 

corresponding to silence or music (padding the beginning or end of a run). In general, 

participants were instructed to maintain fixation on a centrally-presented crosshair or dot and 

listen to the story. Behavioral questionnaires assessing narrative comprehension were 

acquired for the “Pretty Mouth and Green My Eyes”, “Milky Way”, “Slumlord” and “Reach 

for the Stars One Small Step at a Time”, “The 21st Year”, “Pie Man (PNI)”, “Running from 

the Bronx (PNI)”, “I Knew You Were Black”, and “The Man Who Forgot Ray Bradbury”. 

These comprehension scores were used to initially exclude poor-performing or 

noncompliant participants (participants with accuracies lower than 25%), but were not used 

in subsequent analyses.

2.3. Image acquisition

MRI data for the “Pie Man”, “Pretty Mouth and Green My Eyes”, “Milky Way”, 

“Slumlord”, “Reach for the Stars One Small Step at a Time”, “It’s Not the Fall that Gets 

You”, and “The 21st Year” were collected using a 3T Siemens Skyra with a 20-channel 

phased-array head coil. Functional blood-oxygenation-level-dependent (BOLD) images 

were acquired in an interleaved fashion using gradient-echo echo-planar imaging with an in-

plane acceleration factor of 2 using mSENSE: TR/TE = 1500/28 ms, flip angle = 64°, 

bandwidth = 1445 Hz/Px, in-plane resolution = 3 × 3 mm, slice thickness = 4 mm, matrix 

size = 64 × 64, FoV = 192 ×192 mm, 27 axial slices with roughly full brain coverage and no 

gap, anterior-posterior phase encoding. At the beginning of each run, three dummy scans 

were acquired and discarded by the scanner to allow for signal stabilization. T1-weighted 

structural images were acquired using a high-resolution single-shot MPRAGE sequence with 

an in-plane acceleration factor of 2 using GRAPPA: TR/TE/TI = 2300/3.08/900 ms, flip 

angle = 9°, bandwidth = 240 Hz/Px, in-plane resolution 0.859 × 0.859 mm, slice thickness 

0.9 mm, matrix size = 256 × 256, FoV = 172.8 × 219.9 × 219.9 mm, 192 sagittal slices, 

ascending acquisition, no fat suppression.
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MRI data for the “Pie Man (PNI)”, “Running from the Bronx (PNI)”, “I Knew You Were 

Black”, and “The Man Who Forgot Ray Bradbury” stores were collected using a 3T Siemens 

Prisma with a 64-channel head coil. Functional images were acquired in an interleaved 

fashion using gradient-echo echo-planar imaging with a multiband acceleration factor of 3 

and no in-plane acceleration: TR/TE 1500/31 ms, flip angle = 67°, bandwidth = 2480 Hz/Px, 

in-plane resolution = 2.5 × 2.5 mm, slice thickness 2.5 mm, matrix size = 96 × 96, FoV = 

240 × 240 mm, 48 axial slice with full brain coverage and no gap, anterior-posterior phase 

encoding, three dummy scans. T1-weighted structural images were acquired using a high-

resolution single-shot MPRAGE sequence with an in-plane acceleration factor of 2 using 

GRAPPA: TR/TE/TI = 2530/3.3/1100 ms, flip angle = 7°, bandwidth = 200 Hz/Px, in-plane 

resolution = 1.0 × 1.0 mm, slice thickness 1.0 mm, matrix size = 256 × 256, FoV = 176 × 

256 × 256 mm, 176 sagittal slices, ascending acquisition, no fat suppression. T2-weighted 

structural images were acquired using a high-resolution single-shot MPRAGE sequence with 

an in-plane acceleration factor of 2 using GRAPPA: TR/TE = 3200/428 ms, flip angle = 

120°, bandwidth = 200 Hz/Px, in-plane resolution 1.0 × 1.0 mm, slice thickness 1.0 mm, 

matrix size = 256 × 256 mm, FoV = 176 sagittal slice, ascending acquisition, fat 

suppression.

2.4. Preprocessing

All MRI data were preprocessed using fMRIPrep (Esteban et al., 2019), which uses Nipype 

(Gorgolewski et al., 2011) to adaptively construct workflows based on metadata. Anatomical 

T1-weighted images were corrected for intensity non-uniformity (Tustison et al., 2010) and 

skull-stripped based on the OASIS template using ANTs (Avants et al., 2008). Cortical 

surfaces were reconstructed using FreeSurfer (Dale et al., 1999) and tissue segmentation was 

performed using FSL (Zhang et al., 2001). T2-weighted images were also supplied to 

surface reconstruction where applicable.

Functional data were slice-time corrected using AFNI (Cox, 1996, 2012) and motion 

corrected using FSL (Jenkinson et al., 2002, 2012). “Fieldmap-less” susceptibility distortion 

correction was performed by co-registering the functional image to the T1-weighted image 

for that subject with intensity inverted (Wang et al., 2017) constrained with an average field 

map template (Treiber et al., 2016; Wang et al., 2017) using ANTs. Functional images were 

next co-registered to the corresponding T1-weighted image using FreeSurfer’s boundary-

based registration (Greve and Fischl, 2009). Transformations for performing motion 

correction, susceptibility distortion correction, and functional to anatomical registration were 

concatenated and applied in a single step with Lanczos interpolation using ANTs. Functional 

data were then resampled to the subject-specific cortical surface models by averaging 

samples at six intervals along the normal between the white matter and pial surfaces. 

Functional data were then spatially normalized to the fsaverage surface template based on 

sulcal curvature and downsampled to the fsaverage6 template (Fischl et al., 1999). All 

subsequent analyses (including functional normalization) were performed on surface data 

(Van Essen and Glasser, 2018), and functional normalization algorithms are compared to 

relatively high-performing nonlinear surface-based anatomical normalization (Klein et al., 

2010). Note that the terms “voxel” and “vertex” are effectively interchangeable for the 
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analyses of interest; although we sometimes refer to voxels in keeping with conventions in 

the literature, all analyses of interest were performed explicitly on surface vertices.

The following confound variables were regressed out of the signal in a single step (Lindquist 

et al., 2019) using AFNI’s 3dTproject: linear and quadratic trends, sine/cosine bases for 

high-pass filtering (cutoff: 0.00714 Hz; ~140 s), six head motion parameters and their 

derivatives, framewise displacement (Power et al., 2014), and six principal component time 

series from anatomically-defined cerebrospinal fluid and white matter segmentations 

(Behzadi et al., 2007).

2.5. Regions of interest

We evaluated the shared model in several regions of interest (ROIs) defined according to a 

multimodal parcellation (MMP) based on anatomical and functional data from the Human 

Connectome Project (Glasser et al., 2016). The surface-based parcellation was projected to 

the fsaverage surface template and downsampled to the fsaverage6 template (Mills, 2016). 

We focused on four large cortical regions (Fig. 1), each of which comprises several smaller 

cortical areas. Following the MMP, early auditory cortex (EAC) comprised five areas (A1, 

MBelt, LBelt, PBelt, RI) and contained 808 and 638 vertices in the left and right 

hemispheres, respectively. Auditory association cortex (AAC) comprised eight areas (A4, 

A5, STSdp, STSda, STSvp, STSva, STGa, TA2) and contained 1,420 (left hemisphere) and 

1,493 (right hemisphere) vertices. The temporo-parieto-occipital junction (TPOJ) comprised 

five areas (TPOJ1, TPOJ2, TPOJ3, STV, PSL) and contained 847 (left hemisphere) and 

1,188 (right hemisphere) vertices. To reduce the posterior cingulate cortex region to a more 

comparable size (originally 14 areas containing over 2, 500 vertices per hemisphere), we 

selected seven core areas (POS1, POS2, v23ab, d23ab, 31pv, 31pd, 7m) containing 1,198 

(left hemisphere) and 1,204 (right hemisphere) vertices; we refer to this region as posterior 

medial cortex (PMC). These ROIs (EAC, AAC, TPOJ, and PMC) span a cortical hierarchy 

supporting language and narrative comprehension (Lerner et al., 2011; Huth et al., 2016; 

Baldassano et al., 2017). The selection of ROIs was not intended to be exhaustive; rather, we 

aimed to benchmark the shared model in a sample of relevant ROIs ranging from low-level 

sensory cortex to high-level association cortex. We analyze ROIs in both hemispheres (left 

and right) separately in all subsequent analyses, but generally collapse across hemispheres 

for statistical summarization.

2.6. Connectivity-based shared response model

Here we apply a variant of connectivity hyperalignment to multiple datasets with largely 

non-overlapping subjects, where all datasets share a common task (i.e., story-listening) and 

each “dataset” corresponds to a unique, naturalistic stimulus (auditory recordings of spoken 

stories). We use the term “hyperalignment” (via Haxby et al., 2011) to refer to the 

superordinate class of functional normalization algorithms that leverage commonality of 

function to transform subject-specific, topographic responses into a common response space. 

The current work develops a specific algorithm within this overarching class, which we refer 

to as connectivity-based shared response model (connectivity SRM or cSRM; Fig. 2). Note, 

however, that this algorithm differs in several ways from the core implementations of 

hyperalignment and connectivity hyperalignment, which, for example, use iterative 
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Procrustes transformations (Haxby et al., 2011; Guntupalli et al., 2016, 2018). We aim to 

describe the method in enough detail to provide a recipe for others. Our method was 

implemented using the Brain Imaging Analysis Kit (BrainIAK; https://brainiak.org), and 

code to perform these analyses is publicly available at https://github.com/snastase/

connectivity-srm. To validate our approach, we first split each story in half; we designate the 

first half as the training set and the second half as the test set. All functional normalization 

algorithms are estimated from the training set and validated on the test set.

The following describes the cSRM algorithm for a given ROI. For each subject within a 

given dataset, we first estimate the functional connectivity between each vertex in the ROI 

and a set of connectivity targets. In the current context, because the subjects in a given 

dataset are all exposed to the same time-locked naturalistic story stimulus, we use ISFC to 

estimate stimulus-related functional connectivity and filter out idiosyncratic noise and 

intrinsic fluctuations (Simony et al., 2016; Nastase et al., 2019a). Leave-one-subject-out 

ISFCs are computed by correlating the response time series in one subject with the average 

response time series across the remaining subjects in the same dataset (i.e., exposed to the 

same stimulus). To construct intersubject connectivity targets, we first extract for each 

subject the regional-average response time series for 360 areas spanning the cortex derived 

from a multimodal surface-based cortical parcellation (Glasser et al., 2016). For a given 

subject, we then average the 360 response time series across all other subjects (excluding the 

current subject). Finally, we compute the Pearson correlation between the response time 

series at each vertex in the ROI for the left-out subject and the regional-average response 

time series for 360 connectivity targets derived from the remaining subjects. This yields an 

asymmetric ISFC matrix for each subject with a number of rows corresponding to the 

number of vertices in the ROI and 360 columns representing the connectivity targets. The 

logic so far may seem counterintuitive; i.e., how can poorly-aligned connectivity targets be 

used to “bootstrap” fine-grained alignment? This approach hinges on the assumption that the 

voxels within an ROI are characterized by topographic “signatures” of long-range functional 

connectivity (e.g., Heinzle et al., 2011; Jbabdi et al., 2013; Arcaro et al., 2015). Connectivity 

targets are deliberately coarse (to mitigate deficiencies of anatomical alignment), but 

widespread enough to afford distinct connectivity signatures for driving fine-grained 

alignment. Although the overall aim is similar, our method of estimating connectivity differs 

from the core implementation of connectivity hyperalignment by Guntupalli et al. (2018) in 

several ways. First, we estimate functional connectivity using ISFC rather than within-

subject functional connectivity. ISFC analysis relies on a shared stimulus to effectively 

isolate stimulus-related connectivity and is not applicable to resting-state data. Second, 

Guntupalli and colleagues (2018, pp. 20–21) used finer-grained, higher-dimensional 

connectivity vectors. To construct connectivity targets, they applied an initial, coarse 

connectivity hyperalignment within each of 1,284 regularly-spaced searchlights, then 

extracted the top three principal component time per searchlight, yielding 3,852 target times 

series. These 3,852 connectivity targets were then used to drive connectivity hyperalignment 

for the vertices of interest. Instead we simply use the average time-series per parcel, yielding 

an order of magnitude fewer targets, limiting ourselves to coarser-grained, lower-

dimensional connectivity vectors. This was an arbitrary decision for the sake of simplicity 

and computational efficiency; however, we expect that similar alternatives (e.g., using the 
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first principal component) would yield similar performance. Third, we use a predefined 

multimodal cortical parcellation to delineate connectivity targets rather than regularly-

spaced searchlights agnostic to areal borders.

In contrast to time-series hyperalignment, which relies on a shared stimulus to evoke time-

locked response trajectories across subjects, moving to connectivity abstracts away from the 

time series. Following the notation in Fig. 2, time-series hyperalignment operates on 

response matrices where the number of rows corresponds to the number of voxels or vertices 

in the ROI and the number of columns corresponds to the number of time points in the 

experiment. (Notation conventions vary, and sometimes the data matrix is transposed in prior 

publications—e.g., Haxby et al., 2011—but this is not a substantive difference). Each row 

corresponds to the response time series for a single voxel and each column corresponds to 

the distributed response pattern for a given time point. Different stimuli result in different 

response trajectories that cannot effectively be aligned and may yield different shared spaces 

(although these spaces may converge for sufficiently rich stimuli). On the other hand, 

connectivity hyperalignment operates on connectivity matrices where the number of 

columns instead corresponds to the number of connectivity targets elsewhere in the brain 

(Fig. 2C). In this framework, each row corresponds to the connectivity vector (a coarse 

whole-cortex connectivity profile) for a given “seed” voxel in the ROI; each column in the 

matrix corresponds to a fine-grained, spatially distributed pattern of connectivities across 

voxels in the ROI relative to a given connectivity target. Critically, the shape of the 

connectivity matrices is dictated by the number of connectivity targets, not the number of 

time points in a stimulus. These connectivity matrices are isomorphic across stimuli and can 

be more readily aggregated than disparate response trajectories. The “second-order 

isomorphism” of connectivity matrices allows us to aggregate (i.e., stack) ISFC matrices 

across both subjects and story stimuli.

The goal of hyperalignment is then to leverage commonality of function to find a set of 

transformations (e.g., rotations) that map each subject’s idiosyncratic voxel response space 

into an abstract, shared response space. The SRM implementation used here frames this in 

terms of matrix factorization (Chen et al., 2015; Anderson et al., 2016), where the aggregate 

data matrix across subjects is decomposed into a reduced-dimension shared space and a set 

of subject-specific topographic transformation matrices. Applying this algorithm to 

connectivity matrices yields a shared connectivity space. Intuitively, it may seem that the 

resulting subject-specific transformations are only suitable for aligning connectivity data—

but this is not the case (Guntupalli et al., 2018). Importantly, these subject-specific matrices 

are topographic transformations and can be used to project response time series into the 

shared space—assuming the connectivity matrices capture sufficient functional commonality 

to effectively align response trajectories. Concretely, we applied the SRM to the ISFC 

matrices derived from the training data (first half of each story), resulting in a shared 

connectivity space and subject-specific transformations. We then used these transformations 

to project response time series from the test set (second half of each story) into the shared 

space for evaluation. Note that the SRM algorithm can differ in performance relative to, e.g., 

the iterative Procrustes transformations used by Guntupalli and colleagues (2018; see, e.g., 

Chen et al., 2015, for comparisons among algorithms).
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For subjects participating in multiple datasets, we computed their connectivity matrices 

separately per dataset, then averaged these prior to estimating the SRM. This ensures that 

each subject only submits one connectivity matrix to the SRM and only receives one 

transformation matrix into shared space. Note that this is not strictly necessary; multiple 

connectivity matrices could be submitted for a single subject participating in multiple 

datasets, yielding multiple dataset-specific transformations. However, this would also bias 

the shared space toward subjects contributing multiple connectivity matrices, so we did not 

explore this alternative here. Although the majority of subjects (56%) only participated in 

one scan (i.e., story), more densely sampled subjects may contribute more robust 

connectivity estimates due to this averaging procedure.

We can also exclude a subset of stories and subjects when estimating the shared space. First, 

we estimate a shared connectivity space based on the training data from a subset of stories. 

In the schematic depicted in Fig. 2, this corresponds to excluding, e.g., “dataset 1” (green) 

entirely when estimating the shared space; i.e., the shared space is estimated from datasets 

(e.g., “dataset 2”, orange) comprising stimuli and subjects not included in dataset 1. 

Subsequently, we compute connectivity matrices on the training data for a set of left-out 

subjects and stories not used to estimate the shared space. Given the preexisting shared 

connectivity space and a connectivity matrix for a given left-out subject, we can solve for 

that subject’s topographic transformation into the predefined shared space (as described in 

Chen et al., 2015). We can then use this transformation to project the left-out subject’s test 

data into shared space. That is, in Fig. 2, we use the training half of dataset 1 (light green) to 

define a transformation into the preexisting shared space, and project the test half of dataset 

1 (dark green) into this independent shared space. Projecting left-out subjects into a 

predefined shared space in this manner does not alter the shared space (or the preexisting 

transformations for subjects used to estimate the shared space). Note that in the context of 

connectivity SRM, the training data used to project left-out subjects into shared space 

comprise connectivity matrices that are not strictly tied to a given stimulus; this allows novel 

subjects listening to novel stories to be transformed into an independent, predefined shared 

space.

Although we focus on defining a single shared connectivity space across datasets, we can 

also apply cSRM separately to each story dataset in isolation to create story-specific shared 

spaces. We directly compare the single connectivity-based shared space defined across all 

stories to story-specific connectivity-based shared spaces defined separately for each dataset. 

We also compare cSRM to conventional within-story time-series hyperalignment using the 

analogous SRM implementation (tSRM; Chen et al., 2015). SRM yields a reduced-

dimension shared space at a specified dimensionality of k shared features; in several cases 

we compare shared spaces at varying dimensionality. To control for uninteresting effects of 

dimensionality reduction with SRM, we also performed principal components analysis 

(PCA) at matched dimensionality (as in, e.g., Chen et al., 2015). PCA imposes an 

orthogonality constraint analogous to SRM, but when applied to the aggregated subject data 

yields the same projection across subjects. Intuitively, PCA can be thought of as a control 

condition implementing similar dimensionality reduction, but without accounting for 

topographic idiosyncrasies across subjects. When interpreting results, cSRM performance 

should be compared to PCA at the matching dimensionality.
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2.7. Time-segment classification

We evaluated cSRM against alternative normalization schemes using between-subject story 

time-segment classification (Haxby et al., 2011). This analysis measures how accurately 

brief spatiotemporal response trajectories corresponding to unique segments of a story can 

be matched across subjects. We divided the test data (second half of each story) into 10-TR 

(15-second) segments and concatenated the response patterns across TRs into a single 

spatiotemporal response vector (or response trajectory) per segment. To perform between-

subject classification for a given test subject, we first averaged the response vectors for each 

time segment over N–1 subjects excluding the test subject. We then computed the Pearson 

correlation between each response vector in the test subject and the average response vectors 

from the remaining subjects. A given response vector in the test subject was correctly 

classified if it is most highly correlated with the correct average vector from the remaining 

subjects. This is effectively a correlation-based 1-nearest neighbor classifier with leave-one-

subject-out cross-validation (Haxby, 2012). Chance accuracy is 1 over the number of time 

segments in the test data for a given story and varies across stories. Note that, by design, this 

analysis can capitalize on any information shared across subjects and is agnostic to the type 

of information (e.g., sensory, semantic) encoded in response trajectories.

2.8. Intersubject correlation

We used two varieties of intersubject correlation analysis to further dissect how cSRM 

affects spatially distributed response time series. We first examined how cSRM impacts 

vertex- or feature-wise intersubject time-series correlations (Hasson et al., 2004, 2010; 

Nastase et al., 2019a). For each subject, we computed the Pearson correlation between the 

response time series at each vertex or feature and the average response time series at that 

vertex or feature across N – 1 remaining subjects (i.e., leave-one-out temporal ISC). For 

each vertex or feature, we then averaged ISCs across subjects to summarize the shared signal 

for that vertex/feature. To evaluate how cSRM affects spatially distributed response patterns, 

we computed intersubject pattern correlations at each time point (Chen et al., 2017; Zadbood 

et al., 2017; Nastase et al., 2019a). More specifically, for each subject, we computed the 

Pearson correlation between the response pattern at each TR and the average response 

pattern for N – 1 remaining subjects, then averaged these correlations across all time points 

per subject (i.e., leave-one-out spatial ISCs). We summarized these values by averaging the 

resulting ISCs across time points. Note that cSRM could conceivably produce the same 

degenerate response pattern across all time points and still yield high spatial ISCs, despite 

effectively discarding the stimulus-specific information of interest. However, this would be 

inconsistent with high time-segment classification accuracies; therefore, we consider spatial 

ISCs as a view into the observed time-segment classification performance rather than a 

benchmark in isolation. Evaluating the efficacy of cSRM using ISCs may seem “circular” at 

first, but there are two reasons why this is not the case: (a) cSRM optimizes intersubject 

similarity of connectivity matrices, not response trajectories; (b) the shared space is 

estimated from a subset of training data (the first half of each story) and the ISCs are 

evaluated on a separate subset of test data (the second half of each story).
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2.9. Semantic encoding model

We also evaluated how cSRM impacts model-based encoding and decoding for two stories 

(Fig. 3; Güçlü and van Gerven, 2017; Vodrahalli et al., 2017; Van Uden et al., 2018; Wen et 

al., 2018). To quantify the semantic content of the stories, we first used a semi-supervised 

forced-alignment algorithm (Yuan and Liberman, 2008) to extract time-stamped transcripts 

from each story stimulus (see Fig. 2 for an example). We then assigned semantic vectors to 

each word from the 300-dimensional word2vec embedding space trained on ~100 billion 

words from the Google News corpus (Mikolov et al., 2013). More semantically similar 

words are located nearer to each other in this vector space; that is, they have more similar 

word embeddings (Turney et al., 2010). For each TR, all words with onsets occurring within 

that TR were assigned to the TR, and any words spanning two TRs were assigned to both. 

For TRs containing multiple words, we simply averaged the corresponding word 

embeddings to produce a single semantic vector per TR (cf. Vodrahalli et al., 2017). TRs in 

which no words occurred were assigned zero vectors. To account for varying hemodynamic 

lag, the 300-dimensional model was concatenated at delays of 2, 3, 4, and 5 TRs (3.0, 4.5, 

6.0, 7.5 s), yielding a 1200-dimensional vector per TR (similarly to Huth et al., 2016). 

Delays were applied separately for the training and test data so as to avoid leakage across the 

train-test boundary.

To assess whether semantic information encoded in the embedding space captures variability 

in brain activity, we used a forward encoding model (Mitchell et al., 2008; Wehbe et al., 

2014; Huth et al., 2016; Pereira et al., 2018). Following work by Huth et al. (2016), we used 

ridge regression to estimate coefficients (weights) for these 1200 semantic model features. 

L2-regularized linear regression effectively imposes a prior on the feature weights: the 

identity matrix scaled by a ridge coefficient (Diedrichsen and Kriegeskorte, 2017). Ideally, 

the optimal ridge coefficient is selected using nested cross-validation. However, this is 

computationally intensive, and will tend to yield different ridge coefficients for each subject, 

voxel or vertex, and cross-validation fold, complicating model comparison. For example, 

Huth et al. (2016) used a resampling approach to find optimal ridge coefficients, then 

averaged these across voxels and subjects to arrive at a single, consensus ridge coefficient 

(183.3 in that case). Here, to simplify numerous model comparisons, we use an arbitrary 

ridge coefficient of 100 throughout. This of course handicaps the absolute performance of 

our model. Our goal is not to engineer a novel or high-performing encoding model (see, e.g., 

Huth et al., 2016; Pereira et al., 2018), but to explore how functional normalization 

algorithms such as cSRM impact model performance under simplifying assumptions. We are 

interested in the encoding model insofar as it can provide insights into the performance of 

normalization algorithms.

Ridge regression was used to estimate weights so as to best predict the response time series 

at each vertex (or feature) in the training data (implemented using scikit-learn; Pedregosa et 

al., 2011). In the case of functional normalization (e.g., cSRM), note that we first estimated 

transformations into shared space from the training data. In order to fit the semantic 

encoding model, we used these transformations to project the training data (from which the 

transformations were derived) into shared space. That is, both the SRM transformations and 

the semantic model weights were estimated from the training data (first half of each story), 
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affording unbiased validation on the test data (second half of each story). We focus on leave-

one-subject-out cross-validation to evaluate the semantic encoding models: for each cross-

validation fold, regression weights were estimated on the training data for N – 1 subjects, 

and evaluated on the test data for the left-out subject. In the current work, we average the 

training data across the N – 1 subjects in shared space before training; however, these data 

could be concatenated instead.

The regression weights estimated from the training data can then be used to predict response 

time series from the semantic vectors in a left-out subject. This approach—predicting vertex-

wise response time series from the semantic model—is referred to as “forward encoding”. 

To evaluate the quality of these predictions, we computed the Pearson correlation between 

the predicted response time series and the actual response time series. We also perform a 

model-based decoding analysis, referred to as an “inverted encoding model,” to predict 

semantic vectors from response patterns in the test set (Thirion et al., 2006; Brouwer and 

Heeger, 2009; Sprague et al., 2018; Gardner and Liu, 2019). Note that this approach differs 

from generic classification analyses (e.g., Norman et al., 2006; Haxby, 2012; see Naselaris 

and Kay, 2015), which do not specify an explicit feature space for decoding. We first 

averaged coefficients across the four delays to obtain a single 300-dimensional weight 

matrix (as in Huth et al., 2012). We then computed the pseudo-inverse of the weight matrix 

comprising all vertices or features in an ROI. We multiplied the response pattern at each 

time point by this inverted weight matrix, resulting in a predicted semantic vector for each 

time point. We evaluated the quality of these predictions by computing the Pearson 

correlation between the predicted semantic vector for each time point and the actual 

semantic vectors for all time points in the test set. We then assess the rank of the correct 

semantic vector in the test set and normalize this by the number of semantic vectors in the 

test set to obtain a normalized rank accuracy score (Pereira et al., 2018). We average these 

rank accuracies across all time points in the test set. The rank accuracy score ranges from 0 

to 1 where a score of 1 indicates that the correct semantic vector was the most similar to the 

predicted semantic vector and thus the highest-ranked vector. If there were no systematic 

relationship between predicted and actual semantic vectors, this would yield a chance rank 

accuracy score of approximately 0.5.

3. Results

3.1. Time-segment classification

We evaluated functional normalization algorithms in terms of between-subject story time-

segment classification (Haxby et al., 2011). We divided the test data into 10-TR (15-second) 

response trajectories and supplied these to a between-subject correlation-based classifier 

(chance is 1 over the number of time segments for a given story). We first assessed between-

subject time-segment classification in AAC across all 10 story stimuli (see Fig. 4). We 

compared classification performance for several implementations of functional 

normalization against the anatomically normalized data (“no SRM”), including time-series 

SRM defined within each story, connectivity SRM defined within each story, and 

connectivity SRM defined across all stories. For this representative example, we fit the 

SRMs with k = 100 shared features. We estimated 95% bootstrap confidence intervals 
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surrounding the mean classification accuracy across left-out subjects and hemispheres by 

resampling subjects with replacement. We avoid performing gratuitous null-hypothesis 

statistical tests, but note that, considered in isolation, cases in which the 95% confidence 

interval for the mean of one condition does not cross the mean of another imply statistically 

significant differences (at p < .05; Nakagawa and Cuthill, 2007). The visual depiction of 

confidence intervals does not account for the within-subjects design within a story, and is 

therefore more conservative than a paired test (Loftus and Masson, 1994).

In general, all functional normalization algorithms provided considerable gains in time-

segment classification over surface-based anatomical normalization. In most cases, the 

connectivity SRM was comparable to time-series SRM. Defining a connectivity-based 

shared space across all stories yielded comparable results to cSRMs defined separately for 

each story. In some cases—for example the “Pie Man” and “Running from the Bronx” 

stimuli recorded at PNI—the cSRM defined across stories provided marked improvement 

over other functional normalization algorithms. In general, classification performance on 

average improved from 40.3% with anatomical alignment to 63.7% with cSRM defined 

across all stories; tSRM and within-story cSRM yielded summary accuracies of 59.8% and 

58.1% respectively.

Finally, we estimated a separate connectivity space across all stories excluding the four most 

recently collected stories (and the constituent subjects). We then computed connectivity 

matrices from the training data for each left-out subject in the left-out stories “I Knew You 

Were Black” and “The Man Who Forgot Ray Bradbury.” We excluded the “Pie Man (PNI)” 

and “Running from the Bronx (PNI)” stories from model estimation to rule out the effect of 

shared subjects. We also excluded the “Pie Man (PNI)” and “Running from the Bronx” 

stories from model evaluation due to the relatively low audio quality of these stories. Given 

the predefined shared space and a connectivity matrix for each subject, we can derive a 

transformation for each left-out subject into the preexisting shared space (Chen et al., 2015). 

Projecting the test data for left-out subjects into this independent shared space yielded 

comparable improvements in accuracy over anatomical alignment (from 39.0% with 

anatomical alignment to 65.3% with the independent cSRM). This suggests that (a) the 

shared space generalizes to novel subjects and stimuli, and (b) the connectivity estimates for 

the training half of these left-out stories are sufficient for aligning these data to the shared 

space. In addition to comprising a completely non-overlapping sample of subjects viewing a 

different stimulus, these data were collected on a different scanner model using a different 

acquisition sequence.

We next assessed time-segment classification for two example stories (“I Knew You Were 

Black” and “The Man Who Forgot Ray Bradbury”) using cSRM at varying dimensionality 

across all four ROIs (Fig. 5). We compared classification performance for cSRM at 

dimensionalities k = 100, 50, and 10 shared features to anatomical normalization and PCA at 

matching dimensionality. PCA provides a control for the dimensionality reduction of SRM 

without resolving functional topographies across subjects. In EAC, cSRM afforded minimal 

improvements over anatomical alignment and only at low dimensionalities (from 35.3% to 

42.5% at the best-performing k = 10 across both stories; chance ≈ 3.7%). However, in AAC 

and TPOJ, cSRM markedly improved classification performance over anatomical alignment: 
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from 39.0% to 70.2% at the best-performing k = 50 in AAC; and from 22.9% to 48.5% at 

the best-performing k = 100 in TPOJ. Classification performance was only modestly 

improved in PMC (from 16.1% to 21.9% at k = 50). The PCA control analysis indicates that 

decreasing dimensionality biases time-segment classification performance upward, but that 

reduced dimensionality alone cannot account for the improvement due to cSRM. 

Furthermore, the consistent pattern of increasing performance with decreasing 

dimensionality for PCA suggests—particularly for AAC and TPOJ, which do not perform 

best at lowest dimensionality—that a higher-dimensional shared space (e.g., k = 100, 50) 

may encode information lost at lower dimensionality (e.g., k = 10) for some ROIs.

3.2. Intersubject correlation

The connectivity SRM maps each subject’s idiosyncratic responses into a shared space 

maximizing intersubject alignment of connectivity matrices—it does not explicitly optimize 

intersubject response time-series or pattern correlations. However, improvements in 

between-subject time-segment classification suggest that connectivity-based normalization 

in fact does implicitly align temporally-specific responses. To better understand this effect, 

we first examined how cSRM impacts response time series. For each subject, we computed 

vertex- or feature-wise intersubject time-series correlations (Hasson et al., 2004; Nastase et 

al., 2019a). We compared temporal ISCs at each vertex with anatomical alignment alone, 

with PCA to control for dimensionality reduction in SRM, and with cSRM at 

dimensionalities k = 100, 50, and 10. This comparison is not straightforward: the 

anatomically-aligned ROIs contain many hundreds of correlated features; on the other hand, 

cSRM (or PCA) reduces this feature space to fewer dimensions accounting for orthogonal 

(uncorrelated) components of response variance (each feature reflects a distributed response 

topography across the entire ROI).

We first visualized the average ISC across subjects for every vertex or feature in the ROI for 

each hemisphere (Fig. 6A). This reveals, for example, that cSRM and PCA isolate very few 

features in EAC (~1 in each hemisphere) that capture the vast majority of the shared signal 

across subjects. We did not observe large differences in the distribution temporal ISCs across 

hemispheres (Fig. S2). In downstream ROIs, however, cSRM yields a considerably larger 

number of dimensions capturing shared signal than PCA. This implies that functional 

alignment reveals higher-dimensional shared information across subjects. To more 

intuitively visualize this, we computed the number of features in each ROI exceeding an 

arbitrary ISC threshold of r > 0.1 (Fig. 6B). Note that in the reduced-dimension spaces, the 

absolute number of features exceeding this threshold is limited by the specified number of 

features k. We considered visualizing instead the proportion of features exceeding threshold 

relative to the maximum possible number of features k, but this obscures the fact that in 

most cases cSRM at, e.g., k = 100 yields several times the absolute number features 

exceeding threshold as cSRM at k = 10; although the proportion of features exceeding 

threshold increases at lower values of k, the absolute number of features exceeding threshold 

is considerably higher at higher values of k. These features represent largely orthogonal, 

non-redundant components of the response and a greater absolute number of features 

reflects higher-dimensional information shared across subjects. In AAC, for example, cSRM 

at k = 100 yields on average 79 features with ISC exceeding 0.1, while PCA at k = 100 
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yields only 21. Similarly, in TPOJ, cSRM at k = 100 increases the number of features 

exceeding this threshold from 15 to 66. In PMC, cSRM at k = 100 increases the number of 

features exceeding threshold from 12 to 50. Even in EAC, cSRM at k = 100 yields over 

twice the number of features with ISCs exceeding 0.1 as PCA at matched dimensionality (39 

and 16 features, respectively). We can infer that these numerous, largely orthogonal features 

with moderate ISCs encode high-dimensional information about the stimulus, because the 

stimulus is what drives shared responses across subjects (Nastase et al., 2019a). Again, 

unlike vertices in anatomical space, these features represent distributed topographies across 

the ROI and capture orthogonal components of response variance. Interestingly, although we 

find that time-segment classification in EAC is maximal at k = 10, we find considerably 

more than 10 features with moderate ISC at k = 50 and 100. These features, despite having 

moderate ISCs, may not be informative for time-segment classification.

Can the transformations derived from connectivity SRM align spatially distributed response 

patterns across subjects? To provide another window into the improvement in time-segment 

classification, we computed intersubject pattern correlations at each time point (Chen et al., 

2017; Zadbood et al., 2017; Nastase et al., 2019a). We assessed these spatial ISCs with 

anatomical alignment, PCA, and cSRM (Fig. 7). We found that spatial ISCs generally 

increased with reduced dimensionality, but that cSRM provides a boost over both anatomical 

alignment and PCA. In EAC, the benefit of cSRM over anatomical alignment was 

negligible, but exceeded PCA at matching dimensionality. In AAC and TPOJ, however, 

cSRM significantly improved the alignment of spatial response topographies across subjects. 

For example, in AAC, spatial ISCs almost doubled, from r = .110 with anatomical alignment 

(r = .058 with PCA) to r = .211 with cSRM at k = 100. An effect of similar relative 

magnitude was observed in TPOJ: from r = .082 with anatomical alignment (r = .029 with 

PCA) to r = .153 at cSRM at k = 100. In PMC, spatial ISCs increased from r = .074 (r = .021 

with PCA) to r = .100 with cSRM at k = 100. This matches with the expectation that the 

SRM algorithm will enforce spatial patterns that are increasingly correlated across subjects 

at lower dimensionality k.

3.3. Semantic encoding model

Encoding models have been increasingly adopted as a means of testing explicit feature 

spaces capturing representational content ranging from low-level visual features to high-

level semantic content (Naselaris et al., 2011; Serences and Saproo, 2012). However, these 

models are often estimated independently per subject using large volumes of data (e.g., Huth 

et al., 2016), which poses problems of both scalability (in terms of data collection) and 

generalizability across subjects (cf. Güçlü and van Gerven, 2017; Vodrahalli et al., 2017; 

Van Uden et al., 2018). Here we used a simplistic semantic encoding model to explore how 

cSRM impacts model performance. We assigned semantic word embeddings to each time 

point, then used ridge regression to estimate a weight matrix mapping between word 

embeddings and brain responses (see Fig. 3).

In the forward encoding analysis, we used the regression weights estimated from the training 

data to predict vertex- or feature-wise response time series in the test set for a left-out 

subject. To evaluate the forward model, we computed the Pearson correlation between the 

Nastase et al. Page 15

Neuroimage. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predicted time series and actual time series for each vertex or feature. We compared forward 

encoding performance with surface-based anatomical alignment, PCA to control for 

dimensionality reduction in SRM, and cSRM at dimensionalities k = 100, 50, and 10. 

Although we emphasize a predictive approach using leave-one-subject-out cross-validation, 

we also present the typical within-subject performance (as in, e.g., Huth et al., 2016). 

Similarly to the temporal ISC analysis, this makes for a difficult comparison because 

vertices in the anatomical ROI are highly redundant (correlated), while PCA and cSRM 

reduce this feature space to fewer, orthogonal dimensions. We first visualized the vertex- and 

feature-wise performance averaged across subjects (Fig. 8A), then plotted the number of 

features in each ROI exceeding an arbitrary performance threshold of r > 0.1 (Fig. 8B). 

Although the maximum number of features exceeding threshold is limited by the specified k, 

greater absolute numbers of largely orthogonal features surpassing this threshold reflect 

higher-dimensional semantic information shared across subjects. In all cases, cSRM 

dramatically increased the number of well-predicted features relative to the dimensionality-

matched PCA control. In EAC, cSRM at k = 100 doubled the number of features with 

performance exceeding r > 0.1 from 11 to 22. In AAC and TPOJ, cSRM at k = 100 roughly 

tripled the number of features exceeding the forward encoding performance threshold—from 

16 to 49 and from 12 to 36, respectively. In PMC, the number of features exceeding this 

threshold increased from 9 with PCA to 23 with cSRM at k = 100.

We next inverted the encoding model to predict semantic vectors from spatially distributed 

response patterns (Thirion et al., 2006; Brouwer and Heeger, 2009; Sprague et al., 2018; 

Gardner and Liu, 2019). While between-subject time-segment classification can capitalize 

on any diagnostic information shared across subjects, between-subject model-based 

decoding is strictly limited to the representational content encoded in the model. For each 

time point in the test set, we multiplied the distributed response pattern by the inverted 

weight matrix to recover a predicted semantic vector for that time point. To evaluate 

decoding performance, we computed the Pearson correlation between the predicted semantic 

vector and the actual semantic vectors in the test set and summarized this using a normalized 

rank accuracy score (Pereira et al., 2018). We compared between-subject model-based 

decoding using anatomical alignment, PCA, and cSRM (Fig. 9). Although we focus on 

between-subject decoding using leave-one-subject-out cross-validation, we also computed 

within-subject decoding performance for comparison. In general, model-based decoding 

accuracies were low; likely due to our simplistic model estimation procedure. However, we 

observed some interesting trends. First, within-subject performance exceeded between-

subject performance using surface-based alignment in AAC and TPOJ, suggesting that 

anatomical normalization alone fails to translate some semantic information across brains. 

Second, dimensionality reduction did not consistently increase performance. Crucially, in 

almost all cases, between-subject decoding performance using cSRM exceeded both 

between- and within-subject performance using anatomical alignment. For example, in 

AAC, the average rank accuracy across test subjects increased from 52.1% with anatomical 

alignment (54.1% for within-subject decoding) to 56.5% with cSRM at k = 100 (with a rank 

accuracy of 63.5% for the best-performing test subject).
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3.4. Consensus space across stimuli

Finally, we examined the consequences of deriving a single shared space across numerous 

distinct stories. Is the single, connectivity-based shared space defined across all datasets 

notably different from shared connectivity spaces derived separately for each story? For 

example, we may expect that each story considered in isolation will nonetheless yield 

similar shared spaces due to the nature of functional connectivity. To address this, we 

computed ISFC matrices from the test data for each subject and projected these ISFC 

matrices into either (a) the connectivity-based shared space defined across all stories (across-

story cSRM), or (b) the unique connectivity-based shared spaces defined separately for each 

story (within-story cSRM). The subjects contributing to each within-story cSRM are a strict 

subject of the subjects contributing to the across-story cSRM. For illustrative purposes, we 

used AAC and cSRM at k = 100. We then flattened and averaged the ISFC matrices across 

subjects per story in their respective shared spaces and computed the pairwise correlations 

between the mean ISFC matrices across stories (Fig. 10). In fact, ISFCs projected into the 

single, shared connectivity space are more similar across all pairs of stories than those 

projected into story-specific shared spaces: the average correlation of ISFC matrices 

increased from r = .623 to r = .764 across all pairs of stories (averaged across hemispheres). 

We did not observe a substantive difference between hemispheres (Fig. S3). These results 

are expected but serve as a useful sanity check, and suggest that the transformations defined 

across all stories point to a consensus space. Interestingly the magnitude of this effect may 

increase in higher-level ROIs, where the within-story shared connectivity spaces are more 

distinct (Figs. S4–8). Datasets with longer story stimuli (more TRs) and larger samples of 

subjects likely have a larger “pull” on the consensus space (Fig. S9).

We next considered whether constructing a shared space across distinct stimuli impacts 

responses within a story. Similarly to before, we projected the response time series for the 

test data into either a shared connectivity space defined across all stories or story-specific 

shared connectivity spaces (in AAC, using cSRM at k = 100). We then concatenated these 

response patterns over time into a single spatiotemporal response trajectory for each subject, 

and computed leave-one-subject-out ISC on these spatiotemporal vectors within each story 

(Fig. 11; Nastase et al., 2019a). Interestingly, we found that the response trajectories were 

more similar across subjects within a given story when projected into the shared space 

defined across stories. This increase in similarity was small, from r = .261 to r = .286, but 

statistically significant across all stories (p ≤ .001 for all stories, nonparametric Wilcoxon 

signed-rank test, Bon-ferroni corrected).

4. Discussion

We have demonstrated that connectivity hyperalignment can be used to estimate a shared 

response space across disjoint datasets with unique stimuli and non-overlapping samples of 

subjects. Although the shared space is defined in terms of connectivity, the subject-specific 

topographic transformation matrices are suitable for projecting response time series into this 

space (Guntupalli et al., 2018). We have shown that transformations derived from 

intersubject functional connectivity are sufficient to precisely align response trajectories in a 

way that is both spatially and temporally specific; in the case of time-segment classification, 
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this effect was consistent across all 10 stories. The features in the shared space derived using 

cSRM reflect orthogonal components of response variability; projecting data into shared 

space dramatically increases the dimensionality of information shared across subjects. The 

consensus space introduced here conjoins diverse story stimuli, and effectively regularizes 

subject- and story-specific transformations.

There are three key concepts underlying the success of this algorithm. First, relatively coarse 

connectivity targets spanning cortex can provide sufficiently rich signatures of functional 

connectivity to drive fine-grained topographic alignment (Heinzle et al., 2011; Jbabdi et al., 

2013; Arcaro et al., 2015). Here we define connectivity targets according to a multimodal 

cortical parcellation (Glasser et al., 2016), which yields a relatively low-dimensional, more 

computationally efficient connectivity space. However, there are a variety of ways to 

construct connectivity targets (cf. Guntupalli et al., 2018); for example, in the context of 

naturalistic stimuli, vertices with temporal ISCs exceeding some threshold could serve as 

potentially finer-grained connectivity targets. The second, related concept is that 

constructing a shared space based on functional connectivity yields subject-specific 

topographic transformations suitable for aligning response time series. This may seem 

counterintuitive, but, again, suggests that long-range connectivity profiles capture 

information about local response topographies. Third, the datasets used here, despite 

showcasing story stimuli with diverse topics and speakers, are all examples of the 

superordinate story-listening “task.” This common task may yield commensurate 

connectivity patterns across stimuli, allowing the algorithm to find a consensus shared space. 

Future work is required to explore the boundary conditions of this algorithm and determine 

whether a shared space can be defined across qualitatively different tasks or paradigms.

Our analyses demonstrate that projecting data into a shared space derived from functional 

connectivity improves semantic model-based encoding and decoding. Interestingly, 

between-subject semantic model-based decoding with cSRM exceeded within-subject 

decoding in all ROIs. How can this be possible? It may be that our simplistic semantic 

encoding model only captures relatively coarse-grained information across subjects. 

However, between-subject encoding models allow us to leverage much larger volumes of 

data than could be acquired in a single subject. Aggregating data across subjects can yield 

much cleaner training samples, thus improving performance over limited and often noisy 

within-subject data. Here, we fit the semantic encoding model on the averaged response time 

series across training subjects; although averaging yields clean response time series, subjects 

in the shared space could instead be concatenated, dramatically increasing the number of 

training samples available for modeling. Furthermore, our rudimentary fitting procedure 

(e.g., using an arbitrary, fixed ridge coefficient) will necessarily yield suboptimal model 

performance. Although we adopt this approach to reduce the computational burden and 

simplify model comparison, it could be argued that models are not fairly compared unless 

they can arrive at their own optimal ridge coefficients. For any use-case where evaluating or 

comparing encoding models is the primary scientific goal, we recommend grid search using 

nested cross-validation or resampling procedures to identify optimal hyperparameters (as in, 

e.g., Huth et al., 2016).
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Interestingly, our functional normalization algorithm differentially benefited certain ROIs 

and certain stories. For example, EAC, an early sensory ROI, was only marginally improved 

by cSRM, while downstream association cortices such as AAC and TPOJ were more 

dramatically improved. On the other hand, the putatively high-level PMC was only modestly 

improved by cSRM. There are several possible reasons for these discrepancies. First, the 

quality of the cSRM derives from the richness of functional connectivity for a given ROI; 

early sensory areas may have limited or less-informative connectivity with the rest of the 

brain, whereas association cortices are in effect defined by their broad, integrative 

connectivity. Second, some cortical areas may have relatively stereotyped functional 

architecture across individuals or inherently coarse response topographies; both scenarios 

would reduce the benefits of functional normalization over anatomical normalization. For 

example, PMC may host coarser-scale response topographies that better match across 

subjects (Chen et al., 2017; Zadbood et al., 2017) than lower-level perceptual areas (Cox and 

Savoy, 2003; Haxby et al., 2011). Third, cortical areas vary in the extent to which their 

processing is strictly stimulus-locked; early sensory areas may be better aligned by temporal 

hyperalignment, while association cortices may be better aligned by connectivity 

hyperalignment (Guntupalli et al., 2018). Certain stories, such as “Pie Man (PNI)” and 

“Running from the Bronx (PNI)” seem to have received an outsized benefit from cSRM 

derived across stories. We suspect that there are two related reasons for this. First, these 

story stimuli were recorded while the speaker was undergoing an fMRI scan, resulting in 

relatively low audio quality. Responses to stimuli with low audio quality may see an 

increased benefit with cSRM derived across stimuli with higher audio quality. Second, the 

subjects in these studies also received the “I Knew You Were Black” and “The Man Who 

Forgot Ray Bradbury” stories (both of which have high audio quality), likely yielding more 

robust connectivity estimates.

All of the analyses reported here have focused on generalization across subjects and we have 

not explicitly examined individual differences among subjects (Dubois and Adolphs, 2016). 

Although there is a common assumption that hyperalignment methods will necessarily quash 

individual differences, recent work by Feilong et al. (2018) has shown that, despite 

increasing intersubject similarity, hyperalignment in fact preserves—and increases—the 

reliability of individual differences. We suspect this occurs for two related reasons: (a) 

hyperalignment effectively resolves idiosyncratic functional-anatomical mapping, thus 

factoring out topographic idiosyncrasies and isolating individual differences in 

representational geometry; and (b) hyperalignment reveals individual differences in fine-

grained response topographies that are otherwise obscured or inaccessible with anatomical 

alignment. Procrustes-based hyperalignment methods are constrained to orthogonal 

transformations—effectively rotating and reflecting the feature space-—and therefore do not 

distort subject-specific response trajectories (or representational geometries). Although the 

dimensionality reduction of SRM will begin to distort subject-specific representational 

geometries at low dimensionalities, previous work has shown that SRM can be used to factor 

out shared signals, thus accentuating individual differences or differences due to 

experimental manipulations (Chen et al., 2015). We expect to see continuing developments 

in “neural fingerprinting” at the intersection of hyperalignment methods and naturalistic 

paradigms (Vanderwal et al., 2017; Feilong et al., 2018; Finn et al., 2019).
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The approach described here has several limitations. We constrain our analysis to a handful 

of ROIs and do not provide a whole-cortex searchlight-based solution as in the core 

implementation of connectivity hyperalignment (Guntupalli et al., 2018). However, it would 

be straightforward to extend the implementation used here to parcels tiling the entire cortex. 

Unlike Guntupalli and colleagues, we take advantage of the shared story stimulus within 

each dataset and use ISFC to filter out idiosyncratic, intrinsic fluctuations and isolate 

stimulus-related connectivity (Simony et al., 2016). This approach, however, is not 

applicable to resting-state paradigms where there is no shared stimulus. Furthermore, we do 

not currently account for the fact that certain stories have considerably more subjects than 

others. In our implementation of cSRM, this will tend to bias the shared space toward the 

stories with the most subjects. The contribution of each story to the shared space could 

conceivably be normalized by the proportion of subjects for that story relative to the total 

number of subjects. However, in practice we may want to bias the shared space toward 

stories with the largest number of subjects, as these may provide the most robust shared 

model for limited data.

This raises the important question of whether it is worthwhile to “sacrifice” functional data 

for the purposes of normalization. We generally advocate for estimating a shared space on 

independent data to avoid circularity (Kriegeskorte et al., 2009). In the current work we 

estimate the shared space from the first half of all stories and use the second half for 

evaluation, potentially undermining generalizability across stories. However, we demonstrate 

that left-out stories still benefit from connectivity SRM defined on independent data. On the 

other hand, many analyses (e.g., model-based encoding and decoding) already require 

independent training data for model estimation. Here we adopt an approach where both 

functional normalization and encoding model weights are estimated from the same training 

set, effectively negating the price paid for normalization.

Precision neuroscience is fundamentally limited by the feasibility of collecting large 

volumes of data in experimental subjects (let alone patients). The fact that connectivity 

hyperalignment benefits a completely independent set of subjects and stories not used to 

estimate the shared space has important implications. This capacity for generalization 

suggests that many existing datasets, from resting-state to naturalistic movies, could benefit 

from connectivity hyperalignment. This provides a means for using existing data to 

“bootstrap” improvements in functional registration and build better, more generalizable 

predictive models.
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Fig. 1. 
Regions of interest. Four large cortical regions roughly capturing the processing hierarchy 

for language and narrative comprehension were defined according to a multimodal 

parcellation (Glasser et al., 2016): early auditory cortex (EAC), auditory association cortex 

(AAC), temporo-parieto-occipital junction (TPOJ), and posterior medial cortex (PMC).
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Fig. 2. 
Schematic of connectivity-based shared response model. (A) Data comprise multiple stories 

(e.g., dataset 1–2). and largely non-overlapping samples of subjects (e.g., subject 1–4). The 

green and orange colors indicate distinct datasets corresponding to different story stimuli. 

Data were partitioned into training and test sets for cross-validation: the first half of each 

story was assigned to the training set (light colors; i.e., light green and light orange), and the 

second half was assigned to the test set (dark colors; i.e., dark green and dark orange). (B) 

Time-stamped transcripts are shown for example stories “I Knew You Were Black” by Carol 

Daniel and “The Man Who Forgot Ray Bradbury” by Neil Gaiman. (C) For a given ROI, we 

computed ISFC between the response time series at each vertex and the average response 

time series for each of 360 cortical areas (connectivity targets) in the training set. We then 

used SRM to decompose these ISFC matrices into a set of subject-specific transformation 

matrices (topographic bases) and a single shared connectivity space across all datasets. (D) 

We then apply the subject-specific transformations to response time series from the test set.
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Fig. 3. 
Schematic of semantic model-based encoding and decoding. (A) Connectivity SRM is used 

to project both the training and test data into the shared space. The green and orange colors 

indicate distinct datasets corresponding to different story stimuli. Light colors (i.e., light 

green and light orange) indicate training data (first half of each story) and dark colors (i.e., 

dark green and dark orange) indicate test data (second half of each story; as in Fig. 2). Here 

we average response time series for the N – 1 training subjects. (B) Ridge regression is then 

used to find a set of coefficients (weights) mapping from the semantic feature space (word 

embeddings) to the response time series at each vertex or feature. (C) In the forward 

encoding analysis, we use the weight matrix estimated from the training data to predict 

vertex- or feature-wise response time series from the semantic vectors in the test set. In the 

decoding (or inverse encoding) analysis, we use the inverse of this weight matrix to predict 

semantic vectors from the response patterns at each time point. In both cases, we use 
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correlation to evaluate that match between the predicted and actual response time series or 

semantic vectors.
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Fig. 4. 
Time-segment classification across all stories in auditory association cortex (AAC). For each 

story, we compared surface-based anatomical alignment with no SRM (light gray), time-

series SRM (necessarily defined within each story; dark gray), connectivity SRM defined 

separately within each story (pink), and a single connectivity SRM defined across all stories 

(red). We also recomputed a single connectivity SRM across all stories excluding subjects in 

the rightmost four datasets, and projected the “black” and “forgot” stories into this 

independent shared space (purple). The y-axis indicates between-subject time-segment 

classification accuracy averaged across left-out subjects and hemispheres. Dotted horizontal 

white lines indicate chance accuracy for each story (1 over the number of time segments in 

the test data). Error bars indicate 95% bootstrap confidence intervals estimated by 

resampling left-out subjects with replacement.
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Fig. 5. 
Time-segment classification at varying dimensionality for each ROI. For two example 

stories, we compared surface-based anatomical alignment with no SRM (gray), PCA 

controlling for the dimensionality reduction of SRM without resolving topographic 

idiosyncrasies (green–blue), and cSRM at dimensionalities k = 100, 50, and 10 (orange–

purple). When interpreting reduced-dimension model performance, cSRM performance 

should be compared to PCA at the matching dimensionality. The y-axis indicates between-

subject time-segment classification accuracy averaged across left-out subjects and 

hemispheres. Dotted horizontal white lines indicate chance accuracy for each story (1 over 

the number of time segments in the test data). Error bars indicate 95% bootstrap confidence 

intervals estimated by resampling left-out subjects with replacement.

Nastase et al. Page 32

Neuroimage. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Intersubject time-series correlations per vertex/feature. (A) We computed the average ISC 

across subjects for each vertex with anatomical alignment and no SRM (light gray). Each 

marker corresponds to a vertex or feature for each hemisphere; for example, cSRM with k = 

10 yields 20 ISC values corresponding to 10 features from the left hemisphere and 10 

features from the right hemisphere. See Fig. S2 for the distribution of temporal ISC values 

split by hemisphere. We also computed ISCs on the regional-average response time series 

per hemisphere for the purpose of comparison (dark gray markers overlaid on the “no SRM” 

strip). We visualized the average ISC across subjects for each feature after dimensionality 

reduction using PCA (green–blue) and cSRM at dimensionalities k = 100, 50, and 10 

(orange–purple). When interpreting reduced-dimension model performance, cSRM 

performance should be compared to PCA at the matching dimensionality. The y-axis 

indicates the average temporal ISC across subjects per vertex or feature in each hemisphere. 

(B) We computed the number of features with leave-one-out ISCs exceeding a threshold of r 
> 0.1 per subject (the maximum of which is limited by the specified k). The y-axis indicates 

the average number of features with ISCs exceeding this threshold across subjects. We 

visualized the absolute number of features exceeding threshold (rather than, e.g., the 

proportion) to demonstrate that considerably more orthogonal (non-redundant) features with 

high ISC are observed at higher values of k. Note, however, that the absolute number of 

features exceeding threshold is bounded by the specified total number of features k. Error 

bars indicate 95% bootstrap confidence intervals estimated by resampling subjects with 

replacement. See Fig. S2 for the distribution of temporal ISC values split across 

hemispheres.
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Fig. 7. 
Intersubject pattern correlations. We compared spatial ISCs with anatomical alignment 

(gray), PCA to control for the reduced dimensionality of SRM (green–blue), and cSRM with 

dimensionalities k = 100, 50, 10 (orange–purple). When interpreting reduced-dimension 

model performance, cSRM performance should be compared to PCA at the matching 

dimensionality. The y-axis represents spatial ISC for each time point averaged across time 

points and subjects. Error bars indicate 95% bootstrap confidence intervals estimated by 

resampling subjects with replacement.
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Fig. 8. 
Forward encoding model performance. (A) We evaluated the vertex-wise between-subject 

(light gray) and within-subject (dark gray) forward encoding models with anatomical 

alignment (no SRM). Forward encoding performance for the regional-average response time 

series per hemisphere is visualized for comparison (dark gray markers overlaid on the “no 

SRM” strip). We also compared between-subject forward encoding performance for each 

feature after dimensionality reduction using PCA (green–blue) and cSRM at 

dimensionalities k = 100, 50, and 10 (orange–purple). When interpreting reduced-dimension 

model performance, cSRM performance should be compared to PCA at the matching 

dimensionality. The y-axis represents the average correlation between predicted and actual 

response time series across test subjects for each vertex or feature in each hemisphere. (B) 

We computed the number of features with forward encoding performance exceeding a 

threshold of r > 0.1 per subject. The y-axis represents the average number of features with 

performance exceeding this threshold across test subjects (and hemispheres). Error bars 

indicate 95% bootstrap confidence intervals estimated by resampling test subjects with 

replacement.
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Fig. 9. 
Model-based decoding performance. We compared between-subject decoding performance 

using anatomical alignment (light gray), PCA matching the dimensionality reduction of 

SRM (blue–green), and cSRM at dimensionalities k = 100, 50, and 10 (orange–purple). 

When interpreting reduced-dimension model performance, cSRM performance should be 

compared to PCA at the matching dimensionality. We also provide within-subject decoding 

performance for comparison (dark gray). The y-axis indicates rank accuracy averaged across 

time points, subjects, and hemispheres. Dotted horizontal lines indicate chance accuracy of 

approximately 50% for the rank accuracy score. Error bars indicate 95% bootstrap 

confidence intervals estimated by resampling test subjects with replacement.
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Fig. 10. 
Story similarity in consensus and story-specific shared spaces. We projected AAC ISFCs 

estimated from test data into either a shared connectivity space (k = 100) defined across all 

stories (across-story cSRM) or story-specific shared connectivity spaces (within-story 

cSRM). We then computed the pairwise correlations of ISFC matrices across stories. 

Correlation matrices were computed separately per hemisphere then averaged (see Fig. S3 

for correlation matrices computed separately for each hemisphere). The difference between 

these cSRMs (right) indicates that the cSRM defined across all stories projects into a 

consensus space. The average (off-diagonal) correlation value for the across-story cSRM is 

0.764, while the average correlation for the within-story cSRM is 0.623; the average 

difference between across- and within-story cSRM correlations is 0.145, and the maximum 

difference is 0.190. See Figs. S4–8 for all four ROIs and varying dimensionality k, as well as 

Fig. S9 for effects of stimulus duration and sample size.
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Fig. 11. 
Intersubject spatiotemporal correlations in consensus and story-specific shared spaces. We 

projected spatiotemporal response trajectories into either a shared space defined across all 

stories (across-story) or story-specific shared spaces (within-story). We then computed the 

intersubject correlations of these response trajectories within each story. The y-axis indicates 

the average spatiotemporal ISC across subjects and hemispheres. Error bars indicate 95% 

bootstrap confidence intervals estimated by resampling subjects with replacement.
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Table 1

Summarization of 10 benchmark story-listening fMRI datasets. Stimuli comprised 10 spoken stories. In 

addition to the names of the stories, we use abbreviated aliases in analysis and figures. Story durations are 

listed in “minutes:seconds” format, and exclude any silence or music bookending the story itself. The number 

of TRs for each story also excludes any TRs corresponding to silence or music; a 1.5-second TR was used for 

all acquisitions. The sample size listed for each story corresponds to the number of subjects used for 

subsequent analyses after applying exclusion criteria (see Participants section). The “total duration” is simply 

the sum of story durations; i.e., the duration of unique stimuli across datasets (not accounting for the number 

of subjects in each dataset). The “total duration across subjects” takes into account the number of subjects 

acquired for each story and reflects the grand total duration if all data were concatenated across both subjects 

and stories. Note that “Slumlord” and “Reach for the Stars One Small Step at a Time” are distinct stories but 

were presented one after the other in a single scanning run. The first six stories—from “Pie Man” to “The 21st 

Year”—were collected on a Siemens Skyra, whereas the remaining four—from “Pie Man (PNI)” to “The Man 

Who Forgot Ray Bradbury ”—were collected on a Siemens Prisma. The “Pie Man (PNI)” and “Running from 

the Bronx (PNI)” stimuli were recorded while the speaker underwent an fMRI scan, and those have relatively 

low audio quality. The “Pie Man (PNI)” stimulus recorded at PNI differs from the original “Pie Man” stimulus 

recorded at a live storytelling event. See Fig. S1 for more details on which subjects received which story 

stimuli.

Story Alias Duration TRs Subjects

“Pie Man” pieman 07:03 282 46

“Pretty Mouth and Green My Eyes” prettymouth 11:17 451 19

“Milky Way” milkyway 06:50 273 16

“Slumlord”, “Reach for the Stars One Small Step at a Time” slumlordreach 29:26 1,177 16

“It’s Not the Fall That Gets You” notthefall 09:45 390 18

“The 21st Year” 21styear 55:38 2,225 24

“Pie Man (PNI)” pieman (PNI) 06:57 278 39

“Running from the Bronx (PNI)” bronx (PNI) 09:21 374 40

“I Knew You Were Black” black 13:21 534 40

“The Man Who Forgot Ray Bradbury” forgot 13:57 558 40

Total duration: 2.7 h 6,542

Total duration across subjects: 3.1 days 179,093
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