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ABSTRACT: Gene products can affect the concentrations of small molecules (aka
“metabolites”), and conversely, some metabolites can modulate the concentrations of gene
transcripts. While many specific instances of this interplay have been revealed, a global
approach to systematically uncover human gene-metabolite interactions is still lacking. We
performed a metabolome- and transcriptome-wide association study to identify genes
influencing the human metabolome using untargeted metabolome features, extracted from 1H
nuclear magnetic resonance spectroscopy (NMR) of urine samples, and gene expression
levels, quantified from RNA-Seq of lymphoblastoid cell lines (LCL) from 555 healthy
individuals. We identified 20 study-wide significant associations corresponding to 15 genes, of
which 5 associations (with 2 genes) were confirmed with follow-up NMR data. Using
metabomatching, we identified the metabolites corresponding to metabolome features
associated with the genes, namely, N-acetylated compounds with ALMS1 and trimethylamine
(TMA) with HPS1. Finally, Mendelian randomization analysis supported a potential causal
link between the expression of genes in both the ALMS1- and HPS1-loci and their associated
metabolite concentrations. In the case of HPS1, we additionally observed that TMA concentration likely exhibits a reverse causal
effect on HPS1 expression levels, indicating a negative feedback loop. Our study highlights how the integration of metabolomics,
gene expression, and genetic data can pinpoint causal genes modulating metabolite concentrations.

KEYWORDS: transcriptomics, metabolomics, genome-wide association study, ALMS1, NAT8, HPS1, PYROXD2,
N-acetylated compounds, trimethylamine

■ INTRODUCTION

Genome-wide association studies (GWAS) have identified
thousands of common variants that are associated with
complex traits,1 but the regulatory mechanisms behind these
associations mostly remain poorly understood. Pinpointing
causal variants is difficult since the lead variants associated with
a trait are often in high linkage disequilibrium (LD) with other
variants in the same region with only a slightly lower
association signal. Such associated LD blocks typically contain
several genes or functional elements, preventing the accurate
identification of causal genes. Furthermore, some trait
associated variants fall into intergenic regions of the genome
with no obvious functional role at all.
A number of studies reported that trait associated genetic

variants are significantly enriched in expression quantitative
trait loci (eQTLs), suggesting that many trait associated
variants affect the phenotype by altering gene expression.2−5

There is also a growing body of literature highlighting the
more pronounced effects of genetic variants on molecular traits
compared to phenotypic traits.6−9 This is not surprising since
molecular traits representing fundamental biological processes

such as gene expression and metabolism are intermediates in
the causal chain from genotype to phenotype.
With high-throughput measurements becoming more

accessible and widespread, integration of molecular traits into
association studies has become a central challenge in the field.
Such synthesis allows investigating the interplay between
different organizational layers of a biological system. Despite
metabolism and gene expression regulation both being
fundamental biological processes that are commonly studied
as molecular phenotypes, there are very few studies in humans
that focus on the interplay between them. Several studies
investigated the relationship between serum metabolites and
whole blood gene expression in humans,10−12 but to the best of
our knowledge, no transcriptome- and metabolome-wide
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association study has been performed using urine metabolome
data of healthy human subjects. Most metabolome- and
genome-wide association studies (mGWAS) reporting metab-
olite quantitative trait loci (mQTL) use targeted approaches
where the concentrations of a limited number of metabolites
are estimated from the metabolome data generated by mass
spectrometry or NMR spectroscopy. This targeted approach is
limited to the number of known quantifiable metabolites in the
biofluid under study.
In the current study, we adopted an untargeted approach,

making use of the entire metabolomic data captured by binned
urine 1H NMR spectra as our molecular traits. We use RNAseq
data from lymphoblastoid cell lines (LCLs). LCLs have been
widely used in genomic studies and proven their usefulness as
surrogates of primary tissues for studying both gene expression
variation among individuals and the genetic architecture
underlying regulatory variation of gene expression.13−16

While LCLs partially reflect the genetic variance of gene
expression in primary tissues affecting the urine metabolome,
they do have the advantage of not being influenced by
immediate environmental factors such as recent changes in the
diet or exposure to drugs. Our transcriptome and metabolome
data was taken from 555 healthy individuals that were part of
the Cohort Lausannoise (CoLaus).17 In addition, using a
different NMR platform, metabolomic profiles were generated
for a subset of 315 individuals from follow-up urine samples
taken after 5 years. We identified several associations between
expression levels and urine metabolome features that were
partly validated with the follow-up data, allowing us to refine
previous links between the corresponding genes and
metabolites.

■ MATERIALS AND METHODS

Study Samples

CoLaus (Cohorte Lausannoise) is a population-based cross-
sectional study of 6188 healthy participants residing in
Lausanne, Switzerland.17 Recruitment to the cohort was
done on the basis of a simple, non-stratified random selection
of the entire Lausanne population aged 35 to 75 in 2003.
While all participants were genotyped, a random subset of
1000 participants was selected for NMR spectroscopy of
baseline urine samples. For a random subset of 555
participants (limited by available funding and sample
preparation success rate), transcriptome analysis by RNA
sequencing of lymphoblastoid cells was performed (see below).
The mean age of these subjects with transcriptome and
metabolome profiles was 55 (min = 35, max = 75) and 53% of
them were women. For a further subset of 315 participants
NMR spectroscopy was performed on urine samples taken at a
follow-up 5 years after the baseline.
Metabolomics Data

Baseline urinary metabolic profiles were generated using one-
dimensional proton nuclear magnetic resonance (NMR)
spectroscopy. NMR spectra were acquired at 300 K on a
Bruker 16.4 T Avance II 700 MHz NMR spectrometer (Bruker
Biospin, Rheinstetten, Germany) using a standard 1H
detection pulse sequence with water suppression. The spectra
were referenced to the TSP signal and phase and baseline
corrected. We binned the spectra into chemical shift
increments of 0.005 ppm, obtaining metabolome profiles of
2200 metabolome features, of which 1276 remain after filtering
for missing values.18 Lastly, the data set was log10-transformed

and standardised first across features (thereby normalizing the
concentration of each sample) then across samples (thereby
making intensities comparable). We used the z-score as a
standardization method. We decided to use this statistical
normalization approach, as opposed to normalizing to
maximum or total creatinine levels, because it resulted in
similar associations with transcriptome data, but with higher
significance.
The follow-up data were acquired with an Avance III HD

600 NMR spectrometer. Spectra were referenced to the TSP
signal and phase and baseline corrected. We binned the
chemical shifts into 0.005 ppm bins. After removing water and
urea spectral regions (4.55−5.00 ppm and 5.5−6.1 ppm), the
data set was log10-transformed and standardised as described
above. Our final metabolic data set includes 1289 features.
PCA plots for baseline and follow-up metabolomics data and

a comparison between the baseline and follow-up urine NMR
data are shown in Figure S1.

Gene Expression Data

Total RNA was extracted from Epstein−Barr-virus-trans-
formed lymphoblastoid cell lines (LCLs) by following the
Illumina TruSeq v2 RNA Sample Preparation protocol
(Illumina, Inc., San Diego, CA) by the Department of Genetic
Medicine and Development at the University of Geneva. Next,
mRNA sequencing was performed on the Illumina HiSeq2000
platform producing 49 bp paired-end reads. On average, 17.5
million RNA-Seq reads were sequenced per sample, and its
distribution is shown in Figure S2. Paired-end reads were
mapped to human genome assembly GRCh37 (hg19) with
GEMTools using GENCODE v15 as gene annotation.19 The
reads were then filtered for concordant orientation of the two
ends and a minimum quality score of 150 while allowing 5
mismatches at both ends. Gene level read counts were
quantified with an in-house script. This resulted in expression
profiles of 45,470 genes for 555 individuals, which were
quantified as RPKM (reads per kilobase per million reads)
values. The number of genes with RPKM > 0 was on average
23,000 in each sample (Figure S2). We transformed RPKM
values by applying log-transformation [log2(1 + RPKM)] and
then standardization (i.e., z-scoring) across samples to make
genes comparable. For our analysis, we excluded genes on sex
chromosomes as well as on the mitochondrial chromosome,
resulting in 43,614 genes to use in the association analysis.

Genotypic Data

Genotyping was performed by using the Affymetrix GeneChip
Human Mapping 500 K array set, and the imputation was
carried out for HapMap II SNPs. Further details of genotype
calling and the imputation can be found in Rueedi et al.18

Association Analysis

All statistical analyses were performed using Matlab.20 Urine
metabolome features were transformed to be normally
distributed, conserving their rank in order to remove strong
outlier effects.
We used a linear regression model for each pair of

(transformed) metabolome feature as the response variable
and gene expression level as the explanatory variable. The
model also included the following common confounding
factors: age, sex, the first four principal components of the
genotypic data (correcting for population stratification), and
the first 50 principal components of the gene expression data
(correcting for potential batch effects). We tested 1276
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metabolome features for association with the expression of
19,123 protein coding and 24,491 non-coding genes. We
decided to not apply any a priori exclusion criteria to remove
genes from the analysis, as any such criterion would be
arbitrary. Instead, for genes with significant associations, we
evaluated the distribution of RPKM values to ensure close to
normal distribution for accurate regression estimations. In
particular, we kept genes if the maximum RPKM was larger
than 1 or if RPKM values were larger than 0 for ≥5% of
samples.
We applied a nominal Bonferroni threshold for multiple

testing pmax = 0.05/(125 × 1109) = 3.6 × 10−7 by taking into
account the effective number of independent tests which we
estimated to be 125 for metabolome features and 1109 for
genes (i.e., the number of principal components explaining
more than 95% of the data, as proposed by Gao et al.21).
Associations with p values below pmax were considered
significant.

Metabomatching

Metabomatching is a method to identify metabolites under-
lying associations of SNPs with metabolome features.18,22 It
compares the association profile of a given variable with all
metabolome features across the full ppm range, so-called
pseudospectrum, with NMR spectra of pure metabolites
available in public databases such as HMDB.23

While metabomatching was originally developed to use
SNP-metabolome associations, we recently showed that it can
also identify metabolites based on co-varying features in NMR
data.24 In the present study, we use metabomatching to
identify metabolites that are associated with gene expression.

Mendelian Randomization

We performed Mendelian randomization (MR) analysis25,26 to
assess the causal relationship between gene expression and
metabolite concentration, using SNPs as instrumental variables
(IVs), gene expression as exposure, and metabolome features
as the outcome (or vice versa in the case of testing for reverse
causality). For the MR analysis, we used mQTL and eQTL
summary statistics from studies with greater statistical power,
i.e., from untargeted mQTL study by Raffler et al.27 (n = 3861)
and from the largest blood eQTL database eQTLGen
Consortium28 (n = 31,684).
Causal effects were estimated by using the Wald method

where the effect of a given genetic variant on the outcome is
divided by the effect of the same genetic variant on the
exposure.29 Next, ratio estimates from different instruments
(SNPs) were combined using the inverse variance weighted
method (IVW) to calculate the causal estimate.30

We selected significant SNPs from relevant eQTL studies as
our IVs. To detect independent SNPs, we used a stepwise
pruning approach where we first selected the strongest lead
eQTL and then pruned the rest of the SNPs in a stepwise
manner if they were correlated with the lead SNP (r2 > 0.2).
We repeated the pruning process with the next available SNP
until there were no SNPs left to prune. We used Cochran’s Q
test to determine heterogeneity among the candidate IVs.31

Heterogeneous SNPs were removed in a stepwise manner from
the model until the model did not show any more signs of
heterogeneity (Cochran’s Q statistic p value >0.05/# of
original instruments). We applied four different meta-analysis
(MR inference) methods to evaluate the significance of the
causal estimates: Inverse variance weighted, maximum-like-
lihood, weighted median, and MR-Egger. The latter two

methods are robust methods that have more relaxed MR
assumptions, can tolerate the violation of the exclusion-
restriction assumption for some instruments, and are thus less
sensitive to heterogeneity among IVs. When using these robust
MR methods, we did not remove any heterogeneous
instruments. For all MR analysis, we used the Mendelian
randomization package implemented in R.32

■ RESULTS

Association Analysis Identifies 20 Significant
Metabolome- and Transcriptome-Wide Associations

We performed an untargeted metabolome- and transcriptome-
wide association study by pairwise linear regression of each of
1276 metabolome features (as response variable) onto each of
log-transformed expression levels of each of 43,614 genes (as
explanatory variable) quantified in 555 healthy subjects (see
Materials and Methods). Metabolome features resulted from
binning raw urinary NMR spectra with a bin-size of 0.005 ppm,
and rank-normalizing each bin passing quality control (see
Materials and Methods). Gene expression levels were
quantified as RPKM from RNAseq on lymphoblastoid cell
lines derived for each subject (see Materials and Methods).
The QQ-plot of all pairwise associations (Figure 1) is well

calibrated, with four highly significant associations (FDR <

0.05) (involving the ALMS1 and HPS1 genes). Applying an
adjusted Bonferroni threshold of 3.6 × 10−7 to account for the
effective number of independent variables (see Materials and
Methods), we identified 20 additional less significant
(“suggestive”) feature-gene associations. These 24 association
pairs involved 19 unique genes and 21 unique features. As we
did not apply any a priori exclusion criteria to remove genes
from the analysis, we inspected the expression value
distributions of these 19 significant genes in order to identify
cases in which the small p value may be due to a problematic
distribution of the expression values (see Materials and
Methods). This resulted in four genes to be removed,
corresponding to four significant association pairs (Figure
S3). The remaining 20 gene-feature associations are listed in
Table 1 and their distributions are presented in Figure S4.
Identification of Metabolites Corresponding to
Metabolome Features Associated with Gene Expression

To identify metabolites underlying these significant associa-
tions between gene expression levels and metabolome features,
we used metabomatching,18,22 which has been previously

Figure 1. QQ-plot of −log10 (p values) of metabolome- and
transcriptome-wide association analysis. The highly significant
associations (FDR < 0.05) with ALMS1 expression are ranked 1st
and 2nd and with HPS1 expression 3rd and 4th.
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established as an effective tool for prioritizing candidate
metabolites underlying profiles of SNP-metabolome feature
associations, so-called pseudospectra.18,27 In this study, we
used profiles of metabolome features that were associated
significantly with one of the 15 identified genes as input to
metabomatching.
We found that the pseudospectrum of the strongest

associating gene, ALMS1, consists of four neighboring features
at 2.0375 ppm (p value = 1 × 10−20), 2.0325 ppm
(p value = 2 × 10−19), 2.0275 ppm (p value = 8 × 10−9),
and 2.0425 ppm (p value = 1 × 10−7). A peak in this region is a
typical feature of N-acetylated compounds (NACs) in their 1H
NMR spectra35 but is also found in NMR spectra of other
compounds (see Figure 2A). Although NAC was not ranked
first by metabomatching, it is the only compound with the
strongest peak at 2.0375 ppm, and the association with ALMS1
expression at the strongest peaks of other compounds is not
very significant. We therefore believe that ALMS1 is likely
associated with one or several NACs. To investigate if we
could pinpoint a specific NAC, we built a library consisting of
all NAC proton NMR spectra from HMDB and the Biological
Magnetic Resonance Data Bank (BMRB). Metabomatching
gave similar scores to many of these compounds (Figure S5).
For the first ranked compound, acetylglycine, we would have
expected a strong association of ALMS1 expression with its
other peak at ∼3.7 ppm, which is not the case. In fact, the
secondary strong association signal in the pseudospectrum of
ALMS1 is at ∼1.7 ppm and this matches a resonance in the
NMR spectra of N(alpha)-acetyl-dl-ornithine and N(alpha)-
acetyllysine, making these two compounds likely candidates.
N-acetyl-L-aspartate (NAA) is a further possible candidate due
to matches of its NMR features at around 7.92 and 2.71 ppm
(Figure S5) with an association signal at these positions in the
ALMS1 pseudospectrum (p value = 4 × 10−3 and 4 × 10−2,
respectively).
The pseudospectrum of ALMS1P (ALMS1 pseudogene)

similarly points to NAC (including N-acetylneuraminate and
NAA) as likely matching compounds (Figure S6), although
with less significant association p values (see Table 1).

The reference spectrum of NAA in the Urinary Metabolome
Database (UMDB) that we used for metabomatching was
recorded in water. In order to verify that the peaks of this
spectrum are comparable to those of NAA in urine, we spiked
NAA into pooled urine samples from our collection at a
concentration of 10 mM and recorded its 1H NMR spectrum.
Inspecting the 5 multiplet regions of NAA, we concluded that
the NAA peak positions are very similar in both solvents
(Figure S7).
Two associations, which are the third and fourth strongest in

this study, are between HPS1 expression (second strongest
associating gene) and two neighboring metabolome features at
2.8575 ppm (p value = 1 × 10−10) and 2.8725 ppm (p value =
6 × 10−10), respectively. This pseudospectrum matched well
with the trimethylamine (TMA) NMR spectrum (Figure 2B).
Among the top three metabolites suggested by metabomatch-
ing, trimethylamine (TMA) is the most plausible metabolite
driving the association pattern because all the other
metabolites have secondary peaks for which we have no
significant association signal, while TMA has just a single peak
in the 2.86 ppm region.
For the third strongest associating gene, APIP, metab-

omatching suggested asparagine as a metabolite (Figure S8),
and the pseudospectrum of SNW1 (5th strongest associating
gene) matched well with the single peak compound adenine
(Figure S9). For the remaining 10 significantly associating
genes, which were associated with only one metabolome
feature, metabomatching was not able to identify a
corresponding metabolite.

Validation of Significant Metabolome−Transcriptome
Associations Using Follow-up Urine NMR Data

To the best of our knowledge, there is no independent data set
with urine NMR spectra and gene expression data of LCLs of
sufficient sample size for proper out-of-sample replication of
our results. However, we generated additional NMR spectra
from urine samples collected from a subset of 315 CoLaus
subjects in a follow-up study conducted 5 years after the
baseline data collection. We note that the follow-up NMR data

Table 1. 20 Study-Wide Significant Associations from Metabolome- and Transcriptome-Wide Association Analysisa

genes metabolite association
published as
mGWAS

ensembl gene ID Chr gene symbol feature(s) effect size p value body fluid

ENSG00000116127 2 ALMS1 2.0375, 2.0325, 2.0275,
2.0425

0.72, 0.69, 0.45,
0.41

1.1 × 10−20, 2.0 × 10−19, 7.8 × 10−09,
1.2 × 10−07

serum,9,33

urine27,34

ENSG00000107521 10 HPS1 2.8575, 2.8725 −0.38, −0.37 1.1 × 10−10, 5.6 × 10−10 serum,9,33

urine27,34

ENSG00000149089 11 APIP 2.7925 −0.33 4.7 × 10−09 serum,9,33 urine27

ENSG00000256029 1 RP11-190A12.7 3.0925 0.26 9.7 × 10−09 serum9

ENSG00000100603 14 SNW1 8.1275 −0.38 1.5 × 10−08 serum33

ENSG00000163016 2 ALMS1P 2.0325, 2.0375 0.27, 0.27 2.5 × 10−08, 2.7 × 10−08 serum,9,33 urine27

ENSG00000219257 6 RP11-14I4.2 2.3275 −0.25 5.7 × 10−08

ENSG00000259357 1 RP11-316M1.12 7.7875 0.33 6.1 × 10−08

ENSG00000163520 3 FBLN2 5.4375 0.29 9.5 × 10−08 serum9,33

ENSG00000226430 8 USP17L7 2.7075 −0.24 1.8 × 10−07

ENSG00000219355 12 RPL31P52 2.8675 −0.23 2.1 × 10−07

ENSG00000266795 17 RP11-744K17.9 7.2725 0.26 2.2 × 10−07 serum9

ENSG00000150593 10 PDCD4 5.4075 0.42 2.2 × 10−07 serum,9,33 urine27

ENSG00000266805 18 RP11-61L19.1 5.3525 0.24 2.7 × 10−07

ENSG00000254396 9 RP11-56F10.3 3.0925 0.23 3.6 × 10−07

a20 study-wide significant associations involving 15 unique genes and 17 unique features. Associations are grouped by genes and sorted by the
lowest association p value for each gene.
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are not independent from the baseline data, yet they were
obtained from physically different samples collected at a
significantly later time and processed with a different NMR
spectrometer and facility. As for the expression data, we only
have those from LCLs derived from blood taken at the
baseline, so we could only test whether the associations we
observed between baseline metabolomics and baseline tran-
scriptomics measurements would persist as associations
between follow-up metabolomics and baseline transcriptomics
data.
As baseline and follow-up urine NMR data were each

processed and binned individually, the features did not
correspond one-to-one between the studies (see Materials
and Methods). Thus, to validate the association of genes with
relevant features, we tested the two nearest features to every
top feature associated with a gene in the baseline data set. We
used the Benjamini−Hochberg (BH) procedure36 to detect
significant replications; more specifically, we considered
replications validated if the p value was smaller than 0.05/(2

features x rank of the association in the discovery) for any one
of the two tested features. In the follow-up, both ALMS1 and
HPS1 gene expression levels were associated significantly with
features corresponding to those of the discovery study (Table
S1). The third most significantly associating gene with the
baseline metabolome data, APIP, yielded an association in the
follow-up data with p value = 9.8 × 10−3, which is just above its
BH threshold of 0.005. All other genes did not show any
significant association with representative features in the
follow-up study.

mGWAS for NAC and TMA Indicates Numerous Significant
SNPs in the ALMS1 and HPS1 Gene Loci

To get a broader overview of the genetic influences on
metabolome features in the NAC and TMA NMR peak
regions, we performed an untargeted metabolome- and
genome-wide association study using data from 826 individuals
of the CoLaus cohort, for whom baseline urinary NMR spectra
were available (similar to Rueedi et al.18). SNPs that are
significantly associated with the NAC metabolome feature at

Figure 2. Metabomatching22 results for pseudospectra derived from gene expression - metabolome feature associations for ALMS1 (A) and HPS1
(B). Upper panels show the features in each pseudospectrum, color-coded according to the direction of the effect (positive in blue and negative in
orange). Lower panels show the highest ranking candidate metabolites with their reference NMR spectra (color coded to indicate their relative
peak intensities). Leading features allowing metabolite identification are in (A) at 2.04 ppm, which matches well with the highest intensity peak of
the NAA spectrum and in (B) at 2.87 ppm, which matches well with the TMA singlet.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.1c00585
J. Proteome Res. 2021, 20, 5103−5114

5107

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.1c00585/suppl_file/pr1c00585_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.1c00585/suppl_file/pr1c00585_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00585?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00585?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00585?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00585?fig=fig2&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.1c00585?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.0375 ppm are correlated with each other (r2 > 0.8) and lie
within an LD block containing nine genes, including ALMS1,
ALMS1-IT1, NAT8, and ALMS1P (Figure 3A). Out of these
nine genes, ALMS1 and ALMS1P have the most significant
association results with the 2.0375 ppm feature and with the
NAA feature at 7.9225 ppm (Figure 3B). However, we note
that the expression levels in LCLs differ between genes; in
particular, NAT8 has RPKM = 0 in most samples, which could
impact its association results. Similarly, SNPs that associate
with the TMA metabolome feature at 2.8725 ppm are also
highly correlated and lie in a locus surrounding the HPS1/
PYROXD2 genes (Figure 4A). Even though the SNPs with the
most significant association with feature 2.8725 are physically
located closer to PYROXD2 rather than HPS1, the expression
level of PYROXD2 does not show a significant association with
this feature (Figure 4B). Notably here, HPSE2, MIR1287, and
MIR4685 are very lowly expressed (RPKM = 0 in most
samples).
To further evaluate a possible regulation of NAC and TMA

by other genes suggested by published mGWAS studies, we
investigated the pseudospectra of these using metabomatching.
In particular, we investigated genes that either were the target
of an eQTL SNP that is a mQTL of NAC/TMA or were
within 500 kb of ALMS1/HPS1. However, none of these
candidate genes (14 for the ALMS1-NAC and 6 for the HPS1-
TMA association pair) produced a pseudospectrum containing

even a single nominally significant signal pointing to these
metabolites (data not shown).
Inspecting published mGWAS in humans,37 we found that

the SNPs in both ALMS1 and HPS1 loci have been previously
reported to associate with a number of metabolic traits (Table
2). The ALMS1 locus has been associated with N-acetylated
compounds, while the HPS1 locus has been associated with
various metabolites including trimethylamine and dimethyl-
amine.18,27,34 In mGWAS studies, the most likely candidate
genes are usually inferred based on their physical proximity to
the lead mQTL and, if available, their functional annotation.
Indeed, published mGWAS studies were not able to
distinguish between NAT8 or ALMS1 and HPS1 or PYROXD2
as genes affecting NAC and TMA, respectively. In contrast, our
association study using gene expression data from LCLs clearly
favors ALMS1 and HPS1 as the relevant genes. However, for
NAT8, which is mostly not expressed in LCLs, conclusions on
its association with NAC in functionally more relevant tissues
are not possible.
A likely genetically driven relationship between ALMS1 and

NAC concentrations measured in the baseline data set,
through a shared eQTL and mQTL (SNP rs7566315), is
illustrated in Figure 5.

Figure 3. SNP - metabolome feature and SNP - gene expression associations in ALMS1/NAT8 locus. (A) LocusZoom plot for ALMS1/NAT8
locus, where the SNPs are associated with metabolome feature at 2.0375 ppm, LD colored with respect to lead mQTL. (B) Bar plot shows −log10
transformed p values from associating expression values of nine genes in the locus with the five NAA features.
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Mendelian Randomization Analysis Suggests ALMS1
Expression in Blood and Confirms NAT8 Expression in
Other Tissues to Causally Effect NAC Concentration

To assess a causal relationship between gene expression and
metabolite concentration, we performed MR analysis using
SNPs as instrumental variables (IVs) selected based on

summary statistics from the eQTLGen Consortium28 and
Raffler et al.27 for eQTL and untargeted mQTL results,
respectively. We investigated both the causal effect of the gene
expression on the metabolite concentration and vice versa for
the ALMS1-NAC and HPS1-TMA gene-metabolite pairs.
We first investigated the causal effect of the ALMS1 gene on

NAC concentration reflected by the NMR peak intensity at
2.0308 ppm.34,44 We considered 86 SNPs that were significant
eQTLs (FDR < 0.05) in eQTLGen and that were also
identified as mQTLs by Raffler et al. After stepwise pruning
(see Materials and Methods), 14 independent SNPs remained
as candidate IVs. Next, we performed Cochran’s Q test to
detect heterogeneity among these SNPs and removed a further
three, resulting in 11 SNPs as potentially valid IVs to use in the
MR analysis (see Materials and Methods). Our causal effect
estimates given by four meta-analysis methods (inverse
variance weighted, weighted median, MR-Egger, maximum-
likelihood; see Materials and Methods) are reported in Table
3A. All methods agree on the ALMS1 expression level being

Figure 4. SNP - metabolome feature and SNP - gene expression
associations in HPS1/PYROXD2 locus. (A) LocusZoom plot for
HPS1/PYROXD2 locus, showing the association significance of SNP
with the metabolome feature at 2.8725 ppm. Colors indicate the
correlation (LD) to the lead QTL. (B) Bar plot shows −log10
transformed p values from associating expression values of seven
genes in the locus with the same feature.

Table 2. Previously Reported mGWAS Results for the ALMS1/NAT8 and HPS1/PYROXD2 Locia

reference platform biofluid locus metabolite

Nicholson et al. 201134 MS + NMR urine + plasma ALMS1, NAT8 N-acetylated compounds
Montoliu et al. 201344 NMR urine ALMS1 N-acetylated compounds
Rueedi et al. 201418 NMR urine ALMS1 2.0375 (suggested as N-acetylated compounds)
Raffler et al. 201527 NMR urine NAT8 2.031 (suggested as N-acetyl-L-aspartate)
Suhre et al. 201138 MS serum NAT8 N-acetylornithine
Yu et al. 201439 MS serum NAT8 N-acetylornithine
Shin et al. 201433 MS serum NAT8 N-acetyllysine, unknown compounds
Nicholson et al. 201134 MS + NMR urine + plasma HPS1, PYROXD2 trimethylamine (urine), dimethylamine (plasma),
Rueedi et al. 201418 NMR urine PYROXD2 trimethylamine, unknown compound, 2.8575, 1.8025
Raffler et al. 201527 NMR urine PYROXD2 2.854 (suggested as trimethylamine)
Raffler et al. 201340 NMR plasma PYROXD2 2.757
Rhee et al. 201341 MS plasma HPS1 asymmetric dimethylarginine
Krumsiek et al. 201242 MS serum HPS1, PYROXD2 multiple compounds, unknown compounds
Hong et al. 201343 MS serum HPS1 caprolactam
Shin et al. 201433 MS serum PYROXD2 unknown compounds

aMS: mass spectrometry; numbers in metabolite section refer to NMR spectral shift positions in ppm. Reported genes are mostly based on
proximity to the mQTL or based on gene function.

Figure 5. Scatter plot of the mQTL effect of SNP (rs7566315) on
NAC and its eQTL effect on ALMS1 gene expression. Each point
represents a study sample. NAC concentration is approximated by the
feature at 2.0375 ppm that is log10 transformed after feature- and
sample-wise z-scoring (y axis). ALMS1 expression is z-scored after
log2 transforming RPKM+1 values (x axis). Color code represents the
genotype of rs7566315 (legend) that is an eQTL of ALMS1 and
mQTL of NAA.
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causal for NAC concentrations, indicated by p values < 2 ×
10−16.
As NAT8 has a known N-acetyltransferase activity and was

previously suggested to be involved with NAC concentration
(see Table 2), we performed an additional MR analysis with
ALMS1 as the exposure where we removed the possible
pleiotropic effect of the NAT8 gene. To achieve this, we
excluded 10 out of 14 original candidate IVs that were also
significant eQTLs of NAT8 or were in LD (R-squared > 0.1)
with these NAT8 eQTLs (as there were no NAT8 eQTLs in
eQTLGen, these were taken from GTEx consortium (v8),
considering all available tissues2 and using a significance cutoff
of p value < 10−7). Without these NAT8-related SNPs, the MR
results remained significantly causal (Table 3C), indicating
that the causal effect of ALMS1 on NAC may not be driven by
the pleiotropic effect of NAT8.
Finally, we performed an additional sensitivity analysis by

lowering the R-squared threshold in the stepwise LD pruning
process to 0.05, resulting in more strictly independent IVs for

MR analysis. The significant causal effect of ALMS1 on NAC
persisted with more strictly independent instruments, indicated
by all four meta-analysis methods (see Table S2, top panel).
However, when removing NAT8-related eQTLs, only one
meta-analysis method (weighted-median) indicated a signifi-
cant causal effect of ALMS1 on NAC (see Table S2, bottom
panel). We also performed an MR analysis with NAT8 as the
exposure, but due to the low number of valid IVs (only two
remained after removing two with heterogeneity), we could
only use robust MR analysis methods. Both weighted median
and MR-Egger indicated a significant causal effect of NAT8
expression on NAC (beta = 0.36 and 0.63, respectively; p
values < 10−16). When excluding ALMS1-related SNPs, only
two IVs remained and thus we could not test if the causal effect
of NAT8 is independent of ALMS1 expression.
For the completeness of the analysis, we also tested a causal

effect of NAC on the ALMS1 gene expression level. IVs were
selected among the SNPs that were reported as significant
mQTLs for the 2.03 ppm feature (p value < 1 × 10−6) in

Table 3. MR Results for Testing a Causal Link between ALMS1 Expression and Concentration of N-Acetylated Compoundsa

method
causal effect size

estimate
std.
error 95% CI p value

Cochran’s Q-statistic p
value

A ALMS1 → NAC inverse variance weighted 0.967 0.061 0.847−1.087 <2 × 10−16 0.2323
weighted median 1.111 0.075 0.965−1.257 <2 × 10−16 NA
MR - Egger 0.994 0.092 0.812−1.175 <2 × 10−16 0.1776
maximum-likelihood 0.999 0.065 0.872−1.126 <2 × 10−16 0.249

B NAC → ALMS1 inverse variance weighted −0.015 0.264 −0.532−0.502 0.955 0.7443
weighted median 0.122 0.321 −0.507−0.751 0.704 NA
MR - Egger 1.495 1.976 −2.377−5.368 0.449 0.7256
maximum-likelihood −0.015 0.266 −0.535−0.505 0.955 0.7443

C ALMS1 → NAC inverse variance weighted 0.796 0.183 0.437−1.155 <2 × 10−16 0.1902
(NAT8 related SNPs
removed)

weighted median 0.668 0.242 0.193−1.142 0.006 NA

MR - Egger 1.912 0.704 0.532−3.291 0.007 0.4144
maximum-likelihood 0.805 0.185 0.444−1.167 < 2 × 10−16 0.2199

aMR results for testing (A) causal effect of ALMS1 gene expression levels on N-acetylated compounds (ALMS1 → NAC), (B) causal effect of N-
acetylated compounds on ALMS1 gene expression levels (NAC → ALMS1), (C) causal effect of ALMS1 gene expression levels on N-acetylated
compounds (ALMS1 → NAC) when NAT8-related SNPs were removed from the instrument set.

Table 4. MR Results for Testing a Causal Link between HPS1 Expression and TMA Concentrationa

method
causal effect size

estimate
std.
error 95% CI p value

Cochran’s Q-statistic p
value

A HPS1 → TMA inverse variance weighted 0.266 0.094 0.082−0.450 0.005 0.0803
weighted median 0.311 0.072 0.170−0.453 <2 × 10−16 NA
MR - Egger 0.37 0.126 0.123−0.617 0.003 0.0852
maximum-likelihood 0.267 0.094 0.083−0.452 0.004 0.0829

B TMA → HPS1 inverse variance weighted −0.089 0.012 −0.113 to −0.065 <2 × 10−16 0.0958
weighted median −0.09 0.011 −0.111 to −0.068 <2 × 10−16 NA
MR - Egger −0.086 0.013 −0.111 to −0.061 <2 × 10−16 0.0758
maximum-likelihood −0.09 0.012 −0.114 to −0.066 <2 × 10−16 0.1258

C HPS1 → TMA inverse variance weighted
(PYROXD2 related SNPs
removed)

weighted median 1.079 0.121 0.842−1.315 <2 × 10−16 NA

MR - Egger 1.705 0.305 1.107−2.303 <2 × 10−16 0.5575
maximum-likelihood

aMR results for testing (A) causal effect of HPS1 gene expression levels on TMA (HPS1 → TMA), (B) causal effect of TMA on HPS1 gene
expression levels (TMA→ HPS1), (C) causal effect of HPS1 gene expression levels on TMA (HPS1→ TMA) when PYROXD2-related SNPs were
removed from the instrument set.
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Raffler et al.27 Among the cis-eQTLs of ALMS1 from
eQTLGen, we observed strong heterogeneity between their
expected and observed effects. To overcome this problem, we
sought to use also trans-eQTLs of ALMS1; however, none of
the candidate IVs were measured in the trans-eQTL study of
eQTLGen. As an alternative, we performed an association
study between the candidate IVs and ALMS1 gene expression
level as measured for our 555 CoLaus individuals and used
these trans-eQTL results. Overall, we identified 26 overlapping
significant mQTLs and trans-eQTLs, corresponding to six
independent SNPs. Two of the six candidate IVs were removed
due to pleiotropic effects resulting in four SNPs to be used as
potentially valid IVs in the MR analysis (see Materials and
Methods). None of the four meta-analysis methods (Table 3B)
gave a significant causal effect estimate, indicating that we have
no evidence for NAC concentration causally affecting ALMS1
gene expression.
In conclusion, our MR analysis using SNPs selected from

eQTLs in blood tissue suggests a causal effect of ALMS1
expression levels on NAC, which appears independent from
NAT8 gene expression (in various GTEx tissues). However, we
also detected a significant causal effect of NAT8 expression (in
GTex tissues) on NAC concentration.

Mendelian Randomization Analysis Suggests HPS1 as
Causal Gene Modulating TMA Concentration and
Indicates a Reverse Causal Effect between Both

We performed a similar MR analysis to test a causal
relationship between HPS1 gene expression and TMA
concentration. As there were no targeted summary statistics
for TMA concentration, we used the NMR peak intensity at
2.8541 ppm from Raffler et al.27 as a proxy for TMA
concentration. This position is in agreement with the singlet
peak position range from 2.79 to 2.99 ppm, according to
HMDB. Among the 77 SNPs that were reported as significant
eQTLs for HPS1 (FDR < 0.05) in eQTLGen and measured by
Raffler et al., only six could be used as valid IVs that were
independent and did not exhibit heterogeneity (see Materials
and Methods). Causal effects estimated by four different meta-
analysis methods were all significant (p value < 0.005; see
Table 4A), suggesting that HPS1 gene expression has a causal
effect on TMA concentration.
We performed an additional MR analysis removing the

possible pleiotropic effect of the other candidate gene in the
locus, PYROXD2, as this gene was previously suggested to be
involved in modulating TMA (see Table 2). For this, we
removed from the original 77 candidate IVs 54 SNPs that were
also significant eQTLs of PYROXD2 (eQTLGen FDR < 0.05)
or were in LD with these eQTLs (R-squared >0.1). Stepwise
pruning with R-squared thresholds of 0.2 or 0.05 both resulted
in 3 SNPs to be used in MR analysis. These 3 SNPs had
heterogeneity; however, due to the low number of instruments,
we could not further remove any of them. Therefore, we relied
on robust MR methods. Both robust MR methods (weighted
median and MR-Egger) indicated a significant causal effect of
HPS1 on TMA (p value < 2 × 10−16) with estimated causal
effect sizes larger than 1.0 (Table 4C). This suggests that the
causal effect of HPS1 on TMA is not driven by a pleiotropic
effect of PYROXD2. We also attempted an MR analysis testing
the causal effect of PYROXD2 on TMA. However, when HPS1-
related SNPs were discarded from the candidate IVs, there
were no SNPs left for the analysis.

Next, we performed a sensitivity analysis using an R-squared
threshold of 0.05 in stepwise LD pruning, which showed a
persisting causal effect of HPS1 on TMA, when all HPS1
eQTLs were used as candidate SNPs in the MR analysis (p
value < 2 × 10−16 for all four meta-analysis methods; see Table
S3, upper panel), and when PYROXD2-related eQTLs were
removed from the candidate SNPs (p value < 2 × 10−16 for
robust meta-analysis methods; see Table S3, bottom panel).
Finally, we tested the causal effect in the reverse direction,

from TMA concentration to HPS1 gene expression. From 87
significant mQTLs in Raffler et al.27 that were also measured in
eQTLGen, 18 SNPs remained to be used as IVs in the MR
analysis after stepwise pruning and removing the SNPs
showing heterogeneity (see Materials and Methods). All four
meta-analysis methods agreed on TMA concentration being
causal for HPS1 expression (p value < 2 × 10−16; Table 4B).
While the estimated causal effect size of HPS1 on TMA ranged
between 0.27 and 0.37 for different methods, the causal effect
size of TMA on HPS1 was around −0.09, pointing to the
existence of a negative feedback loop.

■ DISCUSSION
In this study, we present a metabolome- and transcriptome-
wide association study using RNA-seq from LCLs and NMR
urine profiles from 555 subjects of the CoLaus cohort. This is
the first study performed on untargeted urine metabolome data
from healthy individuals. We identified two genes, ALMS1 and
HPS1, whose association with NMR features are highly
significant, and 13 additional genes that are associated with
metabolome features with lower but still significant p values
(see Table 1). Among these 15 genes, 9 are in loci with SNPs
that have been previously reported as mQTLs by mGWAS.
This shows that our approach can identify likely candidates of
metabolically relevant genes, despite a limited sample size.
To search for metabolite candidates underlying gene

expression-metabolome feature associations, we used our
metabomatching tool that ranks metabolites with known
NMR peaks based on their match to a given pseudospec-
trum.22 We consider NAC as the most likely compounds to be
associated with ALMS1 expression, even though NACs were
not ranked top by metabomatching. Similarly, for HPS1, we
consider TMA, which also did not rank top, as the most likely
compound underlying the association with the NMR feature at
∼2.86 ppm. The reason for this was in both cases that the most
significant association peaks of ALMS1 and HPS1 matched
best with the highest peaks in the reference spectra of NAC
and TMA, respectively. Thus, metabomatching was very useful
in prioritizing candidate metabolites, but its scoring could be
improved by weighting the association signal based on the
relative peak height of the reference spectrum, which currently
is only visualized.
Our top hit ALMS1 as well as the second strongest

association involving HPS1 had previously been implicated by
mGWAS linking their loci to compound families. However, in
both cases, the reported mQTLs were also in proximity to
other genes, leaving the causal gene-metabolite association
ambiguous. Specifically, the locus associated through mGWAS
with N-acetylated compounds (NAC) includes two genes,
ALMS1 and NAT8,18,27,34,44 and the latter seemed to be an
appealing candidate due to its known N-acetyltransferase
activity. Yet, our association study linked NAC concentrations
to ALMS1 and not NAT8 expression in LCLs. This is probably
due to the fact that expression of NAT8 in LCLs is very low, so
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one would need to test its expression in tissues such as liver or
kidney, where it is known to be highly expressed, which is
however not feasible for a cohort study like CoLaus. A
metabolic role of ALMS1 is supported through its known role
in Alström syndrome characterized by metabolic deficits53 and
kidney health disorder phenotypes.45 Interestingly, in the
mGWAS reported by Montoliu et al. using data from a
Brazilian cohort, the authors observed the association between
NAC and the SNPs located in ALMS1/NAT8 locus with
stronger SNP associations in the ALMS1 gene rather than
NAT8.44 They argued that the high ethnic diversity of their
study population might have been responsible for breaking
down the linkage disequilibrium in the ALMS1/NAT8 region
of the genome, resulting in a stronger association for SNPs
close to or within the ALMS1 gene compared to other studies.
Intriguingly, NAA, a likely NAC underlying the observed

association, is the second most abundant metabolite in the
brain and is involved in neural signaling by serving as a source
of acetate for lipid and myelin synthesis in oligodendrocytes.46

NAA can be detected in urine in low concentrations,47 and it
has a long history of being a surrogate marker of neural health
and a broad measure of cognitive performance.48,49 Recently, it
has been shown that NAA correlates with neuropsychological
performance measures.50 The signals of SNPs in ALMS1 by
GWAS with intellectual phenotypes such as a self-reported
ability in mathematics51,52 might therefore be due to its role in
modulating NAA. This conjecture of course assumes that NAA
levels in relevant brain tissues reflect those in urine and that
the ALMS1 expression variation and in particular its genetic
component, in LCLs or blood, can serve as a proxy for brain
tissue.
As for HPS1, our second strongest associating gene, we note

that mGWAS previously associated its locus with TMA
levels.18,27,34 Yet, most of these studies, including the
aforementioned mGWAS using a Brazilian cohort,44 consid-
ered the PYROXD2 gene, which is in the same locus, as the
most likely modulator of TMA concentrations due to its
known function as pyridine nucleotide-disulfide oxidoreduc-
tase. While we cannot rule out that PYROXD2 is involved in
TMA metabolism, our study finds no evidence for association
of PYROXD2 expression levels in LCLs with TMA
concentration in urine, indicating that the mQTLs of this
locus may act predominantly as eQTLs through HPS1.
In order to study the causal relationship between gene

expression and metabolite concentrations, we conducted
Mendelian randomization analyses. Our analyses supported a
causal relationship between ALMS1 expression in blood and
NAC concentration in urine that appears independent of
NAT8 expression. Yet, our MR analysis also confirmed a causal
effect of NAT8 expression in other tissues (than LCLs or
blood) on NAC concentration in urine. For HPS1, we
observed a causal effect of its expression level in blood on
TMA concentration in urine that appears independent of
PYROXD2 expression in addition to a negative feedback loop
between HPS1 expression levels and TMA concentrations.
However, the causal links identified through MR analysis using
mQTLs from urine and eQTLs mostly from blood may not
represent very well the actual effects in the metabolically
relevant tissues. Thus, based on the available data, MR analysis
cannot unambiguously pinpoint the causal gene in the
ALMS1/NAT8- and HPS1/PYROXD2-loci, whose expression
drives the respective metabolite concentrations.

We acknowledge that our study has several limitations: First,
the transcriptome data from LCLs may only poorly reflect the
expression of genes in more functionally relevant cells and
tissues. Furthermore, the mRNA expression levels may not
correlate well with the protein concentrations of the enzymes
involved in the metabolic reactions, as these are additionally
shaped by translation regulation, post-translational modifica-
tions, or decay. Second, the metabolome data from urine may
depend on food intake and may only provide a poor proxy for
the metabolite concentrations in other relevant biosamples.
Thus, relating LCL expression levels with urine metabolite
concentrations might not allow detecting all regulations that
occur in more functionally relevant tissues. This is likely the
case for NAT8, which is barely expressed in LCLs but has high
expression levels in, e.g., kidney and liver. Finally, our study is
limited by the sample size of studied CoLaus data and by the
available eQTLs and mQTLs, and the LD reference panel,
used for MR. More highly powered studies are needed to
provide a more definite answer on some casualties.
Nevertheless, our study shows a proof of concept for how

global association of sets of two or more distinct molecular
traits observed in the same cohort can facilitate new discoveries
of how different molecular entities affect each other. Such
analyses, when applied to sizable datasets, will be instrumental
in unravelling the complex regulatory relationships underlying
human metabolism.
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