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Abstract

CRISPR loss of function screens are powerful tools to interrogate biology but exhibit
a number of biases and artifacts that can confound the results. Here, we introduce
Chronos, an algorithm for inferring gene knockout fitness effects based on an explicit
model of cell proliferation dynamics after CRISPR gene knockout. We test Chronos on
two pan-cancer CRISPR datasets and one longitudinal CRISPR screen. Chronos
generally outperforms competitors in separation of controls and strength of
biomarker associations, particularly when longitudinal data is available. Additionally,
Chronos exhibits the lowest copy number and screen quality bias of evaluated
methods. Chronos is available at https://github.com/broadinstitute/chronos.

Background
Genome-wide and large sub-genome loss of function CRISPR screens are increasingly

important tools for understanding gene function in both normal and disease states. In

a typical experiment, cells are infected with a library of single-guide RNAs (sgRNAs)

targeting genes of interest. The CRISPR-Cas9 system is less prone to the widespread

off-target effects that occur in RNAi experiments [1]. However, a number of other arti-

facts have been observed in pooled CRISPR screens which can complicate our ability

to identify the true effect of gene knockout on cell fitness. These challenges include

how to interpret discrepant data for sgRNAs targeting the same gene, including identi-

fying and correcting for variable sgRNA efficacy [2]; correct for nonspecific CRISPR-

cutting induced toxicity, which causes a gene-independent depletion of sgRNAs target-

ing amplified regions [3]; reduce bias when comparing screens due to variable screen

quality [4]; and address incomplete phenotypic penetrance due to heterogeneity in

double-stranded break repair outcomes [5].

A number of methods have been developed to address various combinations of these

concerns. To combine sgRNA results into gene scores in a more robust manner than

naive averaging, RIGER [6], RSA [7], and STARS [8] use statistical tests of guide rank
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significance to generate gene scores, while screenBEAM uses a Bayesian hierarchical

model where variation across reagents are modeled as random effects [9]. The Bayesian

Analysis of Gene Essentiality (BAGEL [10]) and BAGEL2 [11] algorithms make use of

known essential and nonessential genes to estimate the probability that the sgRNAs

targeting a given gene represent a true dependency.

A well-known cause of variation in CRISPR systems is the variable on-target efficacy

of individual sgRNAs. Given multiple screens with the same library, one can attempt a

more sophisticated approach where the efficacy of different sgRNAs is inferred directly

from the data and thereby estimate gene fitness effects with greater weight placed on

the more efficacious sgRNAs. This approach forms the basis of MAGeCK-MLE [12],

CERES [13], and JACKS [14]. These approaches are similar in that they treat the log of

the relative change in sgRNA abundance during the experiment (log fold change) as

the product of sgRNA efficacy and true gene fitness effect, although they employ differ-

ent statistical assumptions and methods.

To remove bias related to DNA cutting toxicity, CERES uses a nonlinear model to es-

timate the fitness effects resulting from multiple DNA cuts and infers this relationship

for each cell line using its measured copy number profile as input [13]. CRISPRCleanR

(CCR) is an unsupervised approach for genome-wide screens: reagents are arranged ac-

cording to their targeted location on the genome, and regions of systematic guide en-

richment or depletion are shifted to the global mean on the assumption that they

reflect a copy number alteration [15]. CCR is a “pre-hoc” method that should be used

prior to the inference of gene fitness effects. Weck et al. introduced a pair of pre-hoc

methods for copy number correction [16], with a local drop out method similar to

CCR and a generative additive model method similar to the CERES model of CN effect.

Wu et al. introduced an update to MAGeCK-VISPR that similarly uses a paired ap-

proach: linear regression with a saturation value for cell lines that have CN profiles and

a CCR-style alignment for cell lines that do not have CN profiles [17].

For analyses that compare gene essentiality estimates across screens, variation in

screen quality can lead to significant biases [4, 18, 19]. To address this, Boyle et al. in-

troduced a method for identifying and removing principal components that reflect

screen quality biases based on observed gene fitness effects of known non-essential

genes [19]. A related approach is used to remove screen-quality-related principal com-

ponents in the CERES data for the Cancer Dependency Map (DepMap) project [4].

Although these methods address individual confounders in CRISPR screens, no exist-

ing method addresses all of them. Additionally, CRISPR screens are confounded by in-

complete penetrance of the gene knockout phenotype. Given a single late time point

measurement, poor knockout of a highly essential gene and complete knockout of a

weakly essential gene may result in equivalent depletions, although the true phenotype

is very different [20]. This ambiguity can be resolved by measuring fitness at multiple

late time points, and with the falling costs of sequencing, an increasing number of ex-

periments do so [21, 22]. Marcotte et al. developed siMEM for combining multiple time

points in the context of RNAi experiments [22]. However, siMEM assumes sgRNA

dropout occurs exponentially in time. This is a poor fit for CRISPR screens in which

some clones escape gene knockout completely. For sgRNAs targeting essential genes,

clones with intact function will eventually account for almost all reads and dropout will

saturate at a finite value.
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To simultaneously address these known challenges, we developed Chronos, an expli-

cit model of cell population dynamics in CRISPR knockout screens. Chronos addresses

sgRNA efficacy, variable screen quality and cell growth rate, and heterogeneous DNA

cutting outcomes through a mechanistic model of the experiment. Like MAGeCK, but

different from other approaches, Chronos also directly models the readcount level data

using a more rigorous negative binomial noise model [23], rather than modeling log-

fold change values with a Gaussian distribution as is typically done. Copy number re-

lated biases are removed using an improved model that accounts for multiple sources

of bias. We find that Chronos outperforms other methods on most benchmarks with a

single late time point and improves performance considerably when used to model data

with multiple time points.

Results
Model

Chronos is a mechanistic model designed to leverage the detailed behavior of pooled

CRISPR experiments to improve inference of gene essentiality. It models the observed

sgRNA depletions across screens and time points to determine the effect of gene

knockout on cell growth rate, along with other parameters. CRISPR knockout (KO) of

a gene is an inherently stochastic process. Some sgRNAs will fail to cut their target

[24]. In the event that they succeed and double-stranded break repair results in an in-

sertion or deletion, in-frame mutations occur in about 20% of cases and may leave pro-

tein function intact [5]. Thus, the result of introducing an individual sgRNA reagent in

a population of Cas9 positive cells is heterogeneous, with outcomes including total loss,

heterozygous loss, partial loss of function mutations, or completely conserved function

[25]. The Chronos model simplifies this range of outcomes to a binary pair of possibil-

ities: total loss of function or no loss of function (Fig. 1a). Cells in the latter group will

continue proliferating at the original, unperturbed rate. Those in the former will prolif-

erate at some new rate reflecting the effects of a given gene perturbation on cell

growth, which is typically the desired readout from the experiment. Concretely, for an

sgRNA j targeting gene g in cell line c, we model the number of cells Ncj with the

sgRNA at time t after infection as

Ncj tð Þ ¼ Ncj 0ð Þ pcje
Rcg

�t þ 1−pcj
� �

eRc t
� �

where t = 0 is the time of infection, pcj is the probability that the sgRNA j achieves

knockout of its target in cell line c, Rc is the unperturbed growth rate of the cell line,

and Rcg
∗ is the new growth rate caused by knockout of the targeted gene in the given

cell line. For Chronos, we define gene fitness effect as the fractional change in growth

rate rcg = Rcg
∗/Rc − 1. Gene fitness effects are the primary desired output for this type of

experiment.

A wide range of efficacy for sgRNAs in abrogating protein function has been reported

[8]. Additionally, we have observed in Project Achilles that screen quality (determined

by separation of positive and negative control gene fitness effects) varies substantially

across cell lines, due to variable Cas9 activity or other factors [4]. We therefore ap-

proximate the knockout probability per sgRNA and cell line as the product of a per-
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line and per-sgRNA factor, both constrained to the interval [0, 1]: pci = pc pi . The

model also includes a gene-specific delay dg between infection and the emergence of

the knockout phenotype, measured in days. Finally, pooled screen sequencing data does

not measure the number of infected cells Nci directly but only the proportion of all

reads that map to a particular sgRNA. This we assume has an expected value equal to

the proportion of cells with that sgRNA : 〈ncj〉 = Ncj / ∑ i Nci. Let the Chronos estima-

tion of 〈ncj〉 be νcj. Then,

νcj tð Þ ¼ Zcj tð Þ=
X
j

Zcj tð Þ

where

Zcj tð Þ ¼ νcj 0ð Þ 1þ pcp j eRcrcg t−dgð Þ−1
� �� �

∀t≥dg

Zcj tð Þ ¼ νcj 0ð Þ ∀t < dg

The parameters are estimated so as to maximize the likelihood of the observed read-

counts under a negative binomial distribution, as detailed in the “Methods” section.

CRISPR screens occasionally exhibit unexpectedly large readcounts in individual

sgRNAs which are suspected to be the result of individual clonal outgrowths unrelated

Fig. 1 Overview of Chronos. a Illustration of the model for the simplified case where an sgRNA j is
introduced targeting essential gene g in cell line c. Stochastic double-strand repair divides the population
of infected cells into two groups, one with (top) and one without (bottom) successful gene knockout,
which proliferate at different rates. Successful knockout probability is the product of a per-sgRNA probability
pj and a per-cell line probability pc. The population of cells measured at each subsequent time point is a
mix of these two populations. Chronos infers the relative change in growth rate rcg. b Typical workflow of a
Chronos run. Readcounts driven by outgrowing clones are removed, then gene fitness effects inferred
using the readcount matrix, sequence map, and guide map. The inferred gene fitness effects are then
corrected for copy number effects. c Number of cell lines in each lineage for the Achilles and Project Score
datasets used for comparison
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to the intended CRISPR perturbation [20]. Chronos includes tools to identify and re-

move suspected outgrowths from read count data and to remove copy number (CN)

biases from the inferred gene fitness effect (as described further below). A typical work-

flow proceeds as shown in Fig. 1b. Note that the efficacy terms pc and pj in Chronos

directly represent the probability of achieving functional knockout with a given sgRNA

in a given cell line, rather than a simple multiplicative scaling of gene scores as in exist-

ing models. Additionally, the parameters pc and Rc together account for much of the

variation in screen quality which is a major source of confounding in genomics screens

[4, 18, 19]. As a result, Chronos does far better at aligning good and poor-quality

screens than competitors (Additional file 1: Fig. S1a): without scaling, the standard de-

viation of the median of essential gene effects within cell lines in Chronos is 58–79%

lower than its competitors. Any algorithm can improve its alignment by scaling the

data after fitting, for example forcing the median of common essential gene scores to

be −1 in each cell line [4]; however, one cost of doing so is an expansion in the noise of

the lowest-quality screens (Additional file 1: Fig. S1b). Further, scaling does not elimin-

ate biases related to variable screen quality, and in some cases can exacerbate these

biases (Additional file 1: Fig. S1c).

Comparison

We first evaluated Chronos on the two largest public datasets of human genome-wide

CRISPR screens: projects Achilles [26] and Score [27] containing data from 769 and

317 screens respectively (Fig. 1c). Among the many possible algorithms and combina-

tions of algorithms, we selected three for comparison to represent the space of available

choices. Behan et al. [27] used the combination of CCR [15] for copy number correc-

tion and BAGEL [10] for gene effect estimation with the first release of Project Score

results; we have used the updated pipeline here, substituting BAGEL with the recently

published BAGEL2 [11]. We will refer to this pipeline simply as BAGEL2. We chose

MAGeCK-MLE (MAGeCK) to illustrate an algorithm which estimates guide efficacy

and corrects for copy number while using a more statistically sound negative binomial

model for screen noise [12]. Finally, we chose CERES as a method that combines guide

efficacy estimates and copy-number correction with information sharing across cell

lines via a hierarchical prior on the gene fitness effects [13], which is currently the

standard algorithm for the Broad Dependency Map. To focus on the results produced

directly from the algorithms themselves, we did not perform any of the batch correc-

tions described in Dempster et al. [4] or Pacini et al. [28] However, for most results, we

did normalize the CERES and BAGEL2 data so the median of common essential gene

fitness effects in each cell line is −1, as described in Meyers et al. [13]. Some

MAGeCK-processed cell lines had control separation too low for this to be a reason-

able strategy (Additional file 1: Fig. S1b); we opted to only scale the data globally for

MAGeCK.

Separation of global control genes

The most straightforward indicator of success for a method is the separation it achieves

between control sets of known essential and non-essential genes. We used a predefined

set of common essential genes, which were identified from independent data, as
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positive controls [26]. For each cell line, we used genes that are not expressed in that

line as negative controls. The overall distributions of positive and negative control gene

fitness effects are shown in Fig. 2a. We measured control separation in four ways, in in-

creasing order of abstraction. First, we computed the null-normalized median differ-

ence (NNMD) for all gene fitness effect scores (Fig. 2b) and for each individual cell line

(Fig. 2c). It reports the difference between the medians of the control sets normalized

by the median absolute deviation of the negative controls. Alone of the measures used

here, NNMD can be altered by rank-preserving transformations of gene scores.

Chronos outperformed CERES by 38% (ratio of cell line means) in Achilles (paired Stu-

dent’s t test p = 5.9 × 10−275, N = 767) and 39% in Project Score (p = 1.6 × 10−110, N =

317), which in turn outperformed the other two methods.

We next considered an estimate of how many false positive gene fitness effects would

be identified by each method. We counted the total number of instances of unex-

pressed genes scoring in the 15% most depleted gene scores of a cell line (Fig. 2d,e),

Fig. 2 Comparison of positive-negative control gene separation across methods for Achilles and Score
datasets. a The distribution of all gene fitness effects for unexpressed (negative control) genes and
common essential (positive control) genes. Unexpressed genes are identified individually for each cell line
(Methods). b Global separation (pooled across cell lines and genes) between gene scores for common
essential genes and unexpressed genes in the cell line where they are unexpressed. Separation computed
using null-normalized median difference (NNMD). More negative values indicate stronger separation. Black
arrows indicate the direction of improved performance. c NNMD for individual cell lines. Boxes indicate the
interquartile range (IQR) of NNMDs. Whiskers extend to the last point falling within 1.5 x IQR of the box,
and lines indicate medians. d Estimated false positive rate, based on the total percentage of unexpressed
genes scoring in most depleted 15% of gene scores within cell lines. e Fraction of unexpressed genes
scoring as false positives in individual cell lines. f Area under the precision/recall curve (PR AUC), where
recall is the number of common essential gene scores that can be recovered at a given precision. g
Fraction of possible common essential gene hits identified at 90% precision in individual cell lines
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where 15% was chosen because previous estimates indicate that about 15% of genes are

true dependencies in a given cell line [4, 29]. Chronos outperformed CERES by 7.2% in

Project Achilles (p = 4.0 × 10−40) and 15% in Project Score (p = 1.1 × 10−31).

We then considered the number of known common essential genes that can be

recalled as hits with a given precision in each cell line. We measured the total area

under the recall/precision curve (PR AUC) for identifying all common essential gene

scores (Fig. 2f) and the number of common essentials that can be recovered in each cell

line at 90% precision (Fig. 2 g). In all cases, Chronos and CERES outperformed

BAGEL2 and MAGeCK. CERES demonstrated a slight but significant advantage of

1.3% by PR AUC in Achilles (paired t test p = 1.1 × 10−74, N = 762). However, Chronos

recalled on average 2.5% more essentials than CERES in Project Score (p = 4.2 × 10−8,

N = 241). Other differences between Chronos and CERES were not significant for these

metrics.

Improvement with multiple time points

The preceding analyses are performed entirely on datasets for which there is only

one late time point measured per library. We next considered what advantages

Chronos could offer when able to exploit sgRNA abundance measured across mul-

tiple time points. For this analysis, we used the study by Tzelepis et al. [21] which

contains CRISPR KO results for the cell line HT-29 measured at days 7, 10, 13,

16, 19, 22, and 25 post-infection. CERES is not designed to run on a single cell

line, and thus was not included in the comparison. Again, we used the metrics

NNMD, unexpressed false positives, and PR AUC to assess positive versus negative

control separation by Chronos when supplied differing numbers of time points in

all possible combinations. Figure 3 illustrates the effect of adding additional time

points on each of these three metrics of control separation. All three metrics

showed improvement with increasing numbers of time points for all methods, but

Chronos showed the greatest improvement. To verify that the Chronos population

dynamics model effectively utilizes the data from multiple time points, beyond the

simple denoising effect that might be expected from combining biological repli-

cates, we compared the benefit of providing multiple time points simultaneously

versus running Chronos separately for each of the same time points individually

and taking the median of the results. For all metrics, Chronos performed better

when provided multiple time points, and with three or more time points outper-

formed all competitors on all metrics. (Chronos’s copy number correction requires

multiple cell lines to identify common essential genes as described further below,

so it was not used here.) We conclude that the Chronos dynamical model is able

to exploit time-series data for improved performance beyond what could be

achieved by naive averaging.

Since many experiments are run in a single cell line with only one late time point, we

also quantified Chronos’ performance in this context by running it on each Achilles

screen individually. Chronos clearly outperformed its competitors as measured by

NNMD, exceeding the second-best algorithm MAGeCK by 66% (related t test p = 1.5

× 10−255; Additional file 1: Fig. S2a), but all methods had similar performance by the

number of unexpressed false positives (Additional file 1: Fig. S2b) and precision-recall

(Additional file 1: Fig. S2c).
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Identification of selective dependencies

The above analyses largely focus on the ability of each model to differentiate essential

and non-essential genes for a given cell line, using a shared set of common-essential

genes as positive controls. However, large-scale datasets, such as Project Achilles, are

particularly powerful for identifying selective dependencies—genes that have a fitness

effect in only a subset of the cell lines—which may represent cancer-selective vulner-

abilities. Identifying selective dependencies across screens and cell lines presents a dis-

tinct challenge versus recovering known common essential genes. We thus evaluated

the performance of algorithms in this context.

To benchmark estimation of selective dependencies, we first analyzed OncoKB genes

that exhibit gain- or change-of-function alterations annotated as oncogenic or likely

oncogenic [30]. After filtering as described in the “Methods” section, we retained 49

Fig. 3 Performance improvement with additional time points. The shaded area shows the 95% confidence
interval for the (7 choose n) possible permutations of n measured time points that can be supplied to an
algorithm. “Average” results are the performance achieved by taking a subset of the seven individual runs
with a single late time point with a given algorithm and taking the median of their gene fitness effects.
Joint results are obtained by running Chronos with a subset of multiple late time points simultaneously
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oncogenes known to induce oncogene addiction with activating alterations that had at

least one annotated alteration in at least one cell line in at least one dataset. These gene

scores were considered selective positive controls in cell lines which had any annotated

(likely) gain- or switch-of-function alterations, and selective negative controls in all

other lines. There were a median of four cell lines with annotated alterations for each

oncogene in the Achilles dataset and two cell lines in Project Score.

To determine how well gene fitness effect profiles for oncogenes were stratified by

the known alterations, we measured the difference between cell lines with and without

an indicated gain- or switch-of-function alteration using NNMD in each dataset (Fig.

4a). No significant differences were observed between Chronos and the lowest median

method due to the small number of oncogenes and small number of positive examples

in each gene (paired t test p = 0.942, between CERES and Chronos in Achilles, N = 48,

and p = 0.511 in Project Score, N = 35). To address this problem, we identified the 43

selective controls that showed signal in any version of the data and pooled the subset

that had indicated alterations in the specific dataset to increase statistical power

(Methods; Fig. 4b). Chronos outperformed its closest competitor (MAGeCK) in

Achilles by 11.2% (permutation testing p = 0.002, N = 1000). Measuring separation by

PR AUC, Chronos outperformed its closest competitor CERES by 10.4% in Achilles (p

= 0.001, N = 1000). BAGEL2 outperformed Chronos in Project Score by 13% according

to NNMD, while Chronos was first by 6.5% over MaGECK as measured by PR AUC;

however, the differences between first and second-best algorithms in Project Score were

not statistically significant.

Fig. 4 Performance on selective dependencies. a For each identified oncogene, the NNMD between cell
lines with and without the canonical biomarker. b The results of a when aggregating results across
oncogenes with signal. c PR AUC for separating cell lines with an indicated alteration from those without
for individual oncogenes. d The results of c when aggregating across oncogenes. e The number of known
expression addictions (y-axis) found to have a Pearson correlation lower than X (x-axis). f The area under the
curves of e for the individual datasets
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To produce a larger set of selective dependencies to evaluate, we used the expression

addictions previously identified in Achilles RNAi data [31]. These genes exhibited se-

lective essentiality in cell lines in which they were highly expressed. After subsetting to

those present in all algorithms and datasets, and removing any common essential genes

(identified from the DepMap releases [26, 32]), we had 106 putative expression addic-

tion genes. We compared the number of potential expression addictions whose gene

fitness effects were negatively correlated with their own expression below a given

correlation threshold between algorithms, varying the threshold from −1 to −0.2

(Fig. 4e). Chronos consistently identified more expression addiction dependencies

as correlated with their own expression at a given threshold than its nearest com-

petitor CERES, resulting in a significantly greater AUC for Achilles (9.0% improve-

ment, two-tailed permutation p = 2.5 × 10−5, N = 40,000). Compared to CERES in

Project Score, Chronos showed a similar improvement (7.53%) but the difference

was not statistically significant due to greater variability in correlation recall (p = 0.055;

Fig. 4f). Individual genes generally had similar correlations with their expression in all

algorithms, with visible systematic improvements but not striking outliers (Additional file 1:

Fig. S3-S4).

Accounting for copy-number biases

It is important for any model for inferring gene KO effects from CRISPR screens to ac-

count for the gene-independent DNA-cutting toxicity effect [3]. A precise description

of the causes of this cutting toxicity is still lacking, and current literature suggests it

may be complex. For example, Gonçalves et al. argue that the copy number effect arises

in tandem repeats alone [33]. Furthermore, the relationship between gene fitness effect

and copy number varies for different types of genes. For most genes, the observed

sgRNA abundance is negatively correlated with copy number across cell lines, but the

opposite is true for essential genes (Fig. 5a), likely owing to the decreased probability of

achieving complete loss-of-function when more copies of a gene are present. In fact,

for essential genes, the average relationship of gene scores with copy number is non-

monotonic (Fig. 5b), further highlighting the complexity of the effect. Instead of devel-

oping a mechanistic model for the copy number effect, we created a new post-hoc

method for correcting copy-number-related biases that can be applied to Chronos gene

fitness effects or to analogous output from other modeling approaches. As the copy

number effect is a function of both the mean fitness effect of a gene and its copy num-

ber in a given cell line, our correction uses a 2D spline model to capture and remove

the systematic nonlinear dependence of gene scores on both parameters. Chronos first

fits the spline model so that as much of the variance in the gene fitness effects as

possible is explained by copy number effect, modulated by the mean gene effect (see

Methods). The residuals of the spline model are taken as the corrected gene fitness

effects. Where CERES successfully corrects the cutting toxicity effect, it worsens the

bias due to incomplete gene KO in common essential genes (Fig. 5c). In contrast,

this new correction method incorporated with Chronos corrects both effects simul-

taneously. The Chronos copy number correction can be run independently on any

gene fitness effect matrix with at least three cell lines (to permit inference of mean

gene effects).
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Differences between Chronos and CERES

As CERES is most similar to Chronos in structure and performance, it is worth consid-

ering in more detail the differences between the algorithm’s estimates. Chronos and

CERES generated quite similar profiles across cell lines for most genes (median gene-

gene correlations of 0.87 in Project Achilles and 0.85 in Project Score). Many of the

genes with lower correlation were strong common essentials, as would be expected

from the discussion above of screen quality bias and the differing copy number correc-

tion methods, or have little signal to correlate (Additional file 1: Fig. S5). Among the

remaining genes, significant disagreement was driven by fundamental disagreement in

the reagent-level data, which makes it possible for CERES and Chronos to choose dif-

ferent sets of reagents as reflecting the true knockout signal. Thus, in Achilles, the 3%

of genes with less than 0.5 correlation between Chronos and CERES had mean correl-

ation among the LFCs of their sgRNAs of 0.12. The mean sgRNA correlation for the

rest of genes was 0.29. In Project Score, the mean sgRNA correlations were 0.19 and

0.33, respectively (Fig. 6a, b). In the general case of sgRNA disagreement, it is difficult

to say which of these reagents is exhibiting true on-target signal. However, if only one

of four or five sgRNAs shows strong positive or negative signal, it is less likely to reflect

true biology. CERES is prone to assigning single outlying sgRNAs high efficacy and

Fig. 5 The copy number effects. a Distribution of correlations for uncorrected gene log fold changes with
their own copy number across cell lines in Achilles for common essential and nonessential genes. b Lowess
smoothed trends for the mean-centered log fold change of known essential and known nonessential
genes as a function of copy number. c Per-gene correlations of gene fitness effects with its own copy
number, binned by mean gene fitness effect. BAGEL2’s copy correction is supplied by CRISPRCleanR. The
boxes show the IQR for the correlations of genes in the given bin, whiskers extending to the last data point
within 1.5 the IQR from the median
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discounting the contradictory signal from the other sgRNAs in order to produce

the best possible fit to observed log fold-changes. In Project Achilles, we identified 475

“1 sgRNA” genes for which CERES assigned a single sgRNA at least 0.2 greater efficacy

than all others for the same gene. We found 358 such genes in Project Score. Chronos

does not have any such genes.

Relying on the sgRNA with the strongest signal carries risks: sgRNAs with only one

exact match may still produce off-target activity at unknown distant sites. In some

cases there was clear evidence that the sgRNA CERES selected was acting off-target.

An example is transcription elongation factor A likely 7 (TCEAL7), a gene unexpressed

in most lines. A single sgRNA in the KY library showed appreciable depletion in log

fold-change data (Fig. 6c, d). CERES assigned this sgRNA efficacy 1 and reduced effi-

cacy (0.602 and lower) to the other sgRNAs. Consequently, CERES gene effects for this

gene in Project Score (but not Achilles) showed significant depletion, including in non-

expressing cell lines (Fig. 6e). As Chronos is constrained to always rely on at least two

sgRNAs, it did not share CERES’ behavior and correctly identified TCEAL7 as having

little effect. Chronos’s inhibition against chasing outlying sgRNAs explains some of the

reduced false positives found in Chronos compared to CERES (Fig. 2d).

Discussion
CRISPR functional genomics screens have become indispensable tools in cellular biol-

ogy. Chronos is a new approach for estimating the fitness effects of gene knockout in

Fig. 6 Prevalence and cause of differences between Chronos and CERES estimates. a, b The Chronos/CERES
gene effect profile correlation for genes with Chronos mean effect greater than -0.5 and standard deviation
greater than 0.1 (y-axis) plotted against the mean correlation of the gene’s sgRNAs (x-axis). Genes for which
CERES estimates a single sgRNA has at least 0.2 greater efficacy than the others are highlighted. c, d For the
gene TCEAL7, the relationship between individual sgRNA log fold-changes (LFCs) and gene effect estimates
by either Chronos or CERES. Points are cell lines. Lines show best-fit regression of each sgRNA to the
algorithm’s gene effect estimate with shaded 90% confidence intervals. Sequence labels of sgRNAs are
truncated to the first four nucleotides for clarity. e CERES vs Chronos gene effect scores for TCEAL7. Dot
color indicates whether the gene was expressed or not in each cell line
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CRISPR screens using a model of the cell population dynamics. We compared the per-

formance of Chronos to existing methods in terms of separation of both global and

cell-line-specific essential and nonessential genes. Across two independent large-scale

CRISPR screening datasets, Chronos generally outperformed all existing methods we

tested, with a few exceptions where it was the second-best method.

A number of factors contributed to improved performance for Chronos even without

timecourse data. These are (1) an improved strategy for correcting copy number related

bias that produces less distortion in common essential genes, (2) a more sophisticated

regularization strategy that reduces bias in estimating selective dependencies while

retaining effective information sharing and normalization across screens, (3) an im-

proved generative model of the data at the readcount level, and (4) an explicit model of

multiple “screen quality” factors that correct for systematic differences across screens.

Additionally, unlike some competitors, Chronos does not assume either a genome-wide

experiment [15] or require multiple cell lines [13]. Thus, it is a flexible method that

provides improved estimates of gene essentiality from a variety of CRISPR experiments.

An important consideration for CRISPR inference algorithms is the issue of partial

mismatches originally raised by Fortin et al. [34]. In some cases, Cas9 appears highly

tolerant of one or more mismatches in sgRNA sequence leading to off target effects.

The presence of these off-target effects raises the importance of ensuring CRISPR algo-

rithms are robust to single sgRNA outliers. Of the algorithms surveyed, CERES is the

most vulnerable to off-target sgRNAs as its structure encourages it to explain the other

sgRNAs as inefficacious. In Chronos, a combination of readcount modeling and

regularization of sgRNA efficacy effectively prevent it from pursuing single sgRNA out-

liers, increasing its robustness to off-target sgRNAs. In addition to specific off-target ef-

fects, the number of partial mismatches in the genome can also drive a more subtle,

broadly distributed depletion in sgRNAs [11, 34]. In our tests, we found that manually

correcting this trend before running Chronos had a negligible effect on data quality.

We therefore opted to leave out this correction. We note that in the case of TCEAL7,

the offending sgRNA has no other exact or single-base-pair tolerant matches in the

genome, but does have a number of two- [7] and particularly three- (113) base-pair tol-

erant mismatches, indicating that any method aiming to predict off-target activity will

need to allow for cases where Cas9 tolerates a greater degree of mismatch than consid-

ered in Fortin et al.

Chronos has some limitations. Notably, it requires a measurement of pDNA sgRNA

abundance, or equivalently a very early time point. In genetic modifier screens one

commonly compares treatment vs control at late time points alone [35], and often

pDNA data is not collected at all for these experiments. This is easily rectified by in-

cluding pDNA sequencing in experimental design. Additionally, we evaluated Chronos

only for conditions where the majority of cells are proliferating. In the event that most

cells are dying—due to a cytotoxic treatment or poor fitness in culture—the model’s

performance might be adversely affected.

Marcotte et al. suggested that multiple late time point measurements could provide

additional value from functional genomics experiments [22]. We found that this is in-

deed the case for CRISPR experiments. For example, with three late time points, mean

performance for Chronos improved by 14% to 31% over its mean performance with

only one time point. Importantly, the value of the additional time points is much
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greater when integrated with the Chronos dynamical model instead of averaging the in-

dividual readouts, indicating that additional time points are not functioning simply as

technical replicates but instead are providing useful dynamic information.

Conclusion
Chronos is an algorithm that uses an explicit model of cell population behavior in

CRISPR screens to improve inference of gene fitness effects over the current state of

the art. We have implemented Chronos as an open-source python package available at

https://github.com/broadinstitute/chronos. Chronos significantly outperformed com-

petitors in multiple tasks across a variety of CRISPR data sets. It performed especially

well when provided multiple late time points, indicating that sequencing additional pas-

sages can provide substantial benefits in CRISPR experiments.

Methods
The Chronos algorithm

Chronos maximizes the likelihood of the observed matrix of normalized readcounts

(relative sgRNA abundance) with the following model:

νcj
L t > dg

L� � ¼ νcj
L 0ð Þ 1þ pc

Lp j eRc
Lrcg t−dgð Þ−1

� �� �
=Zc

L tð Þ

where

� c indexes cell line, j indexes sgRNA, g indexes gene, L indexes library or batch, and

t is the time elapsed since library transduction

� νcj
L(t) is the model estimate the normalized readcounts of sgRNA j in cell line c

screened in batch or library L at time t

� νcj
L(0) is the model estimate of the normalized number of cells initially receiving

sgRNA j

� pc
L and pj are the estimated CRISPR knockout efficacies in cell line c with sgRNA j

� Rc
L is the estimated unperturbed growth rate of the cell line

� rcg is the estimated relative change in growth rate for that cell line if gene g targeted

by sgRNA j is completely knocked out

� dg is the delay between infection and the onset of the growth phenotype

� Zc
L(t) is a normalization equal to the sum of the numerator over all sgRNAs j in

the cell line for the given library and time point

Unless simultaneously fitting Chronos to data generated from multiple libraries, L

can be ignored.

Previous models often treat sgRNAs targeting more than one gene as producing a lin-

ear addition of the gene fitness effects in log space. However, it is clear that such a

treatment is not biologically supportable [34], and the actual effect of simultaneous

knockout is highly dependent on the pair of genes targeted [36]. Consequently, we do

not attempt to model multitargeting sgRNAs in Chronos, and our implementation will

raise an error stating so if they are encountered.

A naive approach to the distribution of readcounts is a multinomial likelihood. How-

ever, biological readcount data often have more dispersion than can be accounted for
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by multinomial or Poisson models [12, 23]. The NB2 model is a frequently used

parameterization of the negative binomial model that accepts an overdispersion param-

eter α. The likelihood of observing counts N when μ such counts are expected under

the NB2 model is

Pr ðN jμ; αÞ ¼ ΓðN þ α−1Þ
ΓðN þ 1ÞΓðα−1Þ

�
α−1

α−1 þ μ

�
1=α

�
μ

α−1 þ μ

�
N

We will treat α as a fixed hyperparameter and the observed readcounts as given, so only

terms involving μ need to be retained. Thus, the negative log likelihood becomes

λ ¼ ðN þ α−1Þ lnð1þ αμÞ−N lnμ

Note that an equal change in the scales of N and μ is equivalent to a change in the

scales of α and λ up to a constant. With an added constant to ensure the cost is zero when

N = μ and some slight abuse of notation, the core cost function for Chronos reads

C ¼
X
L

X
j∈L

X
c∈L

X
k∈c

X
t∈L

�
106nLk jt þ

�
αLc
�−1�

ln

 
1þ 106αLc ν

L
c jðtÞ

1þ 106αLc n
L
k jt

!
−N ln

 
νLc jðtÞ
nLk jt

!

where k is a replicate of a cell line screened and t both indicates the actual time

elapsed since infection and indexes the readout at that time. Rather than estimating li-

brary size, we have simply fixed this cost to take in readcounts normalized to reads per

million. We made this decision because there is not much evidence that the number of

total readcounts found in a screen governs the statistics for the screen. Instead, users

can supply the overdispersion parameter α either as a global hyperparameter or as an es-

timate per cell line and library using independent tools such as edgeR [37]. In our experi-

ence, using edgeR estimates of the overdispersion resulted in values so high for some cell

lines that they effectively contributed nothing to the cost, despite having clear indications

of signal. We opted instead to set a global value.

Constraints and regularization

As written, the Chronos model is not identifiable. For example, one can multiply a

value Rc by some value and divide all the corresponding values of rcj by the same

amount and produce exactly the same estimate. More subtle degeneracies exist be-

tween knockout efficacy and gene fitness effect and between gene fitness effect and the

estimate of initial cell abundance νcj
L(0). Even for terms not exactly degenerate, the

quality of the model fit is improved by regularization. We applied the following con-

straints and penalties:

νcj
L(0): This initial time point could in theory be inferred in the same way as any

other parameter, with pDNA abundance supplied as a t = 0 time point. However, previ-

ous work has found evidence of some systematic errors in initial sgRNA abundance as

measured in pDNA (13) in which some sgRNAs appear to be consistently more or less

abundant in cell lines than could be explained by either target knockout effect or the

measured pDNA abundance. Additionally, some experiments batch pDNA measure-

ments across many screens. Thus, we instead use the following:
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νcj
L 0ð Þ ¼ nb cð Þ j 0L � exp ρbj

L
� �

where nb(c)j 0
L is the median measured relative abundance of sgRNA j in the pDNA

batch b of cell line c in library L and ρbj
L is a parameter to be estimated. It is con-

strained to have mean 0 for the complete set of sgRNAs that target any specific gene

(recall that Chronos does not accept sgRNAs annotated as targeting multiple genes).

Additionally, it is subject to the penalty

Cρ ¼ χρ
1
K

X
L

X
b∈L

X
ij∈L

ρbjL
� �2

where we will use K here and elsewhere to indicate the total number of terms in the

sums and χρ is a regularization hyperparameter equal to 1.0 by default.

pc
L: In the case of only one late time point, this cell line screen quality parameter is

degenerate with both the unperturbed cell line growth rate Rc
L and (in global scaling)

with the sgRNA quality parameter pj
L. To avoid these degeneracies, we estimate this

parameter directly from the fold change in the nth most depleted sgRNA at the last

available time point for the library, where n is the 99th percentile of sgRNAs by default.

pj: As we noted above, sgRNA efficacies in CERES tend to amplify the most extreme

sgRNA results. Specifically, if three of four sgRNAs show little depletion in every line

and one sgRNA shows substantial depletion in any cell lines, CERES will usually assign

high efficacy to the outlying sgRNA and low efficacy to the others. To prevent Chronos

from similarly chasing a single sgRNA, we force it to assign efficacy values near 1 to at

least two guides with the following term:

Cρ ¼ χρ
1
K

X
g

X
i∈g

IgjP j
−1

where χρ is a regularization hyperparameter set to 0.5 by default and Igj is an indicator

function with value 1 iff the sgRNA i is currently estimated to be the first or second

most efficacious sgRNA for the gene g.

Rc
L: The per-cell line and library unperturbed growth rate is degenerate with the cell

efficacy and the individual rows of rcg. We constrained it to have positive values and

mean 1. Additionally, it is regularized with the penalty

CR ¼ χR
1
K

X
L

X
c∈L

ln RL
c

where χR is a regularization hyperparameter with default value 0.01. The log penalty

is chosen because it has little influence on a parameter constrained to have mean 1 un-

less some cell lines approach 0, a behavior we have observed occasionally with small in-

ternal datasets.

rcg: The gene fitness effect matrix is regularized in two ways. First, the global mean is

strongly regularized towards 0:

Cr1 ¼ χr1
X
c

X
g

rcg

where χr1 is a regularization hyperparameter with default value 0.1. The second

regularization is a smoothed hierarchical kernel prior
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Cr2 ¼ 1
K

X
c

X
g

X
h

κg−h rch−rhð Þ2� �

where κg − h is a kernel function of the rank distance of the means of the effects of

genes g and h, and rh is the mean value of gene h across cell lines. The kernel is a com-

bination of two terms:

κg−h ¼ χhδgh þ χk
1
b

exp g−hð Þ2=2σ2� �
where χh, χk and σ are hyperparameters with default values 0.1, 0.25, and 5, δghis the

Kronecker delta, and b is a normalization term that makes the sum of the Gaussian ex-

ponential 1. For computational efficiency, the support of κ is restricted to 3σ in either

direction from zero. For interpretability, we recommend users shift and scale the whole

inferred gene matrix so the median of all nonessential gene scores is 0 and the median

of all essential gene scores is -1 globally, not per cell line.

dg
L: In theory, the gene knockout phenotype delay parameter could be inferred given

sufficient time points, in particular time points measured relatively close to infection.

In practice, we have never found a benefit to trying to do so. Instead, it is fixed as a

hyperparameter with default value 3 days, which the authors have found roughly ap-

proximates the onset of a fitness phenotype for many essential gene knockouts.

Implementation and fitting

Training Chronos consists of choosing the free parameters to minimize the combined

cost function

CT ¼ C þ Cρ þ Cp þ CR þ Cr1 þ Cr2

We implemented the Chronos model in tensorflow v1.15 and used the native Ada-

mOptimizer to train the parameters. The pDNA offsets ρbj
L are initialized to 0, the

guide efficacies pj are initialized to values near 1 with a small random negative offset,

unperturbed growth rates Rc are initialized near 1 with a random Gaussian offset

(standard deviation 0.01), and for the gene fitness effect rcg the gene means and the

per-cell-line scores are separately initialized to very small random values in the interval

[− 10−4, 0.5 × 10−4].

We use a few tricks to improve learning performance. First, to ensure numerical sta-

bility in the exponents, time values are multiplied by a constant with default value 0.1,

equivalent to measuring time in units of 10 days. Second, the core cost C is rescaled so

it has an initial value of 0.67 by default, equivalent to renormalizing the hyperpara-

meters. This ensures more consistent effects for the regularization terms in datasets

with different sizes. With this adjustment, we have found that the default hyperpara-

meters work well for all cases tested, including sub-genome libraries with small num-

bers of screens. Third, we find that using a fixed learning rate for AdamOptimizer

causes either an initial explosion in the cost function before the optimizer begins min-

imizing, or else inefficient learning if the rate is very small. The final optimal parame-

ters learned for both these cases are quite similar, but learning is inefficient. We

therefore initialize the optimizer with a default maximum learning rate of 10−4, rising

exponentially over a burn in period of 50 epochs until it reaches a default value of 0.02.
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Finally, we optimize the gene fitness effect alone during the first 100 epochs. Because

the core cost function is convex when gene fitness effect alone is considered, this helps

ensure stability for the optimum found by Chronos. Training runs for a number of

epochs specified by the user (default 801).

We have noticed a pattern of rare clonal outgrowth in CRISPR data, where a single

sgRNA for a single replicate of a cell line will show unusually large readcounts. This

may be due to a random fitness mutation or other artifact. We provide users an option

to preprocess their readcount data by identifying and removing these rare events. Spe-

cifically, for cases where the log2 fold change of a guide in a biological replicate is

greater than a specified threshold, and the difference between that log fold change and

the next highest log fold change for an sgRNA targeting that gene in the given replicate

is lower by a specified amount, the outgrower is NAed. About 0.02% of all readcount

entries in Achilles and Project Score were NAed for suspected clonal outgrowth.

Removing copy number effect

To remove copy number bias, Chronos provides a function that accepts a matrix of

gene-level copy number (processed as in DepMap: log2(x + 1) where x is the relative

copy number) and a matrix of gene fitness effect. It constructs a two-dimensional cubic

spline representation for each gene fitness effect score in each cell line, where the first

dimension is the copy number of the gene in a given line and the second is the mean

effect of the gene across lines. By default, the model uses ten knots linearly spaced in

copy number space and five knots in mean gene fitness effect space, spaced pseudo-

exponentially (meaning, exponential if the first percentile mean gene fitness effect is

taken as 1 and the other mean gene fitness effects shifted accordingly), so that knots

are more concentrated in the region of strong negative mean gene fitness effect where

the copy number effect changes fastest. The model for the copy number effect is then

written as follows:

ycg ¼ wc

X
k

θkBcgk

where Bcgk is the spline basis representation, θk are the spline coefficients, and wc is a

per-cell-line parameter in the interval (0, 1] that weights the strength of the copy num-

ber effect in that line. The model minimizes the cost function

CCN ¼
X
c;g

rcg−ycg
� �2

þ Xw

X
c

ln wcð Þ2

then returns the residuals, which can be treated as bias-corrected gene fitness effect

estimates for downstream analysis.

Algorithm runs

For all algorithms, we began with the readcount tables provided for Achilles [26] and

Project Score [27], which have each undergone different QC pipelines.

To compute log fold change (LFC), we calculated the base-2 log of reads per million

(RPM) + 1 and subtracted the pDNA values for the appropriate batch from the late

time points. For Achilles data, which has multiple pDNA measurements, we summed

pDNA measurements from the same batch prior to computing RPM. To calculate a
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naive gene fitness effect score for Fig. 5a, b, we filtered out all sgRNAs with multiple

gene targets and computed gene fitness effects per replicate as the median of the LFCs

for all sgRNAs targeting the gene in question. We then computed cell line gene fitness

effects by taking the median of replicate gene fitness effects.

All gene effect estimates were normalized (shifted and scaled) globally so that the me-

dian of the medians of reference nonessential genes was 0 and the median of the me-

dians of essential genes was −1 across cell lines. This was done for visual

interpretability only and has no effect on the metrics evaluated in this manuscript.

The Bagel2-CRISPRcleanR pipeline was run on each dataset using the run_bagel_

crisprcleanr.py script from version 2 build 115 of the BAGEL software, which called a

local installation of version 2.2.1 of the R package CRISPRcleanR. The provided core

essential (CEGv2.txt), non-essential (NEGv1.txt), KY library (“Yusa” flag), Avana library

(Avana_library_forCRISPRcleanR_hg38.txt), KY alignment (KYv1_align_summary.txt),

and Avana alignment (Avana_align_summary_hg38.txt) files were used, as well as the

default bootstrapping and normalization options, with multi-targeting correction en-

abled. The readcounts and screen info files were provided as inputs to the pipeline. To

prepare the readcounts, we summed pDNA batches with multiple measurements. The

screen info file mapped cell lines to their replicates and pDNA batches, with cell lines

made up of replicates from different pDNA batches split and treated as separate sam-

ples. The pipeline outputted Bayes factor files (.bf) for each cell line, which were then

concatenated to create a gene essentiality matrix for each dataset. Finally, the Bayes fac-

tor profiles for the aforementioned cell lines split into multiple samples were averaged.

For Chronos, sgRNAs were filtered similarly. Suspected clonal outgrowths were re-

moved with the methods described above and the model trained for 801 steps. The

resulting gene viability effect matrix was then globally normalized as described above

and then copy number corrected as described above using the DepMap gene level copy

number data [26]. Genes present in the gene viability matrix and not the copy number

matrix were assumed to have normal ploidy (assigned value 1).

CERES results were taken directly from the Dependency Map file gene_effect_un-

scaled [26, 32].

To run MAGeCK-MLE, we filtered the sgRNAs as described above. These cleaned ta-

bles were then split by pDNA batch. Due to issues with memory consumption (greater

than 50GB) and run time (greater than 3 days) for larger batches, batches which con-

sisted of more than 70 cell lines were further subdivided into sets of approximately 50

cell lines. Design matrices were constructed to indicate pDNA as the baseline and map

experimental replicates to their respective cell line or time point. MAGeCK 0.5.9 was

run with the “mle” subcommand in order to perform maximum-likelihood estimation

of the gene essentiality (beta) scores. The sgRNA efficiency was iteratively updated dur-

ing EM iteration using the “--update-efficiency” flag. In order to further reduce memory

usage and runtime, permutation was performed on all genes together, rather than by

sgRNA count, using the “--no-permutation-by-group” flag and genes with more than 6

sgRNAs, a total of 33 in the Achilles and 673 in Project Score, were excluded from the

maximum-likelihood estimation calculation using the “--max-sgrnapergene-permuta-

tion” parameter. The effects of copy number variation were corrected using the “--cnv-

norm” parameter. The DepMap gene level copy number data [26] was converted to

log2 and genes with missing data were imputed with zeros, indicating no change in
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copy number. The beta scores were then extracted from the outputted gene summary

files and aggregated across batches to construct a gene fitness effect matrix for each

dataset. Batch effects between the cell line batches were removed by ComBat [38].

Runs for the single cell line analysis were performed in Chronos as described above

for the full Achilles dataset, but filtering the read count matrix to include only one cell

line at a time during inference. Gene effects from the runs for individual cell lines were

stored and concatenated afterwards into a single matrix. A similar approach was used

with MAGeCK. Neither Chronos nor MAGeCK single line runs were copy-number

corrected.

Analysis methods

Unless otherwise reported, all p values were calculated using the python scipy.stats

package using the given test, and all analyses were restricted to genes in common

across all versions of the data.

For each dataset, algorithm, and cell line, the NNMD score was calculated as the dif-

ference in the medians of positive controls and negative controls, normalized by the

median absolute deviation of negative controls. Positive controls were taken as the

intersection of common essential genes in the DepMap public 20Q2 dataset with the

genes present in all datasets and algorithms. In each cell line, negative controls were

unexpressed genes: those with expression less than 0.01 in that cell line according to

the DepMap public 20Q2 dataset. When such genes fell in the bottom 15% of all gene

fitness effect scores for the cell line for a given algorithm and dataset, the score was

considered an unexpressed false positive.

Precision and recall for global controls were estimated directly from the gene fitness

effects of common essential and unexpressed genes in each cell line individually using

the sklearn.metrics function precision_recall_curve.

To produce a list of selectively essential genes, we downloaded the OncoKB annota-

tions for all variants (http://oncokb.org/api/v1/utils/allAnnotatedVariants, accessed July

15, 2020) [30]. Initially, 468 genes were present. Rows were filtered for alterations listed

as “(Likely) Oncogenic,” with mutation effects in “(Likely) Gain of Function” or

“(Likely) Switch of Function,” leaving 225 genes. We filtered out those not present in

all versions of the Achilles and Project Score data, leaving 183 genes. We then removed

those identified as common essential from the CERES gene effect scores in the Dep-

Map releases for Project Achilles and Project Score, leaving 166 genes. DepMap fusion

and mutation calls were used to identify cell lines with the indicated alteration, where

the altered gene was treated as a selective positive control. For fusions, both gene mem-

bers of the fusion were treated as selective positive controls. If no dataset had any cell

lines with an indicated alteration for a gene, that gene was dropped, leaving 73 onco-

genes. We then conducted a literature review of the remaining 73 oncogenes and re-

moved (1) genes where the annotated alterations do not sufficiently capture the

conditions where the gene becomes a dependency (for example, genes where the pri-

mary indicator of oncogenic status is high expression), (2) genes known to act as tumor

suppressors in at least some contexts, (3) genes whose function is expected to be sig-

nificant only in vivo, (4) genes whose function is chiefly to confer drug resistance, and

(5) genes with insufficient evidence of oncogenicity. Forty-nine genes remained.
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Reported metrics (NNMD and precision/recall curve) were calculated both per onco-

gene between cell lines with and without indicated alterations and collectively after

pooling all selective positive control and selective negative control gene fitness effects.

We pooled only the 43 genes which had NNMD below -0.5 in at least one version of

the data. To calculate permutation p values for the pooled case, we randomly switched

gene fitness effect scores between first and second-best algorithms, calculated the dif-

ference between their metrics, and repeated 1000 times. We then calculated the rank of

the absolute value of the observed difference among the absolute values of the permu-

tation differences and used this to determine the empirical p value as described in

North et al. [39].
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