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Abstract: Dendrobium catenatum Lindl is a valuable medicinal herb and gardening plant due to its
ornamental value and special medical value. Low temperature is a major bottleneck restricting D.
catenatum expansion towards the north, which influences the quality and yield of D. catenatum. In
this study, we analysed the cold response of D. catenatum by RNA-Seq. A total of 4302 differentially
expressed genes were detected under cold stress, which were mainly linked to protein kinase activity,
membrane transport and the glycan biosynthesis and metabolism pathway. We also identified
4005 differential alternative events in 2319 genes significantly regulated by cold stress. Exon skipping
and intron retention were the most common alternative splicing isoforms. Numerous genes were
identified that differentially modulated under cold stress, including cold-induced transcription
factors and splicing factors mediated by AS (alternative splicing). GO enrichment analysis found
that differentially alternatively spliced genes without differential expression levels were related to
RNA/mRNA processing and spliceosomes. DAS (differentially alternative splicing) genes with
different expression levels were mainly enriched in protein kinase activity, plasma membrane and
cellular response to stimulus. We further identified and cloned DcCBP20 in D. catenatum; we found
that DcCBP20 promotes the generation of alternative splicing variants in cold-induced genes under
cold stress via genetic experiments and RT–PCR. Taken together, our results identify the main cold-
response pathways and alternative splicing events in D. catenatum responding to cold treatment and
that DcCBP20 of D. catenatum get involved in regulating the AS and gene expression of cold-induced
genes during this process. Our study will contribute to understanding the role of AS genes in
regulating the cold stress response in D. catenatum.

Keywords: Dendrobium catenatum Lindl; alternative splicing; cold stress; DcCBP20

1. Introduction

Cold stress is a significant environmental factor that has an adverse impact on plant
growth and development, as well as plant spatial distribution and crop productivity [1].
Plants that originate in a temperate area, like winter wheat, Arabidopsis, barley, and oilseed
rape, have a high chilling resistance and can improve their freezing tolerance when exposed
to cold but not freezing temperatures for a period. However, many crops, including rice,
tomato, soybean and cotton, are susceptible to cold stress and lack of cold acclimation
mechanisms, causing them to grow exclusively in tropical or subtropical regions [2,3]. At
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both the physiological and molecular levels, plants have developed a series of mechanisms
to acclimatize to cold stress. When plants are exposed to nonfatal low temperatures for a
period, they establish an enhanced ability to resist subsequent cold stress, which is termed
cold acclimation [4,5]. During this process, cold signaling changes the fluidity of cellular
membranes and calcium (Ca2+) influx, which is a critical process to trigger downstream
cold-response gene expression [6,7].

The most typical cold response pathway is the CBF/DREB1-COR (C-Repeat Binding
Factor/Dehydration-Responsive Element-Binding Protein 1-Cold Regulated)-dependent
transcriptional regulatory pathway, which plays a key role in cold resistance. CBF/DREB1
can bind to cis-elements in the promoters of COR genes and activate their expression under
cold stress, thereby increasing plant cold tolerance. COR is an important element that can
protect plants from cold damage by encoding osmolyte and cryoprotective proteins and
inducing their expression [8–11]. In addition, posttranscriptional and posttranslational
regulatory mechanisms have been shown to be important for cold responses. Previous
studies reported that ubiquitination, sumoylation, and phosphorylation mediated by pro-
tein kinases play major roles in responding to the cold tolerance regulatory pathway in
plants. Many protein kinase families have been proven to play crucial roles in responding
to low temperature, including MAPKs (Mitogen-Activated Protein Kinases) and CRLK1
(Calcium/Calmodulin-Regulated Receptor-Like Kinase 1) [12,13]. The most recent study
revealed that phytohormones are involved in regulating CBF expression and plant cold tol-
erance, such as BRs (brassinosteroids), JA (jasmonic acid) and ethylene [14–16]. Emerging
evidences indicate that many clock-related transcription factors are closely associated with
the cold stress response [17].

Alternative splicing (AS) is a widespread process that a single gene can create diversity
mRNA splicing variant via different splicing methods. This process can produce numerous
kinds of new transcript and protein variants [18]. There are five subtypes of transcript
variations resulting from AS: IR (intron retention), A3SS (alternative 3′ splice sites), A5SS
(alternative 5′ splice sites), ES (exon skipping), and MXE (mutually exclusive exons). IR
is the most characterized AS type in plants; indeed, approximately 40% to 60% of intron-
containing genes in plants are estimated to exhibit one or more types of AS forms [19,20].
Previous studies have indicated that AS is involved in various plant development periods
and stress responses, including flowering regulation, heat, salt, and other biotic stresses [21].
For example, more than 6000 genes undergo AS events in Arabidopsis when exposed to
salt stress [22]. Low temperature can also cause AS events. According to previous studies,
twenty-seven percent of chilling-responsive transcripts are alternatively spliced [23]. The
spliceosome is a crucial component for AS generation and comprises numerous Ser/Arg-
rich (SR) proteins and small nuclear ribonucleoproteins (snRNPs) [24]. Moreover, previous
studies have shown that the plant nuclear cap-binding complex (CBC), including two
subunits (CBP20 and CBP80), can affect the splicing of plant pre-mRNAs. The nuclear
cap-binding complex (CBC), which functions as a key mediator in 7 mG on mRNA, takes
part in eukaryotic gene expression. CBC is an essential part of several gene expression
events, including splicing, transcription and translation. The nuclear CBC is thought to
play a crucial role in microRNA biogenesis, pre-mRNA alternative splicing, flowering
and responding to environmental stress [25–27]. Several reports have revealed that two
subunits of CBC in Arabidopsis, AtCBP20 and AtCBP80, are involved in abiotic stresses.
One study showed that AtCBP20 and AtCBP80 are involved in salt stress tolerance by
modulating the alternative splicing of genes involved in sugar metabolism. Another study
provided evidence that CBP20 participates in fine-tuning splicing factors when exposed to
salt stress conditions by interacting with SR45a [28,29]. However, the molecular mechanism
underlying the role of CBP20 in the crosstalk between AS regulators and cold responses
remains unclear.

Dendrobium catenatum Lindl, an important perennial epiphytic orchid, is mainly dis-
tributed in the southern and western mountain ranges of China, such as northwestern
Guangxi, Sichuan and southeastern Yunnan Provinces. D. catenatum has great economic
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values due to its uses in herbal medicine and ornamental gardens. In addition, it has high
research values because of its flower morphology and multiple secondary metabolites,
including antitumour and immunomodulatory effects [30]. Large and persisting market
demands have led to the overharvesting of wild D. catenatum. Therefore, it is necessary
to expand the planting region of D. catenatum to improve yield. Generally, temperatures
between 10 ◦C and 25 ◦C are the best fit for orchid plants, such as D. catenatum [31]. Most
D. catenatum cultivars have been adapted to warmer southern climates, so they are vulner-
able to damage by chilling stress when transplanted in regions north of their local habitat
areas. Low temperature is a crucial bottleneck that restricts the spread of plants northwards.
A previous study found that the aerial part of D. catenatum is very sensitive to chilling
stress, and the plant leaf surface is pitted and discoloured, usually followed by wilting and
browning, which seriously affects the normal growth rate of plants [32]. In addition, low
temperature can bring out metabolic and physiological changes that are bad for the yield
and quality of the plants. It has been reported that the contents of polysaccharides, SOD
enzyme activity and alkaloids in chilling-tolerant D. catenatum cultivars are higher than
those in chilling-sensitive cultivars [33]. Thus, investigating how plants react to cold stress
will provide invaluable knowledge and genetic information for improving cold-resistant
tolerance in D. catenatum. However, the specific regulatory mechanism of chilling responses
in D. catenatum remains unclear. It has been shown that AS networks participate in the cold
response as central coordinators, but the impact of AS on cold responses in D. catenatum
was previously unexplored.

In this study, we analysed gene expression changes and identified the differential
alternative splicing isoforms of cold-induced genes in D. catenatum with and without
chilling stress by RNA-seq. We further identified the DcCBP20 gene of D. catenatum and
found that DcCBP20 can alter alternative splicing variants when exposed to cold stress.
This study will contribute to better understanding the cold-responsive pathways and the
functions of AS in D. catenatum in response to chilling stress and is the first to report that
DcCBP20 contributes to chilling tolerance in D. catenatum.

2. Results
2.1. Damage to D. catenatum under Cold Stress

To investigate the cold tolerance of D. catenatum, plants were subjected to low temper-
ature. The morphological performance of D. catenatum with and without cold stress was
significantly different. Compared to the plants under normal growth conditions, D. catena-
tum exposed to 4 ◦C or −4 ◦C showed typical cold injury symptoms. Chilling stress limited
its normal growth flush; the leaves of chilling-treated plants exhibited surface pitting; the
stem showed wilting and browning symptoms. For the freezing plants, the foliage became
desiccated; plant sections died (Figure 1A). Consistent with these significant cold injury
symptoms, we found that the Chl fluorescence in chilled D. catenatum plants was repressed
after chilling treatment, with a lower Fv/Fm level compared to the control plants. For the
freezing experiment, the Chl fluorescence of frozen plants was significantly prohibited
compared to that of the chilled and normal plants, and the relative electrolyte leakage of
frozen plants was significantly increased compared to chilled plants (Figure 1B−D). These
results indicate that D. catenatum is likely a kind of cold-sensitive plant, and freezing stress
can seriously affect the normal growth of D. catenatum and eventually cause death.
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Figure 1. Analysis of cold resistance of D. catenatum. (A) Representative phenotypes of plants under
chilling (4 ◦C for 20 d) and freezing (−4 ◦C for 2 h) conditions (bar = 5 cm). (B) Electrolyte leakage
(EL) of the leaves of D. catenatum after chilling (4 ◦C for one week) and freezing (−4 ◦C for 2 h) stress.
(C) Chl fluorescence imaging of D. catenatum after chilling and freezing stress (bar = 2 cm). (D) Fv/Fm
ratios of D. catenatum after chilling and freezing stress. Data are the mean ± SD of three independent
biological replicates. Statistical analyses were performed using a Student’s t test. **, p < 0.01;
and *, p < 0.05.

2.2. Transcriptional Changes Related to Chilling Stress in D. catenatum

To further investigate the molecular basis of the D. catenatum in response to cold
stress, we performed the RNA-seq method of the total RNA isolated in the leaves of D.
catenatum planted at 25 ◦C and transferred to 4 ◦C for 12 h. A total of 22,687 expressed genes
with 2830 novel genes were identified referring to the Dendrobium catenatum Lindl genome
sequence (http://orchidbase.itps.ncku.edu.tw/est/Dendrobium_2019.aspx, accessed on
5 June 2021) (Figure S1; Tables S1–S4). According to principal component analysis (PCA)
and Pearson correlation analysis among different samples, the replicates of the plant
samples with and without cold treatment were clustered closely independently, indicating
that the results were highly reproducible with high quality (Figures S2 and S3).

We further determined the differentially expressed genes (DEGs) between D. catena-
tum with and without cold stress using DESeq (q value < 0.01); FPKM values were used
to represent the gene expression levels. If a gene showed a |Log2 (fold-change)| ≥ 1
(q value < 0.01) in expression in two contrasting groups, the gene was considered differen-
tially expressed. As shown in Figure 2A, a total of 4302 DEGs were detected in chilled-stress
plants compared to control plants. Among these DEGs, the upregulated DEGs were 3208
and the downregulated DEGs were 1275 in cold-treated plants (Table S5).

http://orchidbase.itps.ncku.edu.tw/est/Dendrobium_2019.aspx
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Figure 2. DEGs analysis of D. catenatum response to low temperature. (A) Overview of upregulated
and downregulated genes in D. catenatum under cold stress. (B) GO enrichment analysis of the DEGs.
(C) KEGG enrichment analysis of DEGs.

2.3. Analysis of Differential Expressed Genes (DEGs) in Cold Stress

The 4302 significantly DEGs were classified into three major categories by GO analysis:
14 molecular functions, 3 cellular components and 17 biological processes
(Figure S4). The most enriched GO terms were membrane (GO:0016020), protein kinase
activity (GO:0004672), DNA-binding transcription factor activity (GO:0003700), signaling
transduction (GO:0007165), regulation of circadian rhythm (GO:0042752), DNA integra-
tion (GO:0015074), and response to stimulus (GO:0050896) (Figure 2B; Table S6). KEGG
enrichment analysis showed that sphingolipid metabolism (ko00600), MAPK signaling
pathway (ko04016), plant hormone signal transduction pathway (ko04075), RNA poly-
merase (ko03020) and circadian rhythm (ko04712) pathways were most abundantly en-
riched. Moreover, several polysaccharide metabolic pathways were activated under low
temperature, such as glycolysis/gluconeogenesis (ko00010), pentose phosphate pathway
(ko00030), and other glycan degradation (ko00511), which indicated that carbohydrate
metabolism played a crucial role in responding to cold stress in D. catenatum (Figures 2C
and S5; Table S7). According to the above analysis, we found that functional enrichments of
DEGs responding to cold stress in D. catenatum were closely related to several plant key cold
tolerance pathways, including protein kinase activity, lipid metabolism, signal transduction,
transcription, membrane transport, and environmental adaptation. Meanwhile, we found
that carbohydrate metabolism pathways were enriched in D. catenatum under cold stress
(Figure 3; Table S8).

To validate the reliability of the gene expression patterns of DEGs from RNA-Seq
data, eight DEGs were randomly selected for analysis by RT–qPCR using gene-specific
primers (Figure 4). As expected, the expression levels of these candidate genes obtained
by RT–qPCR were consistent with the fold change value of the corresponding genes in
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RNA-Seq data (Table 1). These results confirm the reliability of the RNA-Seq analysis and
reflect the real transcriptomic changes in D. catenatum responding to cold stress.
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Table 1. Candidate differentially expressed genes in D. catenatum transcriptome.

Gene ID Gene Annotation Log2 (Cold/ck) q Value (Cold-vs-ck)

110103420 Protein TIFY 5A 5.882954842 1.15 × 10−16

110101667 Two-component response regulator-like APRR9 5.75307647 1.14 × 10−148

110103316 WRKY transcription factor 50 5.270290384 7.89 × 10−17

110092673 Cyclin-P4-1-like −3.506757892 2.00 × 10−3

110114132 WRKY transcription factor 48 5.583790123 3.73 × 10−47

110103098 Gibberellin 2-β-dioxygenase 1 6.673964409 2.76 × 10−60

110106639 polygalacturonase inhibitor 2-like 8.403207013 3.38 × 10−117

110100221 Alpha-humulene synthase-like −3.539482498 2.38 × 10−6

2.4. Analysis of Differential AS (DAS) in Response to Cold Stress

Among the 22,687 expressed genes, we detected a total of 11,408 and 21,818 alternative
splicing events in samples with and without cold treatment, respectively. The RNA-
Seq data revealed that the most abundant AS event type in D. catenatum under normal
and cold conditions was ES (37% and 61%) events. Moreover, the total number of AS
events under cold stress was significantly increased compared to those under normal
conditions, indicating that cold stress would promote alternative splicing events occurring
in D. catenatum (Figure 5A; Table S9). Furthermore, we identified a total of 4005 DAS events
from 2319 genes in D. catenatum under cold stress compared to normal conditions, in which
606 DAS (15%) were A3SS events, 396 DAS (10%) were A5SS events, 369 DAS (9%) were
related to MXE events, 905 DAS (23%) were RI events, and the most abundant were ES
events, including 1729 DAS (43%) (Figure 5B; Table S10). These results indicate that many
genes exhibit two or more AS types and that abundant RI and SE alternative splicing events
were susceptible to cold stress.
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Figure 5. Analysis of differentially alternative splicing events based on RNA-seq data. (A) Alternative
splicing events predicted in different groups with and without cold stress. (B) Numbers of DAS
events in D. catenatum under cold stress. (C) GO enrichment analysis of DAS genes. (D) KEGG
enrichment analysis of DAS genes.

GO annotation and KEGG pathway enrichment analyses were used to analyse the
functional categories of genes with DAS events. According to GO enrichment analy-
sis, the main functional terms of DAS genes were significantly enriched in ATP binding
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(GO:0005524), purine ribonucleoside triphosphate binding (GO:0035639), RNA binding
(GO:0003723), ribonucleotide binding (GO:0032553), RNA processing (GO:0006396), RNA
metabolic process (GO:0016070), and mRNA processing (GO:0006397). Protein kinase
activity (GO:0004672) and protein modification process (GO:0036211) were also enriched
in this process (Figure 5C; Table S11). The KEGG enrichment pathway analysis provided
classification of these DAS (Figure 5D; Table S12). DAS from chilled samples were signifi-
cantly enriched in basal transcription factors (ko03022), plant hormone signal transduction
(ko04075), citrate cycles (TCA cycle) (ko00020), circadian rhythm—plant (ko04712), and
spliceosome (ko03040). It has been reported that splicing factors can also be alternatively
spliced, changing the number of AS isoforms in their downstream targeted genes [34]. Our
results indicated that the types of cold-induced alternative splicing events increased in D.
catenatum, which may be caused by alternative splicing changes in splicing factors under
cold stress.

To evaluate the reliability of these cold-responsive splicing events, RT–PCR was
performed on eight selected genes (predicted with IR/ES events) using RNA isolated from
D. catenatum leaves (with and without cold stress) (Figure 6). The results showed that cold
stress induced more AS events or changed the isoforms of AS events compared to normal
plants. These differences resulted from exon or skipping intron retention by sequencing and
BLAST. The alternative splicing patterns of these eight examined genes by RT–PCR were
highly consistent with RNA-Seq, which confirms the reliability of our RNA-Seq analysis
and indicates that AS events were promoted in D. catenatum under cold conditions.
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through RT–PCR. The left part is gene model diagrams. The medium part is the bands of the products
of alternatively spliced genes. DcACTIN was used as an internal control. The right part is the
annotation of eight selected genes. The red frames indicate the genes with both different expression
level and differential alternative splicing events, and the black frames indicate the genes with only
DAS events.

2.5. Comparative Analysis of DEGs and DASGs in Response to Cold Stress

We further compared the genes that exhibited differential expression levels and differ-
ent alternative splicing events. We found a total of 439 genes (~19%) with both DAS events
and different expression levels and 1180 genes (~81%) that were only regulated by AS
(not DE) (Figure 7A,B; Table S13). In addition, ~10% of the 4302 DEGs were differentially
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alternatively spliced. The DE and DAS gene groups were significantly different, with an
overlap of only 439 genes. To explore the effect of cold-responsive alternative splicing on
biological processes, we analysed the function of 439 genes with both DE and DAS events
in response to cold. The GO enrichment analysis revealed that these genes were mainly
related to the typical cold tolerance pathway (Figure 7C). The most significant enrichment
terms were protein kinase activity (GO:0004672), signal transduction (GO:0007165), cellular
response to stimulus (GO:0051716) and plasma membrane (GO:0005886). We identified
a transmembrane MLO family protein (110097882) involved in the response to stimulus.
The expression level of this gene was significantly downregulated and generated more
alternative splicing isoforms under cold stress by RT–PCR (Figure 6), indicating that the
AS gene may affect its transcript abundance and alter its AS isoforms to decelerate the
stress response to cold. In contrast, according to GO enrichment annotation, genes only
with DAS events under cold stress were involved in RNA processing (GO:0006396), RNA
binding process (GO:0003723), RNA metabolic process (GO:0016070) and protein modifica-
tion process (GO:0036211) (Figure 7D). For instance, we isolated a 5′-3′ exoribonuclease 4
(110094380) and detected its AS events by RT–PCR, demonstrating that it is involved in
mRNA processing. As shown in Figure 6, this gene generated more than one type of AS
event, and the transcript level of AS isoforms was significantly upregulated, suggesting
the involvement of splicing-related genes during cold responses. These results strongly
indicate that genes regulating AS events, such as spliceosome and splicing factors, could
affect the alternative splicing of downstream genes by being alternatively spliced under
cold stress. We proposed that some genes with both DAS and DE events, such as genes
involved in the protein kinase process, can be differentially regulated to influence their
functions in cold stress. Thus, we concluded that the quantity of alternative splicing events
in some cold-specific genes can change the expression patterns of corresponding genes and
finally affect the cold tolerance response.
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Figure 7. Analysis of differentially expressed (DE) and differential alternative splicing (DAS) genes
in cold stress. (A) Flow chart showing the statistics analysis of the DE and DAS genes. (B) Venn
diagrams showing the overlap of genes with DAS events and DE genes. (C) GO enrichment of genes
with both DE and DAS in response to cold. (D) GO enrichment of genes with differential alternative
splicing only in response to cold. Bar graph of−log10 transformed q values are shown. MF, molecular
function; BP, biological process; CC, cellular component.
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2.6. DcCBP20 of D. Catenatum Modulates the Alternative Splicing of Genes Responding to
Cold Stress

A previous study revealed that the proportion of uncapped transcripts that were
alternatively spliced was significantly increased when exposed to cold stress [35]. CBP20,
as an important subunit of the nuclear cap-binding complex (CBC), can improve the
stability of transcripts [25]. Meanwhile, it has been reported that CBP20 is involved in
drought and salt stress by regulating alternative splicing events [29]. In this study, we
found that Arabidopsis cbp20 mutant plants showed great sensitivity to chilling stress
at 4 ◦C (Figure S6), which indicated that CBP20 may be required for cold tolerance
in plants. Thus, using the Download BLAST Software and Databases of NCBI (https:
//ftp.ncbi.nih.gov/blast/executables/igblast/release/LATEST/, accessed on 1 January
2022), the full-length CDS of AtCBP20 (AT5G44200) was as a “Query” sequence to ex-
tract the homologous DcCBP20 from the D. catenatum CDS database. We identified and
cloned the homologous gene of CBP20 in D. catenatum, which was only a single gene.
Sequence alignment and phylogenetic analysis found that CBP20 showed high simi-
larities with the CBP20 sequences of two Orchidaceas species, Apostasia shenzhenica and
Phalaenopsis equestris (Figure 8A). We further found that DcCBP20 exhibited two conserved
motifs: an RNA binding domain (RBD) motif and a NLS motif (Figure 8B). We subsequently
generated the 35S::DcCBP20-GFP construct and detected the subcellular localization of
the DcCBP20 protein using a transient expression assay in N. benthamiana. As shown in
Figure 8C, GFP fluorescence was detected only in the nucleus, which is consistent with the
subcellular location of CBP20 in Arabidopsis.

To further investigate whether DcCBP20 influences AS events under cold stress, we
generated transgenic lines overexpressing DcCBP20 in Col-0 Arabidopsis (Figure S7). The
phenotype of the transgenic plants expressing the DcCBP20 was similar to the wild type
Col-0 plants, and the DcCBP20-GFP protein was detected in independent transgenic lines
using GFP antibody. Then, chilling tolerance tests among Arabidopsis wild-type Col-0 and
three independent DcCBP20-OE transgenic lines were performed at 4 ◦C for 12 h. We
subsequently blasted the homologues of some candidate genes associated with the cold
tolerance response of D. catenatum in Arabidopsis, including three DAS only and three
DE ± DAS genes identified and the homologous genes in validation the reliability of
RNA-Seq as previously described. Then, we compared the AS variants of these candidate
genes in Col and three independent DcCBP20-OE plants by RT–PCR (Figure 9A). We found
that several genes showed significantly different AS isoforms in DcCBP20-OE transgenic
plants in comparison with wild-type plants. Moreover, the abundance and variants of
AS in DcCBP20 transgenic plants were altered after cold treatment, and the AS isoforms
changes were much similar among three independent transgenic lines. These genes include
the gene encoding a pentatricopeptide repeat-containing protein (At4G19440, homologous
gene of 110098492 in D. catenatum), which is involved in the transferase activity pathway;
we found that the expression level of this gene increased in DcCBP20-OE plants compared
to Col-0 Arabidopsis under control condition, and a newly shorter AS product with higher
expression level was generated in DcCBP20-OE plants after cold stress compared to Col-0
Arabidopsis. Furthermore, we found a gene encoding a nucleotide/sugar transporter family
protein (At3G17430, homologous gene of 110091832 in D. catenatum) that showed significant
differences between Col-0 and CBP20-OE transgenic plants. The transcript products nearly
can’t be detected in Col-0 with and without cold stress, new transcript products with high
expression level were generated in DcCBP20-OE transgenic plants with and without cold
stress, which indicated that DcCBP20 contributed to resist cold stress through enhancing
the expression level of protein in the sugar transport pathway. AS differences of the gene
(At5G51130, homologous gene 110094479 of in D. catenatum) were also detected. The
abundance of the transcript product of this gene was dominantly increased, and a newly
short AS variant was generated in DcCBP20-OE plants compared to Col-0 Arabidopsis.
This gene encoded an S-adenosyl-L-methionine-dependent methyltransferases superfamily
protein, indicating that DcCBP20 contributed to resist cold stress through activating the

https://ftp.ncbi.nih.gov/blast/executables/igblast/release/LATEST/
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protein involved in transferase activity. We also detected the alternative splicing changes
of homologous genes of seven genes used to validate the reality of RNA-Seq. Among
the seven genes described previously, only one gene (At4G26480, homologous gene of
110098492 in D. catenatum) showed significantly AS variants differences among Col-0 and
DcCBP20-OE transgenic plants; this gene belonged to the RNA binding pathway. We found
that there was a new isoform of AS variant generated in DcCBP20-OE plants after cold;
the expression level of two alternative splicing isoforms was significantly improved in
cold stress, which was similar to AS variants changes in D. catenatum, indicating that this
gene involved in a similar alternative splicing progress in Arabidopsis and D. catenatum.
The other six genes didn’t show significant differences in AS isoforms or expression level
between Col-0 and DcCBP20-OE plants, or was not detected (Figure S8). Considering the
differences of species, homologues and transgenic plants, these results are reasonable.

Above all, these observations of significantly different AS isoforms in the six genes
between DcCBP20-OE transgenic plants and wild-type plants strongly suggested that
DcCBP20 was involved in alternative splicing events in cold stress. Furthermore, DcCBP20
played important roles in chilling response in D. catenatum by altering AS isoforms and
enhancing the abundance of alternative splicing of some specific cold-specific genes for
cold tolerance.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 18 
 

 

pathway. AS differences of the gene (At5G51130, homologous gene 110094479 of in D. 
catenatum) were also detected. The abundance of the transcript product of this gene was 
dominantly increased, and a newly short AS variant was generated in DcCBP20-OE plants 
compared to Col-0 Arabidopsis. This gene encoded an S-adenosyl-L-methionine-depend-
ent methyltransferases superfamily protein, indicating that DcCBP20 contributed to resist 
cold stress through activating the protein involved in transferase activity. We also de-
tected the alternative splicing changes of homologous genes of seven genes used to vali-
date the reality of RNA-Seq. Among the seven genes described previously, only one gene 
(At4G26480, homologous gene of 110098492 in D. catenatum) showed significantly AS var-
iants differences among Col-0 and DcCBP20-OE transgenic plants; this gene belonged to 
the RNA binding pathway. We found that there was a new isoform of AS variant gener-
ated in DcCBP20-OE plants after cold; the expression level of two alternative splicing 
isoforms was significantly improved in cold stress, which was similar to AS variants 
changes in D. catenatum, indicating that this gene involved in a similar alternative splicing 
progress in Arabidopsis and D. catenatum. The other six genes didn’t show significant dif-
ferences in AS isoforms or expression level between Col-0 and DcCBP20-OE plants, or was 
not detected (Figure S8). Considering the differences of species, homologues and trans-
genic plants, these results are reasonable. 

 
Figure 8. Functional analysis of CBP20 homologues in D. catenatum. (A) Phylogenetic analysis of 
CBP20 homologues in six representative dicotyledonous species and five monocotyledonous spe-
cies. (B) Sequencing alignment and conserved motif prediction of CBP20 homologues. (C) Subcellu-
lar localization of DcCBP20-GFP in tobacco leaves. The DcCBP20-GFP construct was transiently ex-
pressed in the leaves of Nicotiana benthamiana (bar = 10 μm), and GFP fluorescence was observed. 

Figure 8. Functional analysis of CBP20 homologues in D. catenatum. (A) Phylogenetic analysis of
CBP20 homologues in six representative dicotyledonous species and five monocotyledonous species.
(B) Sequencing alignment and conserved motif prediction of CBP20 homologues. (C) Subcellular lo-
calization of DcCBP20-GFP in tobacco leaves. The DcCBP20-GFP construct was transiently expressed
in the leaves of Nicotiana benthamiana (bar = 10 µm), and GFP fluorescence was observed.
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Figure 9. Function of CBP20 homologous gene of D. catenatum in response to cold. (A) The splicing
isoforms of the PCR products using specific primers in cDNA of DcCBP20 transgenic Arabidopsis
detected by RT–PCR. The wild type and DcCBP20 transgenic Arabidopsis were treated with or without
4 ◦C for 12 h, three independent transgenic lines of DcCBP20-OE were used for RT-PCR analysis. (B)
A model of the cold signaling pathway in D. catenatum. Under cold stress, differentially expressed
genes responding to cold stress in D. catenatum by RNA-Seq were mainly related to lipid metabolism,
protein kinase activity, plant hormone signaling transduction, transcription regulation, circadian
rhythm, membrane transport and carbohydrate metabolism. These processes activate or suppress
transcription factors and splicing factors, which respond to cold stress. These factors further function
in the alternative splicing and gene expression of downstream targets. During this process, CBP20
mediates alternative splicing events to respond to cold stress in D. catenatum.

3. Discussion

Dendrobium catenatum Lindl is a valuable herbal medicine that is popular due to
its special efficacy and medicinal value. Most D. catenatum cultivars have adapted to
warm southern climates; the ability to tolerate cold is a major bottleneck restricting their
cultivation [31]. Understanding the molecular mechanism of cold tolerance and breeding
cold-tolerant cultivars is required for D. catenatum to adapt to lower temperatures when
expanding cultivated regions to northern areas. In the present study, we analysed the cold
stress response of D. catenatum and found that AS played an important role in the cold
tolerance response.

Alternative splicing is an important posttranscriptional process that increases the diver-
sity of proteins and impacts mRNA stability. Alternative splicing events are highly modu-
lated to adapt to environmental stress in plants. AS has been related to cold stress resistance
in plants, and previous studies reported that alternative splicing events were largely regu-
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lated by heat and drought stress [21,22,36]. In our study, we performed RNA-Seq to analyse
the gene expression differences and alternative splicing variants in D. catenatum responding
to cold stress. A total of 4302 genes with different expression level under cold stress were
detected, and these DEGs were related to protein kinase activity, membrane transport, plant
hormone signaling, transcription, and circadian pathways, which are consistent with the
important cold-tolerant pathways in plants. These results indicate that cold stress causes
membrane lipid changes and protein modification changes to improve cold tolerance; plant
hormones may play a major role in D. catenatum resistance to cold stress. Furthermore, we
found that glycan biosynthesis and metabolism pathways were significantly enriched in
D. catenatum under cold stress, indicating that polysaccharides rich in leaves and stems of
D. catenatum are involved in the process of cold resistance. These results suggested that
D. catenatum exhibits special cold-resistant pathways related to polysaccharides.

For differential alternative splicing events, we found that exon skipping was the most
abundant splicing event in the D. catenatum response to cold stress; intron retention was also
strongly induced. Previous studies have clearly proven that ES splicing events promote the
generation of protein variants [19]. A total of 2319 DAS genes were identified and mainly
related to RNA processing, RNA binding and spliceosomes. We further compared those
DEGs and DASGs and found a total of 439 genes with both differential alternative splicing
events and different expression patterns in cold stress, indicating that these differential
alternative splicing products could alter the abundance of functional transcripts to change
the functions of protein-coding genes under cold stress. A total of 1180 genes were only
differentially spliced, and these genes were mainly splicing factors involved in mRNA
metabolic and splicing processes. We determined that some splicing factors, such as genes
encoding mRNA processing and nucleoside phosphate binding, generated several new
AS isoforms and were differentially regulated. These results indicate that cold-induced
changes in the types of transcript products of splicing factors would alter the expression
levels of splicing factors themselves and finally affect the transcription and alternative
splicing events of downstream targeted genes in the cold stress response in D. catenatum.

A recent study revealed that most of the cold-induced DAS events contained PTCs
(premature termination codons), and half of the transcripts involved in DAS events were
degraded to decrease the expression level of transcripts during the repression of cellular
processes. The degradation proportion of cold-induced genes could be increased due to
mRNA alternative splicing imbalance, which can decrease the cold stress tolerance of
casava [35]. The CBP complex, including CBP20 and CBP80, plays a key role in posttran-
scriptional processes, including splicing, transcription and translation [25]. The stability of
mRNA can be regulated by cap-binding proteins, such as the CBC complex, by competing
with decapping enzymes. This competition could mediate the balance between transcrip-
tion elongation and transcripts degradation [25,37]. Moreover, CBP20 has been reported
to be involved in alternative splicing events in plants [31]. In this study, we found that
overexpression of CBP20 in D. catenatum in Arabidopsis plants significantly influenced AS
events under cold stress. DcCBP20 contributed to the generation of more alternative splic-
ing isoforms of cold-induced genes compared to wild-type Arabidopsis and enhanced the
abundance of original alternative splicing isoforms. These genes are abundantly involved
in the internal membrane component pathway, RNA binding pathway, and transferase
activity pathway. These new alternative splicing isoforms regulated by DcCBP20 in cold
stress may play roles in the response of D. catenatum to cold stress.

4. Materials and Methods
4.1. Plant Materials and Cold Treatments

The D. catenatum cultivar used in this study was harvested from Xishuangbanna
Tropical Botanical Garden. Tissue culture seedlings (2 months) in tissue culture bottles
were separated from the medium and transplanted into pots filled with growth matrix
(pine bark). The plants were kept in a greenhouse at 25 ◦C under long-day (LD) conditions
(16–8 h light/8-h dark). The cold stress tests of D. catenatum were performed in a climate
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chamber at 4 ◦C or −4 ◦C under the same photoperiod. The control plant samples were
grown under 25 ◦C, and the other conditions remained same. For cold stress experiment,
we performed three independent control or treatment experiments. For each treatment
(or control) experiment, three biological replicates of three plants of per sample type for
each assay were performed. Arabidopsis wild-type Col-0, mutant and transgenic seeds
were grown on Murashige and Skoog (MS) plates at 25 ◦C under a 16-h light/8-h dark
photoperiod condition and then transferred into the greenhouse.

4.2. Measurements of Relative Electrolyte Leakage and Chl Fluorescence

Relative electrolyte leakage, as an important indicator of membrane permeability,
was measured by the method according to Jiang [38]. Briefly, 100–200 mg of leaves from
D. catenatum with and without cold treatment were rinsed with ddH2O, then were placed
into clean test tubes with 10 mL ddH2O. The above tubes were put into a vacuum pump for
30 min, and then incubated at room temperature for 1 h with shaking and mixing. Using a
conductivity meter, the electrical conductivity of the solution (C1) was measured. Then,
the tubes were boiled for 10 min, the electrical conductivity (C2) was measured again after
being cooled to room temperature. According to the formulas REL = C1/C2 × 100%, Injury
degree= (RELt − RELck)/(1 − RELck) × 100%, the electrical leakage was calculated by
injury degree. All measurements were repeated in three independent experiments. Data
are expressed as the means ± standard deviation (SD) of three biological replicates. Chl
fluorescence was determined through an IMAGING-PAM Chl fluorimeter, and the Fv/Fm
ratios were measured by Imaging WinGigE software (MAXI Version, Walz, Germany),
based on three plants for each sample type. The plants were dark-adapted for 30 min.
Student’s t test was used for comparison of difference between control and treatment.
**, p < 0.01; and *, p < 0.05.

4.3. RNA Isolation, Sequencing and Transcriptome

Total RNA was extracted from the leaves of D. catenatum with and without chilling
stress using the CTAB-LiCl method according to the GASIC method with some improve-
ments [39]. RNA purity was detected using a Nanodrop Spectrophotometer 2000, and
RNA degradation was detected by 1% agarose electrophoresis. For both the control and
the chilling treatment sample, three biological replicates were harvested at the same time.
For each replicate, the leaves from three plants were harvested. After testing the quality
of RNA samples, an RNA-seq library was constructed and sequenced using a MGISEQ-
2000 sequencing instrument by BGI Co. (Shenzhen, China). The raw reads obtained by
Illumina sequencing were filtered using SOAPnuke software (v1.4.0, -l 15 -q 0.2 -n 0.1),
the reads with adaptors were discarded, and low-quality reads containing more than 5%
ambiguous “N” bases and q value < 20 were discarded, after which the remaining reads
were considered as clean reads [40]. Then, the clean reads were mapped to the refer-
ence genome (http://orchidbase.itps.ncku.edu.tw/est/Dendrobium_2019.aspx, accessed
on 5 June 2021) by HISAT (Hierarchical Indexing for Spliced Alignment of Transcripts)
software (http://www.ccb.jhu.edu/software/hisat, accessed on 1 January 2022) [41].

4.4. Analysis of Functional Enrichment of DEGs

The FPKM (fragments per kilobase of exon per million mapped fragments) method
was used to detect the expression level of each transcript. Bowtie2 software (http://bowtie-
bio.sourceforge.net/Bowtie2/index.shtml, accessed on 1 January 2022) was applied to map
clean reads to reference gene sequences, and then RSEM (http://deweylab.biostat.wisc.
edu/rsem/rsem-calculate-expression.html, accessed on 1 January 2022) was used to calcu-
late the gene expression level of each sample to obtain the FPKM values [42,43]. An FDR
rate q ≤ 0.01 and |Log2 (fold-change)| ≥ 1 were considered as criteria to identify differen-
tially expressed genes (DEGs). DEG analysis was performed using the DESeq2 method [44].

GO annotation was carried out using Gene Ontology software (GO; http://geneontology.
org, accessed on 1 January 2022) [45]. GO enrichment annotation of DEGs was analysed
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with the phyper package in R software, and a q value≤ 0.05 was the criterion for significant
enrichment. KEGG pathway functional enrichment of DEGs was implemented using the
same method (https://www.genome.jp/kegg/, accessed on 1 January 2022) [46], and a
p value ≤ 0.05 was the criterion for significant enrichment.

4.5. Analysis of Functional Enrichment of DAS

rMATS (http://rnaseq-mats.sourceforge.net, accessed on 1 January 2022) was used to
identify five basic types of AS events, SE, MXE, A5SS, A3SS and RI, from RNA-Seq clean
reads [47]. DAS events were identified between samples with and without chilling stress
using rMATS software. An FDR q value ≤ 0.05 was set as the criterion for DAS.

4.6. RT–qPCR and RT–PCR

The quantitative real-time PCR experiments were performed as reported previously [48].
Total RNA was isolated from the leaves of D. catenatum with and without chilling stress
using an improved CTAB-LiCl method. For each sample type, we harvested the leaves for
three biological replicates. For each replicate, the leaves from three plants were harvested.
First strand cDNA was subsequently synthesized from 1.5 µg of DNase-treated RNA in a
20 µL reaction volume using a GoScript reverse transcription system kit (Promega). Then,
RT–qPCR was conducted using Fast Start Universal SYBR Green Master Mix (ROX) on an
Applied Biosystems 7500 machine according to the manufacturer’s instructions. At least
three biological and separately three technical replicates for each cDNA sample were used
in the RT–qPCR analysis. The data are expressed as the mean ± SD of the three values
of three biological replicates. DcACTIN was used as an internal control. All gene-specific
primers used in RT-qPCR are listed in Supplemental Table S14.

RT–PCR was applied to candidate genes to validate the AS isoforms. Then, RT-
PCR products were detected using 1.5% agarose gels. The gene-specific primers used for
amplification of AS variants are described in Supplemental Table S14.

4.7. Generation of Transgenic Lines

The full-length cDNA coding region of the DcCBP20 gene was amplified and then
cloned into the PRI101-GFP vector between the SailI and EcoRI sites using the In-Fusion
cloning system (Clontech), termed 35S::DcCBP20-GFP. The construct was transformed
into Agrobacterium tumefaciens EHA105; wild Arabidopsis Col was transformed using the
Agrobacterium-mediated floral-dipping method to generate the corresponding transgenic
line. The analysis was subsequently performed with T2 transgenic plants. The primers
used are listed in Supplemental Table S14.

4.8. Protein Immunoblotting

Protein was isolated from leaves of transgenic Arabidopsis in a protein extraction buffer
(100 mM Tris-HCl, 20% glycerol, 4% sodium dodecyl sulfate, 0.2% bromophenol blue,
200 mM DTT) and then boiled for 10 min and centrifuged at 12,000 g at 4 ◦C for 1 min. Total
protein with the same volume was loaded onto SDS–PAGE gels, transferred onto PVDF
blotting membranes, and then probed with the appropriate primary anti-GFP antibody
(1:3000, Clontech) and horseradish peroxidase-conjugated goat anti-mouse secondary
antibody (1:3000, Promega). The signal was detected using an imaging device (Tanon 5200).

4.9. Transient Expression Assays

A transient transformation assay was applied using previous methods [49]. Briefly,
the construct 35S::DcCBP20-GFP was transformed into Agrobacterium tumefaciens GV3101.
A. tumefaciens containing 35S::DcCBP20-GFP was infiltrated into Nicotiana benthamiana
leaves. After 2–4 days of transformation, a confocal laser scanning microscope (Olympius)
was used to detect the fluorescence signal of the GFP fusion protein.

https://www.genome.jp/kegg/
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4.10. Phylogenetic Analysis and Conserved Motifs Prediction of CBP20

The sequences of CBP20 used in this study were blasted from Plant Genome (https:
//www.plabipd.de/plant_genomes_pa.ep, accessed on 1 January 2022) and UniProtKB
(https://www.uniprot.org/, accessed on 1 January 2022). The phylogenetic tree was
constructed with amino acid sequences using MEGA 7.0 software to implement the NJ
(neighbour-joining) method with a bootstrapping value of 1000. The conserved motifs of
the CBP20 protein were analysed using Pfam35.0 (http://pfam.xfam.org/, accessed on
1 January 2022).

5. Conclusions

In the present study, we found that differentially expressed genes responding to cold
stress in D. catenatum, as determined by RNA-Seq, were mainly related to lipid metabolism,
protein kinase activity, plant hormone signaling transduction, transcription regulation,
circadian rhythm, membrane transport and carbohydrate metabolism. We also explored
the differential alternative splicing events in D. catenatum. We found that the number of
AS events was massively increased in cold stress, and all five kinds of AS classes existed
in D. catenatum. The most enriched type was ES events, which increased the number
of transcripts and protein variants. These results indicate that AS events can fine-tune
the expression levels and abundance of alternative spliced transcripts responding to cold
stress. We further identified and cloned CBP20 homologues in D. catenatum and first found
that DcCBP20 altered the variants and abundance of alternative splicing isoforms of some
cold-induced genes in response to cold stress (Figure 9B). Further investigation of how AS
influences cold resistance in D. catenatum and the correlation of TFs and SFs in regulating
the stress response will be valuable to explore the cold stress response of plants.
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