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Simple Summary: Epidermal growth factor receptor (EGFR) is a target for the therapeutic antibody
cetuximab (CTX) in head and neck squamous cell carcinoma (HNSCC). Identification of its predictive
biomarkers and potentiation of CTX-based therapies are important. In this study, we found that the
N-terminal portion of cylindromatosis (CYLD) was required for clathrin-mediated endocytosis (CME)
and degradation of EGFR. Loss of CYLD limited EGFR to lipid rafts and inhibited CTX-induced
apoptosis. Destruction of lipid rafts by cholesterol removers restored EGFR CME and CTX activity
in CYLD-downregulated cells. Our findings provide novel insights into the molecular mechanisms
underlying EGFR trafficking and resistance to CTX, and suggest the usefulness of CTX-based therapy
combined with cholesterol-lowering drugs in HNSCC.

Abstract: Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck
squamous cell carcinoma (HNSCC) and is a target for the therapeutic antibody cetuximab (CTX).
However, because only some patients have a significant clinical response to CTX, identification of
its predictive biomarkers and potentiation of CTX-based therapies are important. We have recently
reported a frequent downregulation of cylindromatosis (CYLD) in primary HNSCC, which led to
increased cell invasion and cisplatin resistance. Here, we show that CYLD located mainly in lipid
rafts was required for clathrin-mediated endocytosis (CME) and degradation of the EGFR induced
by EGF and CTX in HNSCC cells. The N-terminus containing the first cytoskeleton-associated
protein-glycine domain of CYLD was responsible for this regulation. Loss of CYLD restricted EGFR
to lipid rafts, which suppressed CTX-induced apoptosis without impeding CTX’s inhibitory activity
against downstream signalling pathways. Disruption of the lipid rafts with cholesterol-removing
agents overcame this resistance by restoring CME and the degradation of EGFR. Regulation of EGFR
trafficking by CYLD is thus critical for the antitumour activity of CTX. Our findings suggest the
usefulness of a combination of cholesterol-lowering drugs with anti-EGFR antibody therapy in HNSCC.

Keywords: CYLD; EGFR; cetuximab; clathrin-mediated endocytosis; head and neck squamous
cell carcinoma

1. Introduction

Head and neck squamous cell carcinoma (HNSCC), a squamous cell carcinoma, is the
sixth most common type of cancer worldwide. Squamous cell carcinoma is a tumour
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characterized by an abnormal and quick growth of keratinocytes in the epidermis. Although
this kind of tumour is usually associated with ultraviolet light exposure and tobacco
and alcohol use, HNSCC may be more linked to previous human papillomavirus (HPV)
infection in up to 25% of cases [1]. About two-thirds of patients with HNSCC have
advanced disease at diagnosis [2]. Therapeutic options remain limited in patients with
recurrent or metastatic HNSCC not expressing programmed cell death ligand 1 (PD-L1)
or who have contraindications to anti-programmed cell death protein 1 (PD-1) inhibitor
treatment [3]. Limited biomarkers such as those positive for HPV or p16(INK4a) potentially
predict the radiosensitivity of HNSCC to a certain extent, but these are not still sufficient [4].
A better understanding of the biological mechanisms responsible for treatment efficacy
and resistance is needed to improve patients’ outcomes via the design of new therapeutic
combinations, including consideration of minimally invasive surgery [5].

Epidermal growth factor (EGF) receptor (EGFR) is a receptor tyrosine kinase that
serves as a master control for cell growth and differentiation pathways in HNSCC [6].
EGFR is frequently overexpressed (~90%) or the gene is amplified in primary HNSCC,
which is thought to correlate with carcinogenesis, metastasis, and poor prognosis [7].
Cetuximab (CTX, ICM-225) is a human/murine chimeric IgG1 monoclonal antibody used
to treat HNSCC. CTX binds structurally to Domain III of EGFR’s tethered extracellular
domain, thereby competitively interfering with ligand binding at Domains I and III and
stabilizing the receptor in the closed conformation [8,9]. The favourable clinical efficacy
of CTX was demonstrated by administering this antibody together with platinum-based
agents in recurrent or metastatic HNSCC, and using it as a radiosensitizer as a component
of definitive radiotherapy for locally advanced cases and cisplatin-unfit patients [10,11].
Because of these findings, CTX has become a standard therapeutic agent for HNSCC
treatment. However, individual HNSCC patients show wide-ranging degrees of response
to CTX, with only a few patients demonstrating significant tumour shrinkage [12]. Primary
resistance to CTX is mainly due to aberrations in the KRAS, NRAS, and EGFR genes [13],
which are often found in other cancer backgrounds, including colorectal cancer (CRC) and
non-small cell lung cancer (NSCLC) but are uncommon in HNSCC tumours in CTX-naïve
patients [14]. In addition, biomarkers predicting the responsiveness of CTX and oncogenic
molecules potentially related to CTX resistance are limited [15]. Moreover, CTX treatment
inevitably induces an acquired resistance through diverse mechanisms, even in cases with
an effective initial response [16,17]. At present, reliable predictive biomarkers of the clinical
activity of CTX, either alone or combined with chemotherapy or radiotherapy, are lacking
in the HNSCC setting, so identification of such biomarkers and potentiation of CTX-based
therapies by characterizing the molecular mechanisms involved in CTX therapeutic activity,
adverse events, and acquired resistance are important [12,16,18].

The molecular mechanisms underlying EGFR activation and intracellular trafficking
have been documented in detail [19]. A conformational change in the extracellular domain
of the receptor during ligand binding allows ligand-mediated EGFR activation. Dimeriza-
tion is critical for ligand-stimulated EGFR autophosphorylation, activation, and internaliza-
tion [20]. Phosphotyrosine-binding proteins are thus engaged, so many signal transduction
pathways, including the Ras-Raf-MEK-ERK, PI3K-AKT, and JAK-STAT3 cascades, are ac-
tivated. These pathways are involved in the carcinogenesis and invasiveness of many
cancer types [21]. Ligand-induced receptor internalization requires receptor tyrosine kinase
activity for entry into clathrin-coated pits. After endocytosis, ligand–receptor complexes are
directed mainly to the lysosomes but can also be recycled to cell surfaces. EGF also causes
intracellular trafficking of a small fraction of the receptor to the endoplasmic reticulum (ER)
and nucleus [22,23]. Modulations in not only the downstream pathways but also EGFR
trafficking and function can result in oncogenesis or change the outcomes of antineoplastic
therapies [16,19].

In addition to ligands, CTX is internalized as an antibody–receptor complex with
EGFR, even though the antibody prevents EGFR stimulation by ligands. In contrast to
stimulation by ligands, antibody-dependent EGFR internalization does not require receptor
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kinase activity [24]. Although the route has not been clarified, the internalized antibody–
receptor complex can be degraded in lysosomes [24], recycled to cell surfaces [24,25],
or sorted to nuclei through the ER [25]. EGFR downregulation after CTX treatment has
been shown to predict antitumour effects in CRC [26]. However, little is still known
about antibody-induced EGFR trafficking, the factors commonly involved in ligand- and
antibody-induced receptor trafficking, and the clinical significance of receptor trafficking.
Elucidating the molecular events that affect EGFR trafficking during tumour progression
may contribute to understanding the mechanisms regulating tumour progression and to
improving CTX efficacy by overcoming primary resistance.

The cylindromatosis gene (CYLD) was first found to be associated with familial
cylindromatosis, a condition involving multiple skin tumours [27]. CYLD protein func-
tions as a deubiquitinase through the ubiquitin-specific protease (USP) domain, which
mainly removes lysine 63 (K63)-linked polyubiquitin chains on the target proteins [28,29]
and thereby regulates various signalling pathways, including nuclear factor-κB (NF-κB),
Wnt/β-catenin, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Hippo
and Notch [29,30]. CYLD also has three cytoskeleton-associated protein-glycine (CAP-Gly;
CG) domains. CYLD binds directly and indirectly to tubulin and microtubules via CG
domains to regulate microtubule dynamics, with certain differences in tubulin-binding
affinity and interacting partners among these CG domains [29]. Accumulating evidence
has established the tumour-suppressive role of CYLD [30]. Loss-of-function mutations in
this gene and reduced expression are found in various cancer types [31–33]. We recently
reported that although alterations in CYLD were rare, CYLD protein expression was of-
ten reduced, particularly in invasive lesions in primary HNSCC, which was associated
with poor prognosis [34]. We found that loss of CYLD promoted epithelial–mesenchymal
transition-like changes and cell invasion by activating transforming growth factor-β sig-
nalling. Despite altered CYLD expression having been observed in various cancers in
which EGFR signalling contributed to cancer development and progression, the roles of
CYLD in EGFR signalling and response to anti-EGFR therapies remain unknown. Lim-
ited reports have suggested the involvement of CYLD in the spatial regulation of EGFR
signals by showing the requirement for CYLD in the formation of dorsal ruffles in focal
adhesion mediated by EGFR and integrin [35]. As a notable result, we showed that CYLD
protein downregulation led to cisplatin resistance in HNSCC [36], with the assumption
that HNSCC cells with a lower CYLD expression have many opportunities to be exposed
to CTX-based therapies because of the current treatment strategy for HNSCC.

Therefore, in this study, we investigated how CYLD is associated with EGFR trafficking
and signalling, and the antitumour activity of CTX in HNSCC cells. We present evidence
that CYLD is essential for clathrin-mediated endocytosis (CME) and degradation of EGFR
induced by both EGF and CTX in HNSCC cells. As an important result, the loss of CYLD
induced resistance to CTX by inhibiting EGFR’s exiting lipid rafts. This resistance was
overcome by disrupting the lipid rafts with cholesterol-removing agents via restoring CME
and degrading EGFR. These findings provide new insights into the mechanisms underlying
EGFR trafficking and responsiveness to anti-EGFR antibody therapy.

2. Materials and Methods
2.1. Reagents and Cell Culture

The anti-EGFR monoclonal antibody CTX was purchased from Merck (Tokyo, Japan).
The nystatin and methyl-β-cyclodextrin (mβCD) used to reduce cholesterol content,
the cholera toxin subunit B (recombinant) Alexa Fluor 594 conjugate used to detect lipid
rafts, and cycloheximide (CHX) were obtained from Sigma-Aldrich (St. Louis, MO, USA).
The clathrin inhibitor chlorpromazine (CPZ) was obtained from Cayman Chemical (Ann
Arbor, MI, USA). The Cell Resource Center for Biomedical Research, Tohoku University
(Sendai, Japan) donated the human HNSCC cell lines HSC3 and Ca9-22. The TSU cells were
a kind gift from Drs Shuichi Kawashiri and Koroku Kato (Kanazawa University, Ishikawa,
Japan). Cells were grown in Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific,



Cancers 2022, 14, 173 4 of 19

Waltham, MA, USA) supplemented with 10% heat-inactivated foetal bovine serum (Thermo
Fisher Scientific) in 5% CO2 at 37 ◦C.

2.2. Transfection with siRNA

Cells were transfected with siRNA by using Lipofectamine 2000 (Thermo Fisher Scien-
tific) according to the manufacturer’s protocol. The siCYLD sequences were the following:
sense 5′-GAUUGUUACUUCUAUCAAAtt-3′ and antisense 5′-UUUGAUAGAAGUAACA
AUCtt-3′. The sequences of siCYLD-UTR, which targets the sequence containing the 3′-UTR
region of the CYLD gene, were as follows: sense 5′-GCAGAGUCCUAACGUUGCAtt-3′

and antisense 5′-UGCAACGUUAGGACUCUGCtt-3′.

2.3. Construction of Plasmids

The plasmids pDEST-HA-CYLD and pENTR-HA-CYLD-C601A were kind gifts from
Stephen Elledge (Addgene plasmids #15506, #60027). The pDEST-HA-CYLD-C601A that
expressed the C601A mutant CYLD was made by subcloning the region between the FseI
and SnaBI sites of pENTR-HA-CYLD-C601A into the corresponding region in pDEST-HA-
CYLD. The CYLD deletion mutants, i.e., ∆CG1, ∆CG1/2, ∆USP, and CG1, were based on
the pDEST-HA-CYLD plasmid by using the KOD-Plus-Mutagenesis Kit (TOYOBO, Tokyo,
Japan). Table 1 gives the primers used. Cells were transfected by using Polyethylenimine
MAX (Polysciences, Warrington, PA, USA) according to the manufacturer’s instructions.

Table 1. Primers used to construct CYLD deletion mutants.

Mutants Forward Primers (5′–3′) Reverse Primers (5′–3′)

∆CG1 ATGCAGGTCGAACTTCCTCCTTTGG GGGCCGGCCAGCGTAGTCTGGTACA
∆CG1/2 ATGCTTGCCTTTATGTCAAGAGGTG GGGCCGGCCAGCGTAGTCTGGTACA

CG1 GGCGCGCCTCTAGAACTATAGTGAG TTATGCAGTGTCATCATCTTCTAT
∆USP GGCGCGCCTCTAGAACTATAGTGAG TTAAATCATTATCTCCAAGCCTTC

2.4. Cell Viability Assay

Cells (7.0× 104) were plated in 12-well plates and transfected with siRNAs or plasmids
after 24 h of incubation. At 48 h after transfection, CTX (10, 50, 100, 200 µg/mL) was added
with serum-free medium. After 72 h, the number of living cells was counted by using
trypan blue.

2.5. Immunofluorescence

Transfection was performed 24 h after cells were seeded on cover glasses, then, 48 h
after transfection, the cells were starved overnight in serum-free medium. After stimulation
with EGF (100 ng/mL) or CTX (100 µg/mL), cells were fixed with 4% paraformaldehyde
(PFA) for 15 min at room temperature. Cells were permeabilized with 0.1% Triton X-100
(Sigma Aldrich) in phosphate-buffered saline (PBS) for 20 min and were then blocked with
1% bovine serum albumin (BSA) in PBS for 1 h. Slides were incubated with the primary
antibodies anti-EGFR mouse monoclonal antibody (clone A-10, sc-373746; Santa Cruz
Biotechnology, Santa Monica, CA, USA), anti-CYLD mouse monoclonal antibody (clone
E-10, sc-137139; Santa Cruz Biotechnology), goat polyclonal anti-human-IgG (A80-119A;
Bethyl Laboratories, Montgomery, TX, USA), or anti-hemagglutinin (HA)-tag antibody
(clone F-7, sc-7342; Santa Cruz Biotechnology) for 1 h at room temperature, followed by
incubation with Alexa Fluor 488-, 594- or 647-conjugated donkey anti-rabbit IgG (A-21206,
A-21207), donkey anti-mouse IgG (A-21202, A-21203, A-31571), and donkey anti-goat IgG
(A-11055) from Thermo Fisher Scientific at room temperature for 30 min in the dark. Nuclei
were stained with 5 µg/mL Hoechst 33,342 (Sigma-Aldrich) in PBS. Slides were mounted
and sealed with clear nail polish. Slides were stored at −20 ◦C in the dark until being
observed with a microscope (FV3000; Olympus, Tokyo, Japan).
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2.6. Measurement of Cell-Surface EGFR Expression

Cells were harvested and washed twice with PBS. Cells were fixed with 2% PFA at
room temperature for 15 min and were then blocked for 10 min with an incubation buffer
(PBS containing 0.1% BSA). Cells were resuspended in 100 µL of a buffer containing 0.5 µg
of anti-EGFR antibody (clone LA1, Merck), a mouse IgG1 targeting the external domain
of human EGFR, and were incubated for 1 h on ice. After cells were washed three times
with the incubation buffer and resuspended in 100 µL of the incubation buffer with Alexa
Fluor488-conjugated goat anti-mouse IgG (A-11029, Thermo Fisher Scientific) for 1 h on ice,
cell-surface EGFR was analysed using FACSVerse (BD Biosciences, San Jose, CA, USA).

2.7. Apoptosis Assay

Cells were pretreated with nystatin (25 µg/mL), mβCD (10 mM), or CPZ (5 µM) for
30 min before treatment with 100 µg/mL of CTX. Cells were harvested and washed twice
with PBS. Equal cell numbers were resuspended in tubes. Cells were stained with Annexin
V-APC and 7-AAD (BD Biosciences). FACSVerse (BD Biosciences) was used to measure
apoptosis.

2.8. Western Blotting

Cells were washed twice in cold PBS and were lysed by adding a NP-40 buffer con-
taining Protease/Phosphatase Inhibitor Cocktail (Cell Signaling Technology, Tokyo, Japan).
After a 30 min incubation of the lysate on ice, the lysate was centrifuged at 15,000 rpm
for 15 min to remove insoluble substances. Protein concentrations were determined by
using a BCA kit (Pierce Chemical Co., Rockford, IL, USA). Equal amounts of protein were
fractionated via SDS-PAGE and transferred to PVDF membranes. The membranes were
blocked with 5% skim milk and 0.1% Tween 20 (Sigma-Aldrich) in Tris-buffered saline
(TBS) (pH 7.4), and were then incubated overnight at 4 ◦C with antibodies against CYLD
(Santa Cruz Biotechnology), EGFR (Santa Cruz Biotechnology), pEGFR (Tyr1068, Cell Sig-
naling Technology), pAKT (Ser473, Cell Signaling Technology), pERK (Thr202/Tyr204, Cell
Signaling Technology), pSTAT3 (Tyr705, Cell Signaling Technology), AKT (Cell Signaling
Technology), ERK (Cell Signaling Technology), STAT3 (Cell Signaling Technology), β-actin
(Sigma-Aldrich), or HA (Santa Cruz Biotechnology) in 5% BSA/TBS. After being washed,
the membranes were incubated in horseradish peroxidase (HRP)-conjugated secondary
antibodies for 1 h. Protein bands were detected using an enhanced chemiluminescence
system (Amersham Pharmacia Biotech, Buckinghamshire, UK). All the whole western blot
figures can be found in the Supplementary Materials.

2.9. Samples from Patients and Patients’ Backgrounds

Tumour specimens were obtained from 29 patients with oral squamous epithelial
cancer who underwent therapeutic surgery or biopsy at the Department of Oral and
Maxillofacial Surgery, Kumamoto University Hospital, from 2002 to 2017. Fifteen patients
had surgery before CTX administration. Eleven of these patients received TS-1 before and
after surgery. Nine patients were inoperable and were given CTX as the initial treatment.
Five patients received primary treatment that included radiation monotherapy and TS-1
before CTX. Seventeen of the 29 patients were switched from CTX to another drug because
of tumour regrowth or reactions to the infusions. Various treatments were used after the
switch, including 5-fluorouracil plus cisplatin, paclitaxel, and TS-1. Tissue samples for
immunohistochemistry were fixed with 10% formalin before treatment. This study was
approved by the Ethics Committee of Kumamoto University, and all subjects gave written
informed consent to participate.

2.10. Immunohistochemistry

Paraffin-embedded formalin-fixed clinical tissues were cut to a thickness of 5 µm and
were placed on glass slides. Tissues were dewaxed with xylene and then rehydrated in
descending concentrations of alcohol. After the tissue antigen was activated with Proteinase
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K (DAKO, Jena, Germany), endogenous peroxidase was removed by incubation with 3%
hydrogen peroxide for 15 min. To block non-specific background staining, tissues were
incubated for 10 min with a non-specific staining blocking reagent (DAKO). Tissues were
then incubated overnight at 4 ◦C with anti-CYLD mouse monoclonal antibody (clone E-10,
sc-74435; Santa Cruz Biotechnology) or anti-EGFR mouse monoclonal antibody (clone
A-10, sc-373746; Santa Cruz Biotechnology) diluted in PBS containing 1% BSA. Tissues
were rinsed with PBS for 5 min and incubated for 1 h with HRP-conjugated secondary
antibody. 3,3′-Diaminobenzidine (DAKO) was used for chromogen development. Tissues
were counterstained with haematoxylin for 30 s, dehydrated, and mounted.

The CYLD staining score in clinical oral squamous cell carcinoma specimens was
determined by using ImageJ software (National Institutes of Health, Bethesda, MD, USA).
Regions of interest were drawn manually at 200× magnification, and then the percent posi-
tive area in each region of interest was determined and scored by using the threshold tool of
the software, with a CYLD-negative stromal lesion used as the negative control: i.e., score 0,
<5%; score 1, 5–25%; score 2, 25–50%; score 3, 50–75%; score 4, >75%. No case in this study
had a CYLD staining score of 4. The samples were classified into two categories according
to the CYLD expression: low (scores of 0–1) or high (scores of 2–3). The EGFR staining
pattern was evaluated according to its subcellular distribution in cancer cells; the pattern of
the EGFR signal that was observed primarily on the cell membrane was defined as “mem-
brane EGFR” for individual cancer cells. Other staining patterns included EGFR signals in
the cytoplasm or both the cytoplasm and the cell membrane. The average percentage of
cells showing the membrane EGFR pattern viewed in several fields at 200×magnification
was calculated, and a membrane EGFR staining score (i.e., scores of 0–4) was assigned
using the same classification criteria as the CYLD staining score described above. Scores of
0–1 and 2–4 were defined as low and high, respectively.

2.11. Statistical Analysis

Statistical significance was defined as p < 0.05 using Student’s paired t-test (to compare
the means of two groups) and Pearson’s χ2 test. JMP software Version 13 for Windows
(SAS Institute, Cary, NC, USA) was used for statistical analysis.

2.12. Flow Diagram

There is a flow diagram of this study in Figure S1.

3. Results
3.1. CME and Degradation of EGFR Are Essential for CTX-Induced Apoptosis

We first evaluated the response of EGFR to EGF stimulation in the human HNSCC
cell lines HSC3, Ca9-22, and TSU. EGF stimulation induced EGFR endocytosis (Figure 1A)
and reduced cell-surface EGFR expression (Figure 1B). Most of the endocytosed EGFR
co-localized with the early endosome marker Rab5 at 30 min, and with the late endo-
some marker Rab7 [37] and the lysosome marker LAMP1 at 60 min after EGF addition
(Figure S2A). After EGF stimulation, EGFR protein levels decreased markedly (Figure 1C
and Figure S2A), which confirmed the degradation of EGFR protein in lysosomes [38].
We then investigated the effects of CTX on EGFR expression in these cell lines. Similar to
EGF stimulation, CTX treatment led to reduced cell-surface EGFR expression (Figure 1D),
and a subsequent intracellular co-localization of EGFR with early and late endosomes and
lysosomes (Figure 1E). Thus, EGFR degradation occurred (Figure 1F).
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EGF stimulation. HSC3, Ca9-22, and TSU cells were stimulated with 100 ng/mL EGF for 60 min. (A) 
EGFR localization was analysed via immunofluorescence staining. Scale bars, 10 µm. (B) Cell-sur-
face EGFR was analysed using flow cytometry. (C) Amount of total EGFR after EGF stimulation. 
Cells were stimulated with 100 ng/mL EGF for the indicated times and total EGFR expression was 
analysed by using Western blotting. (D) Cell-surface EGFR expression after CTX treatment. Cells 
were treated with 100 µg/mL CTX for 60 min, and then cell-surface EGFR was stained with an anti-
EGFR antibody (clone LA1). (E) Co-localization of EGFR with endosomes and lysosomes after CTX 
treatment. The localizations of EGFR and the endosome and lysosome markers were analysed via 
immunofluorescence staining after 100 µg/mL CTX treatment for 30 min (Rab5 and Rab7) or 60 min 
(LAMP1). Scale bars, 10 µm. (F) Amount of total EGFR expression after EGF stimulation. Cells were 
stimulated with 100 µg/mL CTX for the indicated times and total EGFR expression was analysed by 
using Western blotting. (G) Effects of CPZ on EGFR internalization and degradation after EGF or 
CTX treatment. HSC3 cells were pretreated with 5 µM CPZ for 30 min and were then stimulated 
with 100 ng/mL of EGF or 100 µg/mL of CTX for 60 min. CHX was added before adding CPZ. The 
localization of EGFR was analysed via immunofluorescence staining (upper panels). Total EGFR 

Figure 1. CME of EGFR is essential for CTX-induced apoptosis. (A,B) Localization of EGFR after
EGF stimulation. HSC3, Ca9-22, and TSU cells were stimulated with 100 ng/mL EGF for 60 min.
(A) EGFR localization was analysed via immunofluorescence staining. Scale bars, 10 µm. (B) Cell-
surface EGFR was analysed using flow cytometry. (C) Amount of total EGFR after EGF stimulation.
Cells were stimulated with 100 ng/mL EGF for the indicated times and total EGFR expression was
analysed by using Western blotting. (D) Cell-surface EGFR expression after CTX treatment. Cells
were treated with 100 µg/mL CTX for 60 min, and then cell-surface EGFR was stained with an
anti-EGFR antibody (clone LA1). (E) Co-localization of EGFR with endosomes and lysosomes after
CTX treatment. The localizations of EGFR and the endosome and lysosome markers were analysed
via immunofluorescence staining after 100 µg/mL CTX treatment for 30 min (Rab5 and Rab7) or
60 min (LAMP1). Scale bars, 10 µm. (F) Amount of total EGFR expression after EGF stimulation.
Cells were stimulated with 100 µg/mL CTX for the indicated times and total EGFR expression was
analysed by using Western blotting. (G) Effects of CPZ on EGFR internalization and degradation
after EGF or CTX treatment. HSC3 cells were pretreated with 5 µM CPZ for 30 min and were then
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stimulated with 100 ng/mL of EGF or 100 µg/mL of CTX for 60 min. CHX was added before adding
CPZ. The localization of EGFR was analysed via immunofluorescence staining (upper panels). Total
EGFR expression was analysed via Western blotting (lower panels). Scale bars, 10 µm. (H) Apoptosis
after CTX given with CPZ. HSC3 cells were cultured in the presence of 5 µM CPZ for 30 min, followed
by incubation with 100 µg/mL of CTX for 12 h in serum-free medium. Cells were harvested and
stained with Annexin V-APC and 7-AAD. NT, no treatment. Bars indicate the percentage of apoptotic
cells. * p < 0.05. (I) Phosphorylation of EGFR and major downstream molecules after CTX given with
CPZ. Cells were pretreated with 5 µM CPZ for 30 min, after which they were treated with 100 µg/mL
of CTX for the indicated times.

Binding of the ligands and CTX to EGFR induced conformational changes in EGFR that
formed dimers and triggered EGFR endocytosis, which was mediated by clathrin [24,38].
Consistent with these reports, the endocytosis of EGFR induced by EGF and CTX was
blocked by the clathrin inhibitor CPZ (Figure 1G, upper panels, Figure S2B). The CHX
chase assay thus showed that pretreatment with CPZ inhibited the EGF- and CTX-induced
degradation of EGFR (Figure 1G, lower panels). As an important result, CTX-induced
apoptosis was completely blocked by CPZ pretreatment (p = 0.011, Figure 1H), although
phosphorylation of EGFR and the major downstream effectors, including STAT3, AKT,
and ERK, was inhibited (Figure 1I). Together, these data indicate that CTX-induced CME
and degradation of EGFR were crucial for apoptosis induction in HNSCC cells rather than
CTX inhibition of the EGFR signalling pathway.

3.2. CYLD Is Required for EGF- and CTX-Induced CME of EGFR

The molecular mechanisms involved in EGFR signalling have been analysed exten-
sively. Nevertheless, the critical factors regulating the CME of EGFR, especially those
commonly induced by the ligand and CTX, are largely unknown. We previously reported
that downregulation of CYLD protein expression frequently occurs in primary HNSCC
tissues [34]. However, the roles of CYLD in EGFR signalling remain unclear. Therefore,
we studied the effects of downregulating CYLD expression on EGFR trafficking through
transfection with siRNA to target the CYLD gene coding region (siCYLD). The basal expres-
sion levels of total and cell-surface EGFR protein showed no apparent differences in cells
transfected with control siRNA (siCtrl) or siCYLD (Figure 2A). However, CYLD knockdown
strongly inhibited the EGF- and CTX-induced CME of EGFR (Figure 2B, upper panels),
and thus cell-surface EGFR expression remained unaltered in CYLD-downregulated cells
(Figure 2B, lower panels). Moreover, CYLD knockdown inhibited EGF- and CTX-induced
EGFR degradation (Figure 2C). In addition, flow cytometric analysis with anti-human
IgG demonstrated the suppression of CTX internalization in CYLD-downregulated cells
(Figure S3A). Our immunofluorescence staining consistently showed that CTX remained
at the cell membranes with EGFR in CYLD-downregulated cells, whereas CTX co-localized
mostly with endocytosed EGFR in the cytoplasm in cells transfected with siCtrl (Figure 2D).
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Figure 2. CYLD downregulation inhibits EGF- and CTX-induced CME of EGFR. (A) CYLD and EGFR
expression after CYLD knockdown. HSC3, Ca9-22, and TSU cells were transfected with siRNA and
then incubated for 48 h. The expression of total CYLD and EGFR was analysed by using Western
blotting (left panels). Cell-surface EGFR expression was analysed by means of flow cytometry (right
panels). (B) Internalization of EGFR after EGF or CTX treatment in CYLD-downregulated cells. HSC3
cells were treated with 100 ng/mL of EGF or 100 µg/mL of CTX for 60 min. EGFR localization
was analysed via immunofluorescence staining (upper panels). Cell-surface EGFR expression was
analysed via flow cytometry (lower panels). Scale bars, 10 µm. (C) Total EGFR expression levels
after treatment with EGF or CTX in CYLD-downregulated cells. HSC3, Ca9-22, and TSU cells were
transfected with siRNA and were then stimulated with 100 ng/mL of EGF or 100 µg/mL of CTX for
the indicated times before harvesting. The cell lysate was immunoblotted with antibodies against the
indicated proteins. (D) EGFR and CTX localization in CYLD-downregulated cells. HSC3, Ca9-22,
and TSU cells were transfected with siRNA and were then treated with 100 µg/mL of CTX for 60 min.
Immunofluorescence staining was used to analyse the localization of EGFR and CTX. Scale bars, 20 µm.
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(E) Cell viability after CTX treatment in CYLD-downregulated cells. HSC3, Ca9-22, and TSU cells
were transfected with siRNA for 48 h before treatment with 100 µg/mL of CTX for 72 h in serum-free
medium. * p < 0.05; † p < 0.01; § p < 0.005 (siCtrl vs. siCYLD or siCYLD-UTR). (F) Apoptosis after CTX
treatment in CYLD-downregulated cells. HSC3, Ca9-22, and TSU cells were transfected with siRNA
and incubated for 48 h. The medium was changed to serum-free medium and then 100 µg/mL of
CTX was added. After a 12 h incubation with CTX, cells were harvested and analysed by means
of Annexin V-APC and 7-AAD. * p < 0.01; † p < 0.001; § p < 0.005. (G) Phosphorylation changes in
EGFR and the downstream signalling molecules after treatment with CTX in CYLD-downregulated
cells. HSC3 cells were transfected with siRNA and incubated for 48 h. The medium was changed to
serum-free medium, and cells were then treated with 100 µg/mL of CTX for the indicated times. Cell
lysates were immunoblotted with antibodies against the indicated proteins.

Given our observation that CTX’s efficacy was attributed to efficient endocytosis and
the degradation of EGFR (Figure 1), we analysed the effects of CYLD downregulation on
CTX sensitivity. CYLD knockdown with different two siRNAs led to resistance to CTX
(Figure 2E and Figure S3B) because of complete inhibition of apoptosis induction (HSC3:
p = 0.006; Ca9-22: p = 0.0007; TSU: p = 0.0032) (Figure 2F). Loss of CYLD increased the basal
phosphorylation levels of EGFR and the major downstream effectors, including STAT3,
AKT, and ERK (Figure 2G). However, CTX effectively blocked their phosphorylation even
in CYLD-downregulated cells, as also observed in siCtrl-transfected cells (Figure 2G).
These data suggested that suppression of the activity of these major effectors by CTX
was independent of endocytic EGFR trafficking, at least in the short term, and that EGFR
endocytosis was more important for the antitumour effects of CTX than the inhibition
of EGFR signalling. Our data thus indicate that CYLD is essential for the CME and
degradation of EGFR induced by EGF and CTX, and for the induction of apoptosis by CTX
in HNSCC cells.

3.3. The N-Terminal Part of CYLD Is Responsible for EGFR CME and CTX-Induced Apoptosis

We next analysed EGFR trafficking in HSC3 cells concomitantly transfected with vari-
ous CYLD deletion constructs (Figure 3A) and siCYLD-UTR. Cell-surface EGFR expression
did not differ significantly among cells transfected with the deletion constructs (Figure 3B).
As expected, transfection of full-length wild-type (WT)-CYLD in siCYLD-UTR-transfected
cells restored EGFR internalization after EGF or CTX stimulation (Figure 3B and Figure
S4A). Transfection of a construct lacking the USP domain (∆USP) also restored EGFR inter-
nalization. However, both ∆CG1 and ∆CG1/2 failed to rectify impaired EGFR trafficking.
Thus, transfection of the N-terminal part containing the CG1 domain alone was enough
to restore EGFR internalization. Again, clathrin mediated this recovery (Figure 3C and
Figure S4B). Transfection with CG1 also restored EGFR degradation after EGF stimulation
in a clathrin-dependent manner (Figure 3D). Although the amount of early reduction in
cell-surface EGFR was smaller in CG1- and ∆USP-transfected cells than in WT-transfected
cells (Figure 3B and Figure S4A), we found effective EGFR degradation (Figure 3D), which
suggested the involvement of the USP domain in the facilitation of EGFR internaliza-
tion. Since CME of EGFR was essential for CTX-induced apoptosis (Figure 1), we next
investigated apoptosis. No apparent difference in basal apoptosis was found among cells
transfected with the deletion constructs (Figure 3E). Consistent with the data for EGFR
trafficking, HSC3 cells co-transfected with siCYLD-UTR and full-length WT-CYLD, ∆USP,
or CG1 showed effective induction of apoptosis after CTX (WT-CYLD: p = 0.00019, ∆USP:
p = 0.00048, CG1: p = 0.00049). Transfection of the CYLD p.C601A mutant lacking deubiqui-
tinase activity also restored CTX’s efficacy (Figure S4C). Clathrin activity was essential for
the recovery of CTX-induced apoptosis by CG1 (Figure 3F). All our data showed that the
CG1-containing the N-terminal part rather than deubiquitinase activity was responsible for
CYLD regulation of CME and the degradation of EGFR induced by EGF and CTX, and thus
efficient induction of apoptosis by CTX.
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Figure 3. Impact of CYLD domain deficiency on CTX’s efficacy. (A) Domain structure of human
CYLD protein and constructs encoding deletion mutants of CYLD. Three CG domains (CG1–3) and
the USP domain are shown as white and black boxes, respectively. (B) The effects of CYLD mutants
on cell-surface EGFR expression after EGF stimulation. HSC3 cells were co-transfected with CYLD
deletion mutants and siRNA. After a 48 h incubation, cells were stimulated with 100 ng/mL of EGF
for 15 min. Flow cytometry was used to analyse cell-surface EGFR expression. (C) The effects of
WT-CYLD and CG1 constructs on cell-surface EGFR expression after EGF stimulation in combination
with CPZ. HSC3 cells were co-transfected with WT-CYLD or CYLD mutants and siRNA. After a 48 h
incubation, cells were stimulated with 100 ng/mL of EGF for 15 min. CPZ (5 µM) was added 30 min
before adding the EGF. Flow cytometry was used to analyse cell-surface EGFR expression. (D) The
effects of CYLD mutants on total EGFR expression. HSC3 cells were co-transfected with WT-CYLD
or CG1 constructs and siRNA. After incubation for 48 h, the medium was changed to a serum-free
medium and then the incubation continued for 12 h. Cells were stimulated with 100 ng/mL of EGF
or 100 µg/mL of CTX for 60 min and were analysed by immunoblotting. (E,F) The effects of CYLD
mutants on apoptosis induced by CTX. HSC3 cells were co-transfected with WT-CYLD or CYLD
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constructs and siRNA. After incubation for 12 h with 100 µg/mL of CTX in serum-free medium, cells
were harvested and analysed with Annexin V-APC and 7-AAD. * p < 0.001 (E). CPZ (5 µM) was
added 30 min before adding CTX. * p < 0.05; † p < 0.01; § p < 0.0001 (F).

3.4. Relationship between CYLD Expression and Subcellular EGFR Localization in Human
HNSCC Tissues

We used immunohistochemistry with anti-CYLD and anti-EGFR antibodies to study
the initial biopsy samples from 29 primary HNSCC patients who underwent CTX-based
therapies. Similar to the results in our previous reports [34], tumour cells in more than half
of the cases (16/29) showed lower CYLD protein expression levels (score 0–1, see Mate-
rials and Methods), with this expression being absent (score = 0) in 31% (9/29) of cases
(Figure S5A). Tumour cells in all cases expressed EGFR. We observed intratumour hetero-
geneity in subcellular EGFR localization. We therefore placed the samples into five groups
(scores of 0–4) according to the percentage of tumour cells in which EGFR was localized
primarily to the cell membranes (see Materials and Methods). CYLD expression was in-
versely correlated with membrane EGFR expression (Figure 4A). Almost all cases with low
CYLD scores showed high membrane EGFR scores (15/16 cases, 94%); 46% (6/13 cases)
with high CYLD scores showed high membrane EGFR scores (Figure 4B,C). CYLD localized
to both the cytoplasm and cell membrane in tumour cells (Figure 4C). Intracellular EGFR
accumulation frequently occurred in CYLD-expressing tumours, which suggested active
endocytosis. Although we found no statistical correlation between CYLD expression or
membrane EGFR score and therapeutic efficacy as assessed by the progression-free survival
rate or the overall survival rate (Figure S5B), these results were likely due to inconsistent
therapeutic regimens across patients (see Materials and Methods) and the limited cohort size.
Our immunohistochemical observations support in vitro data indicating that downregulation
of CYLD inhibited the intracellular trafficking of EGFR after ligand stimulation.

3.5. Cholesterol Sequestration Restores CYLD Knockdown-Induced Defective EGFR Trafficking
and Overcomes CTX Resistance

Lipid rafts are microdomains of plasma membranes that are greatly enriched with
cholesterol and sphingolipids and regulate the function of many surface receptors [39].
EGFR initially located in lipid rafts may exit these rafts after ligand binding and enter
clathrin-coated pits [40]. CYLD reportedly co-localized with lipid rafts in T cells [41].
To clarify how CYLD regulates EGFR internalization, we investigated the subcellular local-
ization of endogenous CYLD and hemagglutinin (HA)-tagged CYLD deletion constructs
in relation to EGFR and lipid rafts. In cells transfected with siCtrl, both the cytoplasm
and plasma membranes possessed endogenous CYLD (Figure 5A). Cell-surface CYLD
and EGFR mostly co-localized with lipid rafts in cells without EGF stimulation. As ex-
pected, after EGF stimulation, EGFR exited the lipid rafts and was internalized, without
an apparent alteration in CYLD distribution. However, in cells transfected with siCYLD,
EGFR remained with the lipid rafts in plasma membranes even after EGF stimulation.
Consistent with the data in Figure 3B, EGFR internalization was restored only when the
CG1-containing N-terminal part of CYLD was expressed (Figure 5B). Our immunofluo-
rescence analysis showed that all HA-tagged CYLD deletion constructs, including those
lacking the N-terminal part, co-localized with lipid rafts without affecting basal EGFR
localization. These findings indicate that the CG1-containing N-terminal part of CYLD in
lipid rafts was essential for EGFR to exit the lipid rafts and that inhibition of CME of EGFR
by the loss of CYLD was attributed to restricting EGFR to the lipid rafts.
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Figure 4. CYLD expression and subcellular EGFR localization in human HNSCC tissues. (A) Re-
lationship between CYLD expression score and membrane EGFR score in primary HNSCC tissues.
(B) Percentage of specimens with low or high CYLD expression scores compared with membrane
EGFR scores. The membrane EGFR score was determined based on the percentage of tumour cells
showing dominant EGFR localization in the cell membranes (see Materials and Methods for scoring
details). * p < 0.01 (Pearson’s χ2 test). (C) Examples of high CYLD expression for low membrane
EGFR scores and low CYLD expression for high membrane EGFR scores. The images on the right
provide enlargements of the boxed areas in the middle images. Scale bars, 100 µm.
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Figure 5. Effect of cholesterol depletion on CYLD-downregulated cells. (A,B) Localization of EGFR,
lipid rafts, and CYLD (A) or anti-hemagglutinin (HA) (B) as analysed by immunofluorescence
staining. HSC3 cells were transfected with the indicated siRNA and plasmids expressing deletion
constructs of CYLD. After incubation for 48 h, cells were starved for 12 h in a serum-free medium.
Cells were then stained with the appropriate antibodies and observed under fluorescent microscopy.
Scale bars, 10 µm. (C,D) Effects of nystatin on EGF- or cetuximab (CTX)-induced EGFR endocytosis.
HSC3 cells were transfected with siRNA and incubated for 48 h, then, after 12 h of incubation in a
serum-free medium, cells were pretreated with 25 µg/mL of nystatin for 30 min before stimulation
with 100 ng/mL of EGF for the indicated times (C) or 100 µg/mL of CTX for 60 min (D). EGFR
localization was analysed via immunofluorescence staining. Scale bars, 20 µm. (E) Effects of nystatin
on total EGFR expression after CTX treatment in CYLD-downregulated cells. HSC3 cells were
transfected with siRNA and were then incubated for 48 h. Cells were pretreated with 25 µg/mL of
nystatin for 30 min before treatment with 100 µg/mL of CTX for the indicated times. Total EGFR
protein expression was analysed via Western blotting. CHX was added 1 h before nystatin treatment.
(F) Effects of nystatin on CTX-induced apoptosis. HSC3 cells were transfected with siRNA and then
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incubated for 48 h. Cells were pretreated with 25 µg/mL of nystatin for 30 min before treatment with
100 µg/mL of CTX in a serum-free medium for 12 h. Apoptosis was analysed using Annexin V-APC
and 7-AAD. * p < 0.001; n.s., not significant.

Disruption of the lipid rafts by cholesterol depletion induced the trafficking of EGF-
or CTX-bound EGFR to clathrin-coated pits, thus enhancing CME [42,43]. The involve-
ment of cholesterol accumulation in cancer aggravation was also suggested in a colon
cancer model [44]. However, the effects of cholesterol reduction on impaired CME re-
main unknown. To determine whether cholesterol reduction enables the release of EGFR
confined to lipid rafts and affects sensitivity to CTX, we treated cells with nystatin or
mβCD, which reduce cholesterol in lipid rafts/caveolae [45]. Pretreatment with nystatin
(Figures 5C and S6A) or mβCD (Figure S6A,B) restored EGF-induced CME of EGFR in
CYLD-downregulated cells. Moreover, nystatin or mβCD restored the internalization of
CTX-bound EGFR in CYLD-downregulated cells (Figures 5D and S6C). In agreement with
these data, nystatin restored CTX-induced EGFR degradation in CYLD-downregulated
cells (Figure 5E). Nystatin also promoted the degradation of CTX-bound EGFR in siCtrl-
transfected cells (Figure 5C,E). Cholesterol depletion with both agents fully restored sen-
sitivity to CTX in CYLD-downregulated cells; nystatin increased basal sensitivity to CTX
(p = 0.0006, Figure 5F). mβCD also restored sensitivity to CTX in CYLD-downregulated
cells (Figure S6D). These data indicate that cholesterol reduction enabled the release of
EGFR from lipid rafts to clathrin-coated pits, thereby overcoming resistance to CTX in
CYLD-downregulated cells.

4. Discussion

The molecular mechanisms of trafficking of ligand-bound EGFR have been well doc-
umented. However, those for CTX-induced EGFR trafficking remain largely unknown
despite EGFR’s modulation of antitumour activity. We show here that the tumour suppres-
sor CYLD is essential for CME of EGFR and its lysosomal degradation is induced by EGF
and CTX in HNSCC cells. Regulation of EGFR trafficking by CYLD is necessary for CTX’s
apoptosis-inducing effect.

We found that the N-terminal part of CYLD containing the CG1 domain was re-
sponsible for EGF- and CTX-induced CME and the subsequent degradation of EGFR in
HNSCC cells. Our data showed that CYLD loss inhibited EGFR’s exit from lipid rafts to
clathrin-coated pits. A substantial fraction of CYLD was in the lipid rafts. CYLD report-
edly co-localized with lipid rafts in CD3-positive T cells under resting conditions but not
in their protein kinase Cθ (PKCθ)/β-deficient counterparts [41], which suggests a PKC-
dependent membrane shuttling of CYLD. Although the detailed mechanisms underlying
the localization of CYLD in lipid rafts remain to be clarified, we discovered that all CYLD
mutants tested, including those without the N-terminal part, localized in lipid rafts, which
suggests that regulation of EGFR internalization did not depend only on CYLD’s location
but also on the N-terminal part of CYLD, which has some effects on lipid rafts. Although
phosphorylation of CYLD by EGF at the Tyr-15 upstream of CG1 reportedly promoted
the recruitment of Cbl-b to activated EGFR and EGF-induced EGFR trafficking [46], this
mechanism would not explain the behaviour of inactive CTX-bound EGFR that we ob-
served. Among the three CG domains of CYLD protein, CG1 and CG2 interacted directly
with tubulin and microtubules, and CG1 had the highest binding affinity [42,47]. CG1 also
interacted with histone deacetylase 6, which deacetylates various proteins, including tubu-
lin [48]. These data suggest the involvement of tubulin dynamics in the release of EGFR
from lipid rafts to clathrin-coated pits. Tubulin resides in lipid rafts and clathrin-coated pits,
and its modifications, including acetylation, alter the localization of some proteins [49,50].
Thus, investigating the interacting partners of the N-terminal part of CYLD, especially CG1,
and modification of the tubulin in lipid rafts would be important.

In terms of the treatment of cancers such as HNSCC, distinct from other cancers includ-
ing CRC and NSCLC, the factors contributing to primary resistance to CTX remain poorly
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understood [14]. Here, we demonstrated that CYLD loss induced CTX resistance via inhibi-
tion of CME of EGFR and that the N-terminus of CYLD was involved in this phenomenon.
Reduced CYLD expression is frequently found, predominantly in invasive lesions in pri-
mary HNSCC [51], which may at least partly explain why CTX is not as effective in this
cancer as one would expect from preclinical data [11]. Our immunohistochemical findings
suggest that membrane expression of EGFR may partly reflect the impaired trafficking
of this receptor. Although acquired resistance to CTX often involves persistent activation
of the signalling effectors downstream of EGFR [51], downregulation of CYLD did not
block the inhibitory effects of CTX against major downstream effectors, which suggests that
EGFR internalization/degradation, rather than the inhibition of downstream signalling,
is critical for CTX-induced apoptosis. Indeed, the downregulation of cell-surface EGFR af-
ter CTX treatment reportedly predicted antitumour effects in CRC [26]. Moreover, impaired
endocytosis of CTX-bound EGFR is a common biological feature in CTX-resistant NSCLC
and HNSCC cells [52,53]. Therefore, reversing defective EGFR trafficking machinery may
be crucial for improving the apoptotic activity of CTX.

We showed, as a promising example, that lipid raft disruption by cholesterol seques-
tration restored the CME of EGFR, thereby overcoming the CTX resistance induced by
CYLD downregulation. This result suggests that cholesterol depletion effectively releases
the EGFR in lipid rafts to clathrin-coated pits. Previous studies showed that nystatin
promoted CTX-induced CME of EGFR and hence potentiated antitumour efficacy [36],
as we observed. This drug is a polyene antifungal agent used both orally and topically in
humans [54]. Another cholesterol-lowering drug, simvastatin, suppressed HNSCC growth
ex vivo, enhanced the cytostatic effects of chemotherapeutics (cisplatin and docetaxel) [55],
and even overcame CTX resistance in KRAS-mutant CRC by modulating BRAF activity [56].
In addition, high membrane cholesterol content itself inhibited EGFR internalization by
accumulating specific factors in cholesterol-induced lipid rafts [57]. Although the regula-
tion of EGFR trafficking by CYLD was independent of its deubiquitinase activity, a CYLD
downregulation-induced reduction in this activity led to activation of diverse signalling
pathways, including NF-κB and Wnt, thereby promoting malignant phenotypes [34]. Given
that targeting such aggressive tumour cells is particularly important for establishing effec-
tive therapeutic strategies, CTX-based therapy combined with cholesterol-lowering drugs
as a drug repositioning strategy may hold promise for HNSCC treatment.

5. Conclusions

In conclusion, we demonstrated that CYLD regulated the CME and degradation
of EGFR induced by EGF and CTX via its N-terminal part. This process was required
for CTX-induced apoptosis. Our data suggest that releasing EGFR from lipid rafts by
sequestering cholesterol is useful for restoring CME of EGFR, thereby overcoming CTX
resistance. Of note, in addition to direct EGFR inhibition, the antitumour activity of
CTX depends on antibody-dependent cell cytotoxicity effects [58,59]. Because CYLD is
implicated in the regulation of immunity [60], alterations of the immune microenvironment
and their impacts on CTX efficacy are worth investigating. Our findings provide novel
insights into the molecular mechanisms underlying EGFR trafficking and resistance to CTX.
Additional studies will contribute to developing a novel treatment strategy targeting EGFR
for HNSCC.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers14010173/s1. Figure S1: Flow diagram of the
method. Figure S2: EGFR trafficking after EGF or CTX treatment. Figure S3: Effects of CYLD
knockdown on cell-surface CTX levels. Figure S4: Effects of various CYLD deletion mutants on
cell-surface EGFR expression and cell viability. Figure S5: Expression of CYLD and EGFR in pri-
mary HNSCC tissues. Figure S6: Effects of mβCD on EGFR trafficking and CTX-induced apoptosis
in CYLD-downregulated cells. Figures S7 and S8: Whole blots for the Western blots in Figure 1.
Figures S9 and S10: Whole blots for the Western blots in Figures 2 and S3. Figure S11: Whole blots
for the Western blots in Figures 3 and 5.
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